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DISCONTINUOUS SPECTRAL ELEMENT METHODS FOR TIME-
AND SPACE-FRACTIONAL ADVECTION EQUATIONS∗

MOHSEN ZAYERNOURI† AND GEORGE EM KARNIADAKIS‡

Abstract. We develop spectral element methods for a time- and space-fractional advection
equation of the form 0Dτ

t u(x, t) + θ 0Dν
xu(x, t) = f(x, t), of order τ ∈ (0, 1], ν ∈ (0, 1), subject to

Dirichlet initial/boundary conditions. We present two spectrally accurate and efficient methods for
global discretization of both temporal and spatial terms, instead of employing traditional low-order
time-integration methods. To this end, we first develop a Petrov–Galerkin in time and discontinuous
Galerkin in space (PG-DG) method, where we carry out the time-integration using a single time-
domain spectral method (SM), and we perform the spatial discretization using the discontinuous
spectral/hp element method (DSEM). This scheme also leads to a more efficient time-integration
when the time-derivative is integer-order, i.e., τ = 1. We develop the SM-DSEM scheme based
on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), recently presented in J.
Comput. Phys., 47 (2013), pp. 2108–2131. We choose the corresponding space-time bases from the
span of tensor product of the introduced eigenfunctions. Specifically, we employ the eigenfunctions of
the FSLP of first kind (FSLP-I), called Jacobi polyfractonomials, as temporal bases. We also employ
the corresponding asymptotic eigensolutions to FSLP-I, which are Jacobi polynomials, as the spatial
basis. Next, we construct a different test function space, defined as the span of tensor product of
polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-II), as the temporal test functions
and the corresponding asymptotic eigensolutions to FSLP-II as the spatial ones. Subsequently, we
extend PG-DG to a DG-DG scheme employing the DG method in both time and space. In this
scheme, both time-integration and spatial discretization are performed in a DSEM fashion (DSEM-
DSEM). Our numerical tests confirm the expected spectral/algebraic convergence, respectively, in
corresponding p- and h-refinements in various test cases and show a four-order of magnitude speed-up
compared to finite-difference discretizations.

Key words. fractional PDEs, Jacobi polyfractonomials, fractional basis functions, spectral
convergence
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1. Introduction. Fractional calculus is a unifying theory that generalizes the
notion of the standard integer-order differentiation and integration to any real-valued
order [28, 6, 30]. Particularly, for instance, it has been shown that the wall-friction
through the fluid boundary layer exhibits some cumulative memory effects, giving rise
to fractional partial derivatives in Navier–Stokes equations [7, 17, 36]. The notion of
fractional differential operators has been rapidly extended to many fractional par-
tial differential equations (FPDEs) such as the fractional Burgers’ equation [35], the
fractional Fokker–Planck equation [2], and the fractional advection-diffusion equation
[13]. However, the extension of existing numerical methods, developed for integer-
order PDEs (see e.g., [11, 22, 14, 43, 16] and references therein) to their correspond-
ing FPDEs is not a straightforward task. It is mainly because of the nonlocal nature
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and long-range history-dependence of fractional differential operators. However, the
development of numerical schemes in this area has received enormous attention and
has undergone a fast evolution in recent years. Most of numerical methods developed
for integer-order PDEs have been applied to FPDEs; methods such as finite differ-
ence methods (FDM), spectral methods (SM), and finite or spectral element methods
(FEM, SEM).

The implementation of FDM approaches (see, e.g., [9, 21, 37, 4]) is relatively
easy; however, the challenging issue in FDM is that the convergence is algebraic and
the accuracy is limited. Moreover, FDM suffers from the heavy cost of computing
the long-range memory since FDM is inherently a local approach, whereas fractional
derivatives are essentially global (nonlocal). This fact would suggest global schemes
such as SMs may be more appropriate tools for discretizing FPDEs.

The early works in SM were developed in [35, 3, 31] employing collocation ap-
proaches. The idea of collocation was later adopted by Khader [18], who proposed a
Chebyshev collocation method for the discretization of the space-fractional diffusion
equation. More recently, Khader and Hendy [19] developed a Legendre pseudospectral
method for fractional-order delay differential equations. The aforementioned schemes
are relatively easy to implement; however, their performance has not been tested
rigorously or systematically and only limited cases have been examined. The first
fundamental work on SMs for FPDEs was done by Li and Xu [23, 24] and was based
on the early work of Fix and Roop [10]. They developed a time-space SM for time-
fractional diffusion equation, where the spatial term is integer-order, with exponential
convergence. In this scheme, the corresponding stiffness and mass matrices, however,
are dense and gradually become ill-conditioned when the fractional order tends to
small values. Hence, due to the nature of single-domain SMs, carrying out long-time
and/or adaptive integration using such an SM becomes prohibited. Moreover, we note
that the expected fast convergence in SMs is achieved only when the solution belongs
to higher Sobolev spaces and possesses high regularity. This motivates employing do-
main decomposition and developing proper FEMs in addition to SEMs in an efficient
form.

Unlike the great effort put into developing FDM and the considerable work done
on SM schemes, very little attention has been given to developing rigorous high-order
FEM and SEM methods. Fix and Roop [10] developed the first theoretical framework
for the least-square FEM approximation of a fractional-order differential equation,
where optimal error estimates are proven for piecewise linear elements. However, Roop
[33] later showed that the main hurdle to overcome in the FEM is the nonlocal nature
of the fractional operator, which leads to large dense matrices; he showed that even
the construction of such matrices presents difficulties. Among other rigoours works,
McLean and Mustapha [26] developed a piecewise-constant discontinuous Galerkin
(DG) method for the time-discretization of a subdiffusion equation. A Chebyshev-
SEM for fractional-order transport was adopted by Hanert [12], and later on, the idea
of the least-square FEM was extended to SEMs by Carella [5]. Recently, Deng and
Hesthevan [8] and Xu and Hesthaven [39] developed local DG methods for solving
space-fractional diffusion and advection-diffusion problems with optimal accuracy.

In our earlier study in [41], we developed efficient and highly accurate Petrov–
Galerkin (PG) spectral and DG for fractional ODEs of the form 0Dτ

t u(t) = f(t)
and tDτ

Tu(t) = f(t), τ ∈ (0, 1), subject to Dirichlet initial conditions. The goal
of the present study is to generalize the aforementioned schemes to linear hyper-
bolic FPDEs, where the corresponding temporal and spatial stiffness/mass matrices
coexist. The main contribution of this paper is the development of highly accurate
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B686 MOHSEN ZAYERNOURI AND GEORGE EM KARNIADAKIS

and efficient methods for time- and space- fractional advection equation (TSFAE)
of the form 0Dτ

t u(x, t) + θ 0Dν
xu(x, t) = f(x, t) of order τ ∈ (0, 1], ν ∈ (0, 1).

We accomplish this following the spectral theory on the fractional Sturm–Liouville
eigenproblem, recently developed in [40], where the corresponding eigenfunctions,
called Jacobi polyfractonomials, are employed as basis and test functions.

The TSFAE problem is of physical and mathematical importance. From the
viewpoint of transport kinetics, this equation governs the PDF of the continuous-
time random walk limit processes, known as τ&ν-stable Lévy processes with strictly
positive jumps and waiting times when the spatial order ν ∈ (0, 1) [27]. In fluid me-
chanics, the aforementioned equation when τ = 1/2 and ν → 1 has been shown to
be equivalent to the governing equations in Stokes’ first and second problems after
performing a proper change of variable through Laplace transform [20]. From the
mathematical development point of view, our approach is analogous to the first DG
method, developed in 1973 [32] for time-independent linear advection equations that
paved the way for further development of DG schemes for other PDEs. The present
study provides a suitable platform for further development of PG-DG methods for
higher-order FPDEs such as fractional wave or advection-diffusion equation. Here
in this study, the major feature of our schemes is the global and multielement dis-
cretization of the temporal term, in addition to the spatial term, rather than utilizing
traditional low-order time-integration methods, particularly when τ = 1.

We first develop a PG in time and DG in space (PG-DG) method, where we
carry out the time-integration using an SM-type discretization, and we perform the
spatial discretization using the discontinuous spectral/hp element method (DSEM).
This scheme is in contrast to the traditional approaches (e.g., see [25]) which treat the
temporal term using FDM and discretize the spatial term by SM. In fact, in such mixed
FDM-SM schemes, the high-order spatial descretization can be easily polluted by the
low accuracy of the time-integration. Here, we develop the SM-DSEM scheme based
on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), introduced
in [40], which provides proper spaces of basis and test functions. Subsequently, we
extend the PG-DG to a DG-DG scheme, in which both time-integration and spatial
discretization are performed in an hp-element fashion (DSEM-DSEM). In contrast to
common FEM/SEM methods, in which the construction of the corresponding mass
and stiffness matrices is challenging (see, e.g., [33]), all the aforementioned matrices
in our methods are constructed exactly and efficiently.

The organization of the paper is as follows. In section 2, we present the notation
and the problem definition. In section 3, we introduce the first method, i.e., PG-DG
employing SM-DSEM in time and space, in addition to the corresponding spaces of the
basis and test functions. In section 4, we consider a special case, where the temporal-
order τ = 1 in SM-DSEM, and we introduce this method as a spectrally accurate
time-integration scheme for problems of form ∂u/∂t = F (u;x, t). In section 5, we
extend this scheme to the second method, called DG-DG, by employing DSEM-DSEM
in both time and space, and we demonstrate its performance in long-time integration.
We end the paper with a summary and discussion in section 6, and Appendix A
includes the derivation of the SM-DSEM.

2. Problem definition. We consider the following TSFAE:

0Dτ
t u(x, t) + θ 0Dν

xu(x, t) = f(x, t), (x, t) ∈ [0, L]× [0, T ],(2.1)

u(x, 0) = g(x),

u(0, t) = h(t),
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where θ > 0, g ∈ C[0, L], and h ∈ C[0, T ], such that g(0) = h(0) = 0. Moreover,
denote by 0Dτ

t u(x, t) the left-sided Reimann–Liouville time-fractional derivative of
order τ ∈ (0, 1] following [30], defined as

(2.2) 0Dτ
t u(x, t) =

1

Γ(1− τ)

∂

∂t

∫ t

0

u(x, s)

(t− s)τ
ds, t > 0, x ∈ [0, L],

in which Γ represents the Euler gamma function. In (2.2), as ν → 1, the global
(nonlocal) operator 0Dτ

t u(x, t) → ∂u(x, t)/∂t, recovering the local first-order partial
derivative with respect to t. Also, 0Dν

xu(x, t) denotes the left-sided Reimann–Liouville
space-fractional derivative of order ν ∈ (0, 1), defined as

(2.3) 0Dν
xu(x, t) =

1

Γ(1− ν)

∂

∂x

∫ x

0

u(z, t)

(x − z)ν
dz, x > 0, t ∈ [0, T ].

We could also define the fractional derivatives in (2.1) to be of Caputo fractional
derivative sense i.e., C

0Dτ
t and C

0Dν
x, respectively, defined as

(2.4) C
0Dτ

t u(x, t) =
1

Γ(1 − τ)

∫ t

0

∂u(x, s)/∂s

(t− s)τ
ds, t > 0, x ∈ [0, L],

and

(2.5) C
0Dν

xu(x, t) =
1

Γ(1− ν)

∫ x

0

∂u(z, t)/∂z

(x− z)ν
dz, x > 0, t ∈ [0, T ].

These fractional operators are defined in fact by interchanging the order of the inte-
gration and differentiation in (2.2) and (2.3). However, the two definitions are closely
linked by the following relationships:

(2.6) 0Dτ
t u(x, t) =

g(x)

Γ(1− τ) tτ
+ C

0Dτ
t u(x, t)

and

(2.7) 0Dν
xu(x, t) =

h(t)

Γ(1− ν) xν
+ C

0Dν
xu(x, t),

By virtue of (2.6) and (2.7), the TSFAE (2.1) becomes identical to the corresponding
problem with the Caputo fractional derivatives when g(x) = h(t) = 0. Without loss
of generality, we consider (2.1) subject to homogeneous Dirichlet initial and boundary
conditions in this study. Moreover, we note that when the aforementioned fractional
derivatives apply to a univariate function, the corresponding partial derivative is
replaced by an ordinary derivative one.

3. PG-DG method: SM-in-time and DSEM-in-space. We develop a PG-
DG method for (2.1), where the time-fractional order τ ∈ (0, 1] and space-fractional
order ν ∈ (0, 1), subject to homogeneous Dirichlet initial/boundary conditions. Here,
we aim, rather than utilizing traditional low-order time-integrators such as FDM
when τ ∈ (0, 1) or Adams families when τ = 1, to treat the temporal term ∀τ ∈ (0, 1]
globally by employing an SM in the single time-domain [0, T ]. Moreover, we per-
form the spatial discretization by a DSEM. In the SM-DSEM scheme, we parti-
tion the computational domain into Nel nonoverlapping space-time elements, Ωe =
[xe−1/2, xe+1/2] × [0, T ], such that ∪Nel

e=1Ωe = [0, L] × [0, T ]. In SM-DSEM, the new
eigensolutions, introduced in [40], yield new sets of basis and test functions, properly
suited for our PG framework.
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B688 MOHSEN ZAYERNOURI AND GEORGE EM KARNIADAKIS

3.1. Basis functions. In SM-DSEM, we represent the solution in each space-
time element Ωe in terms of special basis functions, constructed as the tensor product
of the eigenfunctions in the following manner. We first recall the following Jacobi
polyfractonomials, obtained as the eigenfunctions of the FSLP of first kind explicitly
in [40] as

(3.1) (1)Pα,β,μ
n (x) = (1 + x)−β+μ−1Pα−μ+1,−β+μ−1

n−1 (x), x ∈ [−1, 1],

where Pα−μ+1,−β+μ−1
n−1 (x) are the standard Jacobi polynomials in which μ ∈ (0, 1),

−1 ≤ α < 2 − μ, and −1 ≤ β < μ − 1. Particularly, (1)Pα,β,μ
n (x) represent the

eigenfunctions of the singular FSLP of first kind (SFSLP-I) when α �= −1 and β �= −1;

otherwise (1)P μ
n (x) ≡ (1)P−1,−1,μ

n (x) denote the eigenfunctions of the regular FSLP
of first kind (RFSLP-I). The eigenfunctions (3.1) are the baseline of our space-time
basis construction.

To define the spatial basis in the interval [xe−1/2, xe+1/2], let the fractional power

of the multiplier term in (3.1) (−β + μ− 1) → 0; then (1)Pα,β,μ
n (x) → Pα−μ+1,0

n−1 (x),
where α−μ+1 = η ∈ (0, 1), since −1 ≤ α < 2−μ and −1 ≤ β < μ− 1, recalled from
[40]. Hence, through an affine mapping from [−1, 1] to [xe−1/2, xe+1/2], we define the
spatial basis as

(3.2) P̃ η,0
m (xe), m = 0, 1, 2, . . . , xe ∈ [xe−1/2, xe+1/2],

which are Jacobi polynomials associated with the parameters η and 0.
In order to define the temporal basis in the interval [0, T ], we recall that the

regular {(1)P μ
n (x)}Nn=1 and singular {(1)Pα,β,μ

n (x)}Nn=1 sets (for some N ∈ N) have
identical approximating properties when α = β. Hence, by choosing α = β = −1
and through the affine mapping x(t) = 2t/T − 1, from the standard interval [−1, 1]
to [0, T ] we define our temporal basis as

(3.3)
(1)P̃ μ

n (t) =

(
2

T

)μ

tμP−μ,μ
n−1 (x(t)), n = 1, 2, . . . , t ∈ [0, T ],

known as a shifted Jacobi polyfractonomial of fractional order (n − 1 + μ). Now,
having defined the spatial and temporal functions in (3.2) and (3.3), we construct the
space-time trial (basis) space V e as

(3.4) V e ≡ span{P̃ η,0
m (xe)

(1)P̃ μ
n (t) : m = 0, 1, . . . ,M, n = 1, 2, . . . , N},

where we shall approximate the solution to (2.1) in terms of a linear combination of
elements in V e. The corresponding space-time basis functions are then discontinu-
ous in space at the interfaces of elements Ωe, e = 1, 2, . . . , Nel, while they satisfy the
homogeneous initial condition in the single time-domain.We note that the correspond-
ing nodal representation of (3.3) has been recently employed in developing fractional
spectral collocation methods for fractional ODEs/PDEs [42].

3.1.1. Fractional derivatives of the bases. The following lemma is useful to
obtain the space-fractional derivative of the spatial basis P̃ η,0

m (xe ).

Lemma 3.1 (see [1]). For μ > 0, α > −1, β > −1, and ∀x ∈ [−1, 1]

(3.5) (1 + x)β+μ Pα−μ,β+μ
m (x)

Pα−μ,β+μ
m (−1)

=
Γ(β + μ+ 1)

Γ(β + 1)Γ(μ)Pα,β
m (−1)

∫ x

−1

(1 + s)β Pα,β
m (s)

(x− s)1−μ
ds.
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By the definition of the left-sided Riemann–Liouville integral −1Iμ
x (see, e.g., [30])

and evaluating the special end-values Pα−μ,β+μ
m (−1) and Pα,β

m (−1), we can rewrite
(3.5) as

(3.6) −1Iμ
x

{
(1 + x)βPα,β

m (x)
}
=

Γ(m+ β + 1)

Γ(m+ β + μ+ 1)
(1 + x)β+μ Pα−μ,β+μ

m (x).

Now, by taking the fractional derivative −1Dμ
x on both sides of (3.6) when β = −μ

we obtain

(3.7) −1Dμ
x

{
Pα−μ,0
m (x)

}
=

Γ(m+ 1)

Γ(m− μ+ 1)
(1 + x)−μPα,−μ

m (x).

Moreover, from the properties of the eigensolutions in [40], the left-sided Riemann–
Liouville fractional derivative of (3.3) is given as

0D μ
t

(
(1)P̃ μ

n (t)
)
=

(
2

T

)μ
Γ(n+ μ)

Γ(n)
Pn−1(x(t)),(3.8)

stating that the μth order fractional derivative of such fractal (nonpolynomial) basis
functions of order (n − 1 + μ) is a standard Legendre polynomial of integer-order
(n− 1).

3.2. Test functions. In order to construct the space of test functions, we recall
the following Jacobi polyfractonomials, introduced as the eigensolutions of the FSLP
of the second kind, obtained explicitly as

(3.9) (2)Pα,β,μ
n (x) = (1− x)−α+μ−1P−α+μ−1, β−μ+1

n−1 (x), x ∈ [−1, 1],

in [40], where −1 < α < μ − 1 and −1 < β < 2 − μ, and μ ∈ (0, 1). Particularly
(2)Pα,β,μ

n (x) denote the eigenfunctions of the singular FSLP of second kind (SFSLP-II)

when α �= −1 and β �= −1, and (2)P μ
n (x) ≡ (2)P−1,−1,μ

n (x) denote the eigenfunctions
of the regular FSLP of first kind (RFSLP-II). In a similar fashion, we employ the
eigenfunctions (3.9) as the baseline of construction for our space-time test functions.

To define the spatial test functions in the interval [xe−1/2, xe+1/2], we set the

power of the fractional multiplier in (3.9) (−α + μ − 1) → 0, then (2)Pα,β,μ
n (x) →

P 0,β−μ+1
n−1 (x), where β − μ+ 1 = χ ∈ (0, 1). Hence, we define the spatial basis as

(3.10) P̃ 0,χ
i (xe), i = 0, 1, 2, . . . , xe ∈ [xe−1/2, xe+1/2],

which are Jacobi polynomials associated with the parameters 0 and χ. We also define
the temporal basis in the interval [0, T ] by choosing α = β = −1 in (3.9) and mapping
from the standard interval [−1, 1] to [0, T ] as

(3.11)
(2)P̃ μ

j (t) =

(
2

T

)μ

(T − t)μPμ,−μ
j−1 (x(t)), j = 1, 2, . . . , t ∈ [0, T ].

Now, having defined the spatial and temporal functions in (3.10) and (3.11), we
construct the space-time test space Ve as

(3.12) Ve ≡ span{P̃ 0,χ
i (xe)

(2)P̃ μ
j (t) : i = 0, 1, . . . ,M, j = 1, 2, . . . , N},

where we test the problem (2.1) against the elements in Ve.
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3.2.1. Fractional derivatives of the test functions. We use the following
lemma to calculate the space-fractional derivative of the spatial test functions P̃ 0,χ

i (xe).

Lemma 3.2 (see [1]). For μ > 0, α > −1, β > −1, and ∀x ∈ [−1, 1]

(3.13) (1− x)α+μ Pα+μ,β−μ
i (x)

Pα+μ,β−μ
i (+1)

=
Γ(α+ μ+ 1)

Γ(α+ 1)Γ(μ)Pα,β
i (+1)

∫ 1

x

(1− s)α Pα,β
i (s)

(s− x)1−μ
ds.

Once again by the definition of the right-sided Riemann–Liouville integral xIμ
1

(see, e.g., [30]) and evaluating the special end-values Pα−μ,β+μ
i (+1) and Pα,β

i (+1),
we can recast (3.13) as

(3.14) xIμ
1

{
(1− x)αPα,β

i (x)
}
=

Γ(i+ α+ 1)

Γ(i+ α+ μ+ 1)
(1 − x)α+μPα+μ,β−μ

i (x).

In a similar fashion, by taking the fractional derivative xDμ
−1 on both sides of (3.14)

when α = −μ we obtain

(3.15) xDμ
1

{
P 0,β−μ
i (x)

}
=

Γ(i+ 1)

Γ(i− μ+ 1)
(1− x)−μP−μ,β

i (x).

The relations (3.7) and (3.15) are useful in computing the corresponding spatial stiff-
ness matrix in the discontinuous SM-DSEM.

Next, following [40], the right-sided Riemann–Liouville fractional derivative of
(3.11) is obtained as

tD μ
T

(
(2)P̃ μ

j (t)

)
=

(
2

T

)μ
Γ(j + μ)

Γ(j)
Pj−1(x(t)).(3.16)

The relations (3.8) and (3.16) will be employed in computing the corresponding tem-
poral stiffness matrix in the SM-DSEM scheme.

Remark 3.3. The Jacobi polynomials P 0,χ
i (x) in (3.12) and P η,0

m (x) in (3.2) have
been previously utilized by Li and Xu [23], who formulated exact quadrature rules
for the corresponding temporal matrices arising in their Galerkin method. Here, we
obtain and interpret the aforementioned polynomials as the asymptotic forms of the
polyfractonomial eigenfunctions of FSLPs and employ them in a discontinuous PG
framework.

The following lemma is useful in carrying out the temporal fractional integration-
by-parts in the development of the SM-DSEM scheme.

Lemma 3.4 (see [23]). For all 0 < ξ < 1, if u ∈ H1([a, b]), such that u(a) = 0,
and w ∈ Hξ/2([a, b]), then

(3.17) (aD ξ
s u,w)Ω = ( aD ξ/2

s u, sD ξ/2
b w)Ω,

where (·, ·)Ω represents the standard inner product in Ω = [a, b].

Next, we prove the following lemma that is useful in deriving the weak form in the
DSEM-DSEM scheme and discretizing the spatial advection term using the DSEM.

Lemma 3.5. For all 0 < ξ < 1, if u ∈ H1([a, b]) and w ∈ Hξ/2([a, b]), then

(3.18) (
a+D ξ

s u,w)Ω = (
a+D ξ/2

s u, sD ξ/2
b w)Ω.
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Proof. Let u(a) = uD �= 0 (constant). Then,

(
a+D ξ

s u,w)Ω = (
a+D ξ

s (u− uD), w)Ω + (
a+D ξ

s uD, w)Ω,

= (
a+D ξ/2

s (u− uD), xD ξ/2
s w)Ω + (

a+D ξ
s uD, w)Ω, by Lemma 3.4

= (
a+Dξ/2

s u, xD ξ/2
s w)Ω − (

a+D ξ/2
s uD, xD ξ/2

s w)Ω + (
a+Dξ

suD, w)Ω.

Now, it remains to show that (
a+Dξ

suD, w )Ω = (
a+Dξ/2

s uD, xDξ/2
s w )Ω. We note that

the lower-terminal of the fractional derivative now is a+ and not a. Therefore, it does
not contradict the previous lemma. Moreover, we can always represent uD in terms
of Qn(s) ∈ C∞

0 ([a, b]) such that ∀s ∈ (a, b), limN→∞
∑N

n=1 cnQn(s) converges to uD

in a pointwise fashion. Hence,

(
a+D ξ

s uD, w)Ω =

(
a+D ξ

s lim
N→∞

N∑
n=1

cnQn(s), w

)
Ω

=

(
lim

N→∞

N∑
n=1

cn[a+D ξ/2
s Qn(s)], sD ξ/2

b w

)
Ω

by Lemma 3.4 since Qn(s) ∈ C∞
0 ([a, b])

= (
a+D ξ/2

s uD, sD ξ/2
b w)Ω.

3.3. Implementation of SM-DSEM scheme. Now, we implement the SM-
DSEM scheme to solve TSFAE (2.1), where we seek the solution in Ωe = [xe−1/2,
xe+1/2] ×[0, T ] in terms of the linear combination of elements in the basis function
space V e of the form

ue
MN (x, t) =

M∑
m=0

N∑
n=1

ûe
MN P̃ η,0

m (xe) ˜(1)Pμ
n (t).(3.19)

The ultimate step of the SM-DSEM scheme is to obtain a linear system corresponding
to (2.1) of the form

A ÛeB + C ÛeD = E(3.20)

for some matrices A, B, C, D, and E, where Ûe is the matrix of unknown coefficient
in Ωe and (Û

e
)mn = ûe

mn. The linear system (3.20) is called the Lyapunov matrix
equation for which there are several numerical approaches introduced (see, e.g., [15,
29, 34, 38] and references therein). To this end, we require the solution (3.19) to
satisfy the following variational (weak) form as

(3.21)(
0Dτ/2

t ue
MN (x, t), tDτ/2

T ve(x, t)
)
Ωe

+ θ

(
x+
e−1/2

Dν/2
x ue

MN (x, t), xDν/2

x−
e+1/2

ve(x, t)

)
Ωe

+ γe

(
�ue

MN (xe−1/2, t)�, v
e(x−

e+1/2, t)
)
[0,T ]

=
(
f(x, t), ve(x, t)

)
Ωe

− θ · Hx
e

∀ve(x, t) ∈ Ve, beginning from the first space-time element, i.e., e = 1, and march-

ing element-by-element along the x -axis to e = Nel. In (3.21), γe = − θ(Δx)1−ν
e

(1−ν)Γ(1−ν) ,
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Alogrithm 1. First PG-DGmethod: A pseudocode for the SM-DSEM scheme,
employed in a nonuniformly partitioned domain.

Construct St and Mt ;

for e = 1; e = Nel do

Construct M e
x, S

e
x, and ηe ;

if e = 1 then

Hx
e = 0 ;

else

Compute Hx
e then construct Fe ;

end

Solve M e
xÛ

e
ST
t + (θSe

x + γe ηe) Û
e
MT

t = Fe ;

end

�ue
MN (xe−1/2, t)� represents the jump discontinuity of the solution at x = xe−1/2 as a

function of time t ∈ [0, T ], and (Δx)e = xe+1/2 − xe−1/2 is the (spatial) length of the
eth subdomain; also (·, ·)Ωe and (·, ·)[0,T ] represent, respectively, the standard inner
product in the space-time element Ωe, i.e.,(

f(x, t), g(x, t)
)
Ωe

=

∫ T

0

∫ x−
e+1/2

x+
e−1/2

f(x, t)g(x, t) dx dt,

and the standard inner product in the time interval [0, T ] is defined as(
p(t), q(t)

)
[0,T ]

=

∫ T

0

p(t) q(t) dt.

Finally, Hx
e is the history-load term, which we shall obtain in a convenient and com-

putationally efficient form shortly.
We obtain the corresponding linear system by plugging the expansion (3.19) into

the weak form (3.21), taking ve(x, t) = P̃ 0,χ
i (xe )

(2)P̃ μ
j ( t ), and choosing η = χ =

ν/2 and μ = τ/2 as the following Lyapunov matrix equation:

M e
xÛ

eST
t + (θSe

x + γeη
e) ÛeMT

t = Fe,(3.22)

where ηe is a constant matrix associated with the eth element and Ûe is the unknown
(M + 1) × N matirx of coefficients. Moreover, the matrices St and Mt represent
the corresponding temporal stiffness and mass matrices, and Se

x and M e
x denote the

spatial stiffness and mass matrices, associated with element Ωe, respectively. Finally,
in (3.22), Fe is the total load matrix and the superscript T is the transpose operation.

In Algorithm 1, we present the necessary steps in the SM-DSEM scheme, where
the computational domain is assumed to be nonuniformly partitioned. However, deal-
ing with uniform elements, the matrices St, Mt, M

e
x, and Se

x are constructed once at a
preprocessing step. In the following, we obtain the aforementioned matrices efficiently
and exactly.
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Temporal stiffness matrix. St is an N × N diagonal matrix whose entries are
obtained using (3.8) and (3.16) as

(St)jn =

∫ T

0
tD

τ/2
T

(2)P̃τ/2
j (t)0D

τ/2
t

(1)P̃τ/2
n (t)dt(3.23)

= δjn

(
2

T

)τ−1(
Γ(n+ τ/2)

Γ(n)

)2
2

2n− 1
,

in which δjn is the Kronecker delta.
Temporal mass matrix. Mt is also an N ×N matrix whose entries are obtained

as

(Mt)jn =

∫ T

0

(2)P̃τ/2
j (t)(1)P̃τ/2

n (t) dt,(3.24)

which can be computed exactly by mapping [0, T ] to the reference element [−1, 1] and
employing the Gauss–Lobatto–Jacobi (GLJ) quadrature rule as follows:

(Mt)jn = Jt ·
∫ 1

−1

(2)P̃τ/2
j (t(s))(1)P̃τ/2

n (t(s)) ds(3.25)

= Jt ·
∫ 1

−1

(1 − s)τ/2 (1 + s)τ/2 P
τ/2,−τ/2
j−1 (s)P

−τ/2,τ/2
n−1 (s)ds

= Jt ·
Q−1∑
k=0

w
τ/2,τ/2
k P

τ/2,−τ/2
k−1 (sk)P

−τ/2,τ/2
n−1 (sk),

when 2Q − 3 = 2(N − 1). In (3.25), Jt = (T/2) represents the Jacobian of the

transformation, and {sk}Q−1
k=0 and {wτ/2,τ/2

k }Q−1
k=0 are the corresponding quadrature

points and weights, associated with GLJ rule.
Spatial stiffness matrix. Se

x is an (M + 1) × (M + 1) matrix whose entries are
obtained as

(Se
x)im =

∫ xe+1/2

xe−1/2

xe−1/2
Dν/2

x P̃
ν/2,0
i (x)xDν/2

xe+1/2
P̃ 0,ν/2
m (x)dx,(3.26)

which can be computed exactly by mapping [xe−1/2, xe+1/2] to the reference element
[−1, 1] and employing another GLJ rule corresponding to a different weight function
as follows:

(Se
x)im = Ce

x ·
∫ 1

−1
−1Dν/2

z P̃
ν/2,0
i (x(z))zDν/2

1 P̃ 0,ν/2
m (x(z))dz(3.27)

= Ce
x · Λim

∫ 1

−1

(1− z)−ν/2 (1 + z)−ν/2 P
ν,−ν/2
i (z)P−ν/2,ν

m (z)

= Ce
x · Λim

M∑
k=0

P
ν,−ν/2
i (zk)P

−ν/2,ν
m (zk)ρ

−ν/2,−ν/2
k ,

where Ce
x = (2/Δxe)

ν−1, and

Λim =
Γ(i+ 1)

Γ(i − ν/2 + 1)

Γ(m+ 1)

Γ(m− ν/2 + 1)
.
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B694 MOHSEN ZAYERNOURI AND GEORGE EM KARNIADAKIS

Moreover, {zk}Mk=0 and {ρk}Mk=0 are the corresponding GLJ quadrature points and
weights in the interval [−1, 1], associated with the weight function (1 − z)−ν/2 (1 +
z)−ν/2. Here, we have used the relations (3.7) and (3.15) to obtain

−1Dν/2
z P ν/2,0

m (z) =
Γ(m+ 1)

Γ(m− τ/2 + 1)
(1 + z)−ν/2P ν,−ν/2

m (z),

zDν/2
1 P

0,ν/2
i (z) =

Γ(i+ 1)

Γ(i− τ/2 + 1)
(1− z)−ν/2P

−ν/2,ν
i (z)

in the reference element, employed in (3.27).
Spatial mass matrix. M e

x is also an (M + 1)× (M + 1) matrix whose entries are
defined as

(M e
x)im =

∫ xe+1/2

xe−1/2

P̃
0,ν/2
i (xe)P̃

ν/2,0
m (xe)dx,(3.28)

where we compute the mass matrix exactly and use the standard Gauss–Lobato–
Legendre (GLL) rule by choosing Q so that 2Q− 3 = 2M

(M e
x)im = Je

x

∫ 1

−1

P
0,ν/2
i (x(ξ))P ν/2,0

m (x(ξ))dξ(3.29)

= Je
x

Q∑
k=0

wkP
0,ν/2
i (ξk)P

ν/2,0
m (ξk),

where Je
x = (Δxe)/2 = 1/2(xe+1/2 − xe−1/2) is the Jacobian of the transformation.

Constant matrix. ηe is also an (M + 1) × (M + 1) matrix whose entries are
defined as

(ηe)im = P
0,ν/2
i (+1)P ν/2,0

m (−1)(3.30)

= P ν/2,0
m (−1)

= (−1)m

for m = 0, 1, 2, . . . ,M .
Total load matrix. Fe is an (M + 1)× (N) matrix defined in terms of the afore-

mentioned stiffness and mass matrices

Fe = F e − γeη
eÛ

e−1
MT

t − θHx
e(3.31)

in which F e = (f(x, t), ve(x, t))Ωe , Û
e−1

denotes the coefficient matrix, known in
the previously resolved element Ie−1, and we obtain the history-load term Hx

e in a
computationally efficient form as

(3.32)

(Hx
e )ij = Fe(x)P

0,ν/2
i (x)

∣∣x=x−
e+1/2

x=x+
e−1/2

−
∫ xe+1/2

xe−1/2

Fe(x)
d

dx
P

0,ν/2
i (x) dx,

in which Fe(x) represents the history function associated with the current element Ωe

Fe(x) =

e−1∑
ε=1

F ε
e (x),(3.33)
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consisting of all the past element contributions as

F ε
e (x) =

∑
m,n

ûε
mn (Mt)jn

M∑
δ=0

(
Cδ · (x− s)δ+1−ν

)
P̃ ν/2,0(δ)
m (s)

∣∣∣∣s=s−
ε+1/2

s=s+
ε−1/2

,(3.34)

where P̃
ν/2,0(δ)
m (s) represents the δth derivative of P̃

ν/2,0
m (s). The coefficient Cδ =

−1/{Γ(1−ν)
∏δ

k=0(k+1−ν)} decays in a factorial fashion with respect to δ. We note
that when e = 1, there is no history introduced into the problem, hence (Hx

1 )ij ≡ 0.
In Figure 1, we present the h-refinement (left panel) and p-refinement (right

panel) tests for SM-DSEM. For the case of h-refinement, we present the log-log L2-
error versus the number of elements Nel, corresponding to piecewise linear/cubic
spatial bases and ν = 1/10, 9/10 while τ = 1/2. Associated with the p-refinement,
we plot the log-linear L2-error versus M or N the spatial/temporal order-indices in
(3.19). In the spatial p-refinement, the spatial orders ν = 1/10 and 9/10, while
τ = 1/2, also in the temporal p-refinement τ = 1/10 and 9/10, while ν = 1/2.
The first row corresponds to uext(x, t) = t10 x13/2 sin(πx4/3), the second row to
uext(x, t) = t6 sin(πt) [x13/2 sin(πx4/3)], and the third row to u(x, t) = t10[x6 exp(x2)+
x8+5/7 + x10+1/3]. We observe an exponential-like convergence in p-refinement and
the algebraic convergence in h-refinement.

In all the above cases, the exact solutions are relatively smooth. We examine a
case where the exact solution does not belong to higher Sobolev spaces. For this case,
we confirm the success of h-refinement in Figure 2. In this plot, we present the log-
log L2-error versus number of elements Nel, corresponding to piecewise linear/cubic
spatial bases, temporal order N = 13 fixed, τ = ν = 1/2, and the exact solution
uext(x, t) = t10 x1+3/7, which is not smooth with respect to x.

4. Time-integration using SM-DSEM when τ = 1. We recall that SM-
DSEM works equally well when the temporal time-derivative order τ tends to 1. In
general, a PDE/FPDE, which is first-order in time, reads as

∂u

∂t
= F (u;x, t),(4.1)

where particularly in view of (2.1), the operator F (u;x, t) is given as

F (u;x, t) = f(x, t)− θ 0Dν
xu(x, t).

Here, we regard the PG-DG method as an alternative scheme for spectrally
accurate time-integration for a general F (u;x, t), rather than utilizing existing alge-
braically accurate methods, including multistep methods such as the Adams
family and stifflystable schemes and multistage approaches such as the Runge–Kutta
method.

The idea of employing SM-DSEM when τ = 1 is simply based on the useful
property by which a full first-order derivative d/dt can be decomposed into a product

of the sequential (12 )th-order derivatives 0D1/2
t 0D1/2

t , a result that is not valid in the
standard (integer-order) calculus. Hence, by virtue of the fractional integration-by-
parts (see Lemma 3.4), such a decomposition artificially induces nonlocality to the
temporal term in the corresponding weak form. Therefore, it provides an appropriate
framework for global (spectral) treatment of the temporal term using SM-DSEM.

To demonstrate the efficiency of SM-DSEM when 0Dτ
t → d/dt, we compare the

computational cost of SM-DSEM with that of the multistep methods such as SSS,
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Fig. 1. SM-DSEM. (Left) h-refinement: log-log L2-error versus number of elements Nel, cor-
responding to piecewise linear/cubic spatial bases and ν = 1/10, 9/10 while τ = 1/2. (Right)
p-refinement: log-linear L2-error versus M/N the spatial/temporal order-indices in (3.19). In
the spatial p-refinement, the spatial orders are ν = 1/10 and 9/10 while τ = 1/2, also in
the temporal p-refinement τ = 1/10 and 9/10 while ν = 1/2. The first row corresponds to
uext(x, t) = t10 x13/2 sin(πx4/3), the second row to uext(x, t) = t6 sin(πt) [x13/2 sin(πx4/3)], and
the third row to u(x, t) = t10[x6 exp(x2) + x8+5/7 + x10+1/3].

Adams–Bashforth (AB), and Adams–Moulton (AM). To this end, we recall these
schemes to integrate (4.1) in time, where we employ DSEM to discretize the spatial
domain as before. However, we note that our approach is independent of the type of
the spatial discretization.

In Table 1, we present the CPU time (seconds) corresponding to the backward
and forward multistep time-integration schemes introduced along with that of our
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2 4 6 8 10 12 14 16
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N
el

L2 −
E

rr
or

SM-DSEM, uext(x, t) = t10x1+3/7

 

 

Piecewise linear

Piecewise cubic

Fig. 2. SM-DSEM. h-refinement: log-log L2-error versus number of elements Nel, correspond-
ing to piecewise linear/cubic spatial bases, temporal order N = 13 fixed, τ = ν = 1/2, and the exact
solution uext(x, t) = t10 x1+3/7.

Table 1

CPU time (seconds) on a dual-core 2.9 GHz Intel processor, corresponding to the third-order
in time SSS-DSEM, AB-DSEM, AM-DSEM, and our high-order SM-DSEM scheme all with two
elements in space and polynomial order M = 3. The spatial fractional order is ν = 1/2 and the
temporal time-order is τ = 1. Here, the simulation time T = 1.

L2-error SSS-DSEM AB-DSEM AM-DSEM SM-DSEM
O(10−4) 8.5830 15.9770 9.2260 (N = 7) 11.2020
O(10−8) 117.423 328.655 136.976 (N = 13) 28.634
O(10−9) 233.153 652.611 272.125 (N = 15) 37.619
O(10−10) 463.874 1302.793 685.618 (N = 17) 48.919

SM-DSEM. We particularly compare the CPU time in the third-order SSS-DSEM,
AB-DSEM, AM-DSEM, and our SM-DSEM developed in section 3.3. We choose the
exact solution to be uext(x, t) = x3t13/2 sin(πt4/3), where we consider two elements
in space and setting the polynomial order M = 3 to accurately resolve the spatial
solution. Moreover, we set the spatial fractional order to ν = 1/2 and set the tempo-
ral time-order to the integer value τ = 1. Among the multistep methods, we observe
SSS-DSEM to be more efficient than AB-DSEM and AM-DSEM, especially at smaller
error-levels. Moreover, Table 1 shows that all the aforementioned schemes are com-
parable in terms of the CPU time at the relatively large L2-error O(10−4). However,
SM-DSEM outperforms all the multistep methods by about one order of magnitude
speed-up at smaller error levels.

5. DG-DG method: DSEM-in-time and DSEM-in-space. We extend our
SM-DSEM scheme to another method, which is more appropriate for adaptive and/or
long-time integration of (2.1). The idea is to discretize both the space- and time-
domain employing DSEM in an hp-element fashion. We set τ ∈ (0, 1) and ν ∈ (0, 1)
in (2.1), subject to homogeneous Dirichlet initial/boundary conditions. In DSEM-
DSEM, we first decompose the space-domain [0, L] into Nx

el nonoverlapping subin-
tervals Ixẽ = [xẽ−1/2, xẽ+1/2] and the time-domain [0, T ] into N t

el subintervals Itê =
[tê−1/2, tê+1/2]. Next, we partition the whole computational domain Ω = [0, L]×[0, T ]

intoN el = Nx
el·N t

el structured space-time elements Ωe ≡ Ixẽ×Itê such that ∪N el

e=1Ωe = Ω.
In this setting, the element number e corresponds to a particular pair of the spatial
subinterval number ẽ and the temporal one ê, respectively.
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B698 MOHSEN ZAYERNOURI AND GEORGE EM KARNIADAKIS

5.1. Basis and test function spaces in DSEM-DSEM scheme. We con-
struct the basis function space Ve as the tensor product of the asymptotic (temporal
and spatial) eigenfunctions, presented in section 3.3, as

(5.1) Ve ≡ span{P̃ ηx,0
m (xẽ) P̃

ηt,0
n (tê) : m = 0, 1, . . . ,M, n = 0, 1, . . . , N},

where ηx, ηt ∈ (0, 1) and the temporal bases P̃ ηt,0
n ( tê ) are Jacobi polynomials,

defined in the time-interval Itê = [tê−1/2, tê+1/2] as the asymptotic eigenfunction

P ηt,0
n ( ξ ) through an affine mapping from the standard domain [−1, 1] to the physi-

cal time-subdomain Itê. We approximate the solution to (2.1) in Ωe in terms of linear
combination of elements in Ve. In our PG DSEM-DSEM scheme, we construct the
space of test functions Ve, constructed as

(5.2) V
e ≡ span{P̃ 0,χx

i (xẽ) P̃
0,χt

j (tê) : i = 0, 1, . . . ,M, j = 0, 1, . . . , N},
where we test problem (2.1) against elements in V

e.

5.2. Implementation of DSEM-DSEM scheme. The space-time basis func-
tions in our DSEM-DSME are discontinuous in both space and time at the interfaces
of the two-dimensional (time-space) element Ωe. Here, we seek the approximation
solution to (2.1), restricted in element Ωe, of the form

u(x, t)
∣∣
Ωe

≈ ue
MN (x, t) =

M∑
m=0

N∑
n=0

u e
mnP̃

ηx,0
m (xẽ ), P̃

ηt,0
n ( tê ).(5.3)

Once again the ultimate step in our DSEM-DSEM scheme is to construct a linear
system corresponding to (2) of Lyapunov form (3.20). To this end, we require the
solution (5.3) to satisfy the following weak form:(

t+
ê−1/2

Dτ/2
t ue

MN (x, t) , tDτ/2

t−
ê+1/2

ve(x, t)

)
Ωe

(5.4)

+ θ

(
x+
ẽ−1/2

Dν/2
x ue

MN (x, t), xDν/2

x−
ẽ+1/2

ve(x, t)

)
Ωe

+ γ x
ẽ

(
�ue

MN (xẽ−1/2, t)�, ve(x−
ẽ+1/2, t)

)
It
ê

+ γ t
ê

(
�ue

MN (x, tê−1/2)�, ve(x, t−ê+1/2)
)
Ix
ẽ

=
(
f(x, t), ve(x, t)

)
Ωe

− θ · Hx
ẽ −Ht

ê

∀ve(x, t) ∈ V
e. In (5.4),

γ x
ẽ = − θ(Δx)1−ν

ẽ

(1 − ν)Γ(1− ν)
(5.5)

and

γ t
ê = − (Δt)1−τ

ê

(1− τ)Γ(1 − τ)
,(5.6)

where (Δx)ẽ = xẽ+1/2 − xẽ−1/2 and (Δt)ê = tê+1/2 − tê−1/2. Moreover,
�ue

MN (xẽ−1/2, t)� denotes the (spatial) jump discontinuity of the solution at
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x = xẽ−1/2 as a function of time t ∈ Itê and �ue
MN (x, tê−1/2)� is the (temporal)

jump discontinuity of the solution at t = tê−1/2 as a function of space x ∈ Ixẽ . Sim-
ilarly, (·, ·)Ωe , (·, ·)It

ê
, and (·, ·)Ix

ẽ
are, respectively, the standard inner product in the

local space-time element Ωe(
f(x, t), g(x, t)

)
Ωe

=

∫
It
ê

∫
Ix
ẽ

f(x, t)g(x, t) dx dt,

the inner product in Itê, defined as

(
p(t), q(t)

)
It
ê

=

∫ t−
ê+1/2

t+
ê−1/2

p(t) q(t) dt,

and the inner product in Ixẽ(
Y (x),W (x)

)
Ix
ẽ

=

∫ x−
ẽ+1/2

x+
ẽ−1/2

Y (x)W (x) dx.

Finally, in (5.4), Hx
ẽ and Ht

ê represent the corresponding spatial history-load and
temporal history-load term, which we compute in an efficient fashion similar to that
presented in section 3.3.

Next, we obtain the corresponding linear system resulting from our DSEM-DSEM
scheme by substituting the solution (5.3) into the weak form (5.4), taking ve(x, t) =

P̃ 0,χx

i (xẽ ) P̃
0,χt

j ( tê ), and choosing ηx = χx = ν/2 and μ = τ/2 as another Lyapunov
equation,

M ẽ
x U

e
(S ê

t

T
+ γ t

ê η
ê) + (θS ẽ

x + γ x
ẽ ηẽ) U

e
M ê

t

T
= F

e,(5.7)

where we recall that the element number e is associated with the pair of ẽ and ê,
the spatial and temporal subintervals Ixẽ and Itê. In the Lyapunov system (5.7), U

e

is the (M + 1) × (N + 1) matrix of unknown coefficient associated with Ωe whose
entries are U

e

mn = u e
mn. In addition, the spatial matrices S ẽ

x, M
ẽ
x, and ηẽ represent

the corresponding (M + 1) × (M + 1) spatial stiffness, mass, and constant matrices,
respectively, which are identical to those obtained in (3.27), (3.29), and (3.30), by
setting e to ẽ. Moreover, S ê

t , M
ê
t , and ηê are, respectively, the temporal stiffness,

mass, and constant matrices.
In Algorithm 2, we present the corresponding pseudocode for our DSEM-DSEM

scheme, where the computational space- and time-domain are assumed to be non-
uniformly partitioned. As before, if the elements are uniform, we construct the ma-
trices M ẽ

x , S ẽ
x , ηẽ, also M ê

t , S ê
t , and ηê, only once at a preprocessing step. In the

following, we present the construction of the corresponding temporal matrices.
Temporal stiffness matrix. S ê

t is an (N + 1)× (N + 1) matrix whose entries are
obtained as

(S ê
t )jn =

∫ tê+1/2

tê−1/2

tê−1/2
Dτ/2

t P̃
τ/2,0
j (tê) tDτ/2

tê+1/2
P̃ 0,τ/2
n (tê)dt(5.8)

= C ê
t · Λt

im

N∑
k=0

P
τ,−τ/2
j (zk)P

−τ/2,τ
n (zk)ρ

−τ/2,−τ/2
k ,
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Alogrithm 2. Pseudocode of DSEM-DSEM scheme, employed in a nonuniform
structured partitioned domain.

for e = 1; e = Nel do

Construct M ẽ
x , S ẽ

x , ηẽ, also M ê
t , S ê

t , and ηê ;

if e = 1 then

Hx
ẽ = 0 and Ht

ê = 0 ;

else
Compute Hx

ẽ and Ht
ê then construct Fe ;

end

Solve M ẽ
x U

e
(S ê

t
T
+ γ t

ê η
ê) + (θS ẽ

x + γ x
ẽ ηẽ) U

e
M ê

t
T
= F

e ;

end

which we compute exactly by mapping [tê−1/2, tê+1/2] to the reference element [−1, 1]

and performing a GLJ rule similar to (3.27). Here, C ê
t = {2/(Δt)ê}τ−1, and

Λt
jn =

Γ(j + 1)

Γ(j − τ/2 + 1)

Γ(n+ 1)

Γ(n− τ/2 + 1)
.

Moreover, {zk}Nk=0 and {ρk}Nk=0 are the corresponding GLJ quadrature points and
weights in the interval [−1, 1], associated with the weight function (1 − z)−τ/2 (1 +
z)−τ/2.

Temporal mass matrix. M ê
t is also an (N + 1) × (N + 1) matrix whose entries

are obtained as

(M ê
t )jn =

∫ tê+1/2

tê−1/2

P̃
0,τ/2
j (tê)P̃

τ/2,0
n (tê)dx(5.9)

= J ê
t

Q∑
k=0

wkP
0,τ/2
j (ξk)P

τ/2,0
m (ξk),

in which J ê
t = (Δx)ê/2 is the Jacobian of the transformation from the time sub-

interval to the standard element. Here, we compute the mass matrix exactly based
on the standard GLL rule and choosing Q so that 2Q− 3 = 2N similar to (3.25).

Constant matrix. ηê is also an (M + 1) × (M + 1) matrix whose entries are
defined as

(ηe)jn = P
0,τ/2
j (+1)P τ/2,0

n (−1)(5.10)

= (−1)n

for j, n = 0, 1, 2, . . . , N .
Total load matrix. F

e is an (M + 1)× (N + 1) matrix defined as

F
e = Fe − γ x

ẽ

(
ηẽ Û

e−1
M ê

t

T
)
− γ t

ê

(
M ẽ

x

T
Û

e−1
ηê
)
− θHx

ẽ −Ht
ê(5.11)

in which Fe = (f(x, t), ve(x, t))Ωe , and Û
e−1

denotes the coefficient matrix, known
in the previously resolved element Ωe−1, and we obtain the spatial and temporal
history-load terms Hx

ẽ and Ht
ê in a similar computationally efficient form as
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Fig. 3. DSEM-DSEM. Long-time integration: log-linear L2-error versus the temporal order-
index N in (5.3), corresponding to Nt

el = 2 and 4 temporal subintervals, and Nx
el = 2 spatial sub-

intervals kept fixed, i.e., total Nel = Nx
el.N

t
el = 4 and 8 space-time elements. Here, the simulation

time T = 10 and τ = ν = 1/2.

(Hx
ẽ )ij = Fe(x)P

0,ν/2
i (x)

∣∣x=x−
ẽ+1/2

x=x+
ẽ−1/2

−
∫ xẽ+1/2

xẽ−1/2

Fe(x)
d

dx
P

0,ν/2
i (x) dx(5.12)

and

(Ht
ê)ij = Ge(t)P

0,τ/2
j (t)

∣∣t=t−
ê+1/2

t=t+
ê−1/2

−
∫ tê+1/2

tê−1/2

Ge(t)
d

dt
P

0,τ/2
j (t) dt,(5.13)

respectively. We then obtain the corresponding spatial history functions Fe(x) in
(3.33), setting e to ẽ. Similarly, we obtain the temporal history function Ge(x) asso-
ciated with the current element Ωe as

Ge(t) =

ê−1∑
ε=1

Gε
ê(t),(5.14)

in which

Gε
ê(t) =

∑
m,n

ûε
mn (M

ẽ
x)im

N∑
δ=0

(
Ct

δ · (t− s)δ+1−τ
)
P̃ τ/2,0(δ)
n (s)

∣∣∣∣s=s−
ε+1/2

s=s+
ε−1/2

,(5.15)

where the coefficient Ct
δ = −1/{Γ(1− τ)

∏δ
k=0(k + 1− τ)}.

We have examined the DSEM-DSEM for all the test-cases presented previously
successfully. Here, we examine DSEM-DSEM for log-time integration. In Figure 3,
and corresponding to the simulation time T = 10 and τ = ν = 1/2, we plot the log-
linear L2-error versus the temporal order-index N in (5.3). We partition the whole
computational domain into 4 and 8 elements by choosing N t

el = 2 and 4 and choosing
Nx

el = 2 fixed. While we have increased the simulation time from T = 1 to T = 10,
we recover the spectral convergence in DSEM-DSEM.

6. Summary and discussion. We have developed high-order methods for
TSFAE of the form (2.1), subject to Dirichlet initial/boundary conditions. We have
presented two highly accurate. We first developed the SM-DSEM scheme for car-
rying out the time-integration using a single time-domain SM and performing the
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Table 2

Inhomogeneous boundary conditions. p-refinement in the spatial dimension for Case I,
uext(x, t) = t3+1/2 cos(πx), and for Case II, uext(x, t) = t10[exp(x2)+10π]. Here, we set T = L = 1,
τ = ν = 1/2, and N = 15.

M L2-error, case I L2-error, case II
1 0.0384286 0.334819
3 0.0007635 0.001144
5 4.98× 10−6 1.71× 10−5

7 6.18× 10−8 1.54× 10−7

spatial discretization using DSEM, when τ ∈ (0, 1], ν ∈ (0, 1). We accomplished this
based on the new spectral theory for FSLPs, presented in [40], which provides proper
spaces of basis and test functions. For the particular case τ = 1, we presented this
PG-DG method as a spectrally accurate time-integration method, which outperforms
the existing algebraically accurate backward and forward multistep methods in terms
of cost and accuracy. We subsequently extended the SM-DSEM to another method,
DSEM-DSEM, in which both time-integration and spatial discretization are performed
in an hp-element fashion, when τ ∈ (0, 1), ν ∈ (0, 1). We presented numerical tests in
each case to demonstrate the exponential-like convergence of our methods employing
p-refinement, in addition to the algebraic convergence in DSEM when h-refinement is
performed.

Although we have formulated the aforementioned methods when (2.1) is subject
to homogeneous Dirichlet boundary and initial conditions, i.e., h(t) = g(x) = 0, these
schemes are equally valid when inhomogeneous conditions are enforced. In such cases,
we first homogenize the problem by the method of lifting a known solution. Using
this trick, we first set the solution u(x, t) = uH(x, t)+ g(x)+h(t) and then substitute
in (2.1). Hence, we obtain a modified/homogenized TSFAE of the form

0Dτ
t u

H(x, t) + θ 0Dν
xu

H(x, t) = f̃(x, t), (x, t) ∈ [0, L]× [0, T ],(6.1)

uH(x, 0) = 0,

uH(0, t) = 0,

where f̃ = f − (0Dτ
t + θ 0Dν

x){h(t) + g(x)}, and we recall that h(0) = g(0). For
demonstration of the generality of the schemes presented, we solve (2.1) subject to
inhomogeneous boundary conditions, e.g., using SM-DSEM. We consider the following
two test-cases: (i) the exact solution uext(x, t) = t3+1/2 cos(πx), corresponding to the
time-variable inhomogeneous boundary condition u(0, t) = h(t) = t3+1/2, and (ii)
the exact solution uext(x, t) = t10[exp(x2) + 10π], in which the boundary condition
is given by u(0, t) = h(t) = 10πt10. We solve the problem by taking T = L = 1,
setting τ = ν = 1/2, and keeping N = 15 in all simulations. In Table 2, we show
the corresponding p-refinements for the aforementioned problems, where we achieve
an exponential-like convergence in both cases.

We finally conclude the work by comparing the performance of the developed
methods with the FDM developed in [25], where the fractional derivative 0Dν

t u(t) is
represented as

0Dτ
t u(x, t) =

1

Γ(2 − τ)

k∑
j=0

aj
u(x, tk+1−j)− u(x, tk−j)

(Δt)τ
+ rk+1

Δt ,(6.2)
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Table 3

CPU time (seconds) on a dual-core 2.9-GHz Intel processor, corresponding to PG-SM, PG-
DSEM, and FDM with ν = 1/2 (kept constant), when the exact solution is u(x, t) = t3x3. In all
cases, we set spatial polynomials order M = 3, and we set Ω = [0, 1]× [0, 1].

τ = 1/10

Error SM-DSEM DSEM-DSEM(Nx
el = Nt

el = 2) FDM(Nt
g = 200)

O(10−4) 3.69 – (Nx
g = 10) 15.705

O(10−5) 4.69 (exact) 4.09 (Nx
g = 40) 173.385

τ = 1/2

Error SM-DSEM DSEM-DSEM(Nx
el = Nt

el = 2) FDM(Nt
g = 200)

O(10−4) 3.64 – (Nx
g = 50) 253.771

O(10−5) 4.58 (exact) 4.01 (Nx
g = 300) 12128.341

τ = 9/10

Error SM-DSEM DSEM-DSEM(Nx
el = Nt

el = 2) FDM(Nt
g = 200)

O(10−4) 3.60 – (Nx
g = 500) 5.89 · 104

O(10−5) 4.55 (exact) 4.13 (Nx
g = 2000) Out of Memory

where rk+1
Δt ≤ Cu(Δt)2−τ and aj := (j + 1)1−τ − j1−τ , j = 0, 1, . . . , k, and where a

similar formulation can be obtained for the spatial fractional derivative as

0Dν
xu(x, t) =

1

Γ(2 − ν)

k∑
j=0

bj
u(x, tk+1−j)− u(x, tk−j)

(Δx)ν
+ rk+1

Δx ,(6.3)

where bj := (j + 1)1−ν − j1−ν , j = 0, 1, . . . , k.
In Table 3, we compute the CPU time (in seconds), required for solving (2.1),

corresponding to three temporal fractional orders τ = 1/10, 1/2, and 9/10, where
we keep the spatial fractional order ν = 1/10 fixed. Here, the exact solution is
u(x, t) = t3x3 and the integration time T = 1 and the spatial domain size L = 1. We
compare SM-DSEM with (Nel = 1) and (Nel = 2) elements with FDM.

We first observe that our schemes are not sensitive to the fractional order τ ;
however, the CPU time in FDM is shown to be strongly dependent on τ . It is actually
consistent with the fact that the order of accuracy of FDM is O((Δt)2−τ +(Δx)2−ν ).
Here, we set the relatively big error-levels O(10−4) and O(10−5) for comparison, and
the spatial fractional order ν = 1/2 was kept constant. We observe that when τ is
very small, FDM and our methods become comparable in terms of computational
cost. However, increasing τ to 1/2 and 9/10, the cost of FDM becomes two to four
orders of magnitude greater than that in our methods, depending on the error level
and τ . Moreover, we observe that when τ is close to one, FDM becomes almost first-
order accurate in time, which leads to a significant amount of memory storage that
might not be available on a PC. Clearly, for higher values of ν, even larger memory
allocation is required; moreover, the CPU time will significantly be increased in FDM.
Regarding DSEM-DSEM and for all the aforementioned cases, we obtain the exact
solution by setting N = M = 3.

Appendix A. Derivation of SM-DSEM scheme. We partition the compu-
tational domain into Nel nonoverlapping space-time elements, Ωe = [xe−1/2, xe+1/2]
×[0, T ]. Next, we test the TSFAE (2) against some proper test function ve(x, t), then
integrate over the subdomain Ωe, and using Lemma 3.4 to carry out the temporal
fractional integration-by-parts, we obtain
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(A.1)(
0Dτ/2

t u(x, t), tDτ/2
T ve(x, t)

)
Ωe

+ θ
(

0Dν
xu(x, t), v

e(x, t)
)
Ωe

=
(
f(x, t), ve(x, t)

)
Ωe

.

Due to our domain-decomposition, and the definition of the spatial fractional deriva-
tive with lower terminal beginning at x = 0, we obtain an equivalent yet more efficient
expression as follows:(

0Dν
xu(x, t), v

e(x, t)
)
Ωe

=
( 1

Γ(1− ν)

∂

∂x

∫ x

x+
e−1/2

u(z, t) dz

(x− z)ν
, ve(x, t)

)
Ωe

(A.2)

+
( 1

Γ(1− ν)

∂

∂x

∫ x+
e−1/2

x−
e−1/2

u(z, t) dz

(x− z)ν
, ve(x, t)

)
Ωe

+
( 1

Γ(1− ν)

∂

∂x

∫ x−
e−1/2

0

u(z, t) dz

(x− z)ν
, ve(x, t)

)
Ωe

,

where we can rewrite (A.2) as

(
0Dν

xu(x, t) , v
e(x, t)

)
Ωe

=
(

x+
e−1/2

Dν
xu(x, t), v

e(x, t)
)
Ωe

(A.3)

+

(
1

Γ(1− ν)

∂

∂x

∫ x+
e−1/2

x−
e−1/2

u(z, t) dz

(x− z)ν
, ve(x, t)

)
Ωe

+Hx
e ,

where the middle term can be obtained as(
1

Γ(1− ν)

∂

∂x

∫ x+
e−1/2

x−
e−1/2

u(z, t) dz

(x− z)ν
, ve(x, t)

)
Ωe

(A.4)

≈ −
∫ T

0

ve(x−
e+1/2, t)(Δxe)

1−ν

(1− ν)Γ(1 − ν)
�u(xe−1/2, t)� dt,

where (Δxe)
1−ν = (xe+1/2 − xe−1/2)

1−ν and �u(xe−1/2, t)� denotes the jump discon-
tinuity in the solution across the interface between elements Ωe and Ie−1 along the
time-axis at x = xe−1/2. We also obtain the history-load term Hx

e as

Hx
e =

1

Γ(1− ν)

(
e−1∑
ε=0

∂

∂x

∫
Iε

uε(x, z)dz

(x − z)ν
, ve(x, t)

)
Ωe

.(A.5)

Plugging (A.5), (A.4) into (A.3), then plugging (A.3) into (A.1) after carrying out
the spatial fractional integration-by-parts using Lemma 3.5, we obtain

(A.6)(
0Dτ/2

t u(x, t), tDτ/2
T ve(x, t)

)
Ωe

+ θ

(
x+
e−1/2

Dν/2
x u(x, t), xDν/2

x−
e+1/2

ve(x, t)

)
Ωe

− θ(Δx)1−ν
e

(1− ν)Γ(1 − ν)

∫ T

0

ve(x−
e+1/2, t) �ue(xe−1/2, t)�dt+Hx

e

=
(
f(x, t), ve(x, t)

)
Ωe

.
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The variational (weak) form (A.6) is an infinite-dimensional problem. Seeking the
solution in each subdomain Ωe of the form

uMN (x, t) =

M∑
m=0

N∑
n=1

ûmnP̃
η,0
m (xe) ˜(1)Pμ

n (t),

as a linear combination of elements in the basis function space V e, and plugging it
into (A.6), we obtain the variational form (3.21). At last, we need to provide a more
efficient expression for the history-load term Hx

e in (A.5):

Hx
e =

∑
m,n

e−1∑
ε=1

(Mt)jn
1

Γ(1− ν)

(∫ xε+1/2

xε−1/2

ûε
mnP̃

η,0
m (s) ds

(x− s)ν
P̃ 0,χ
i (x)

∣∣∣∣x=x−
e+1/2

x=x+
e−1/2

−
∫ xe+1/2

xe−1/2

∫ xε+1/2

xε−1/2

ûε
mnP̃

η,0
m (s) ds

(x− s)ν
d

dx
P̃ 0,χ
i (x)dx

)
.

Since P̃ η,0
m (s) are at most of degreeM in each element Ωe, we can carry out integration-

by-parts M recursive times to eliminate the double integral. It leads to the history
term shown in (3.32), where we reduce the calculation of the history term to a function
evaluation and a one-dimensional integration carried out in the current element Ωe.
Finally, we obtain the history-load term Hx

e in a computationally efficient form as

(Hx
e )ij = θ

∑
m,n

ûmn(Mt)jn

(
Fe(x)P

0,ν/2
i (x)

∣∣x=x−
e+1/2

x=x+
e−1/2

−
∫ xe+1/2

xe−1/2

Fe(x)
d

dx
P

0,ν/2
i (x) dx

)
,

in which Fe(x) represents the history function associated with the current element Ωe

Fe(x) =

e−1∑
ε=1

F ε
e (x)

consisting of all the past element contributions as

F ε
e (x) =

∑
m

ûε
mn

M∑
δ=0

τδ(x− s)δ+1−ν P̃ η,0(δ)
m (s)

∣∣∣∣s=s−
ε+1/2

s=s+
ε−1/2

,(A.7)

where P̃
η,0(δ)
m (s) represents the δth derivative of P̃ η,0

m (s); moreover, the coefficient

τδ = −1/{Γ(1− ν)
∏δ

m=0(m+1− ν)} decays in a factorial fashion with respect to δ.
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