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Abstract

In this paper we consider the classical problem of stabilizing nonlinear systems in the case the control laws take values in a discrete set.
First, we present a robust control approach to the problem. Then, we focus on the class of dissipative systems and rephrase classical results
available for this class taking into account the constraint on the control values. In this setting, feedback laws are necessarily discontinuous
and solutions of the implemented system must be considered in some generalized sense. The relations with the problems of quantized and
switching control are discussed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, the literature about switched, quantized and hybrid
systems [28,14,7,38,36] has given a new perspective to the
classical problem of stabilization. In fact, on one hand, since
systems considered are more general, there is a wider choice of
control strategies (see, e.g. [33,34,39]). On the other hand, the
new models often take into account some constraints which are
important for applications. In this paper the basic assumption is
that control laws take values only in a discrete set U. It can be
useful to distinguish two situations, which may be related. In
the first situation, the appropriate choice of the discrete set U
may be part of the stabilization problem. In the second situation
the set U is a priori fixed. In any case, since a vector field
is naturally associated with each admissible control value, the
system can be seen as a family of vector fields with a rule which
governs the switching among them. Switching rules can be of
different types: they can depend on time, on initial conditions,
on the state variables, or they can be completely arbitrary. Here
we consider switching rules which depend only on the state
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variable (or on functions of the state variable, such as the output
function) so that they can also be interpreted as discontinuous
feedback laws. Controlling with a discrete set of input values
has been deeply explored in the literature on quantized control.
As in [14,21] for linear systems, our design of the control val-
ues follows a logarithmic law, so that the resulting control law
is simpler to implement than in other approaches [27,29,13]
and it does not introduce an exceedingly large number of quan-
tization levels (cf. [11] for a different approach to stabilization
of nonlinear systems using a minimal number of “quantization
levels”). On the other hand, differently from Ishii–Francis in
[21] and Cepeda–Astolfi in [8], we do not couple our switched
controller with a dwell-time logic, the latter being an approach
which turns out useful to avoid chattering-like phenomena.

One of the aims of the paper is in the spirit of the situation in
which U needs to be chosen appropriately. We study conditions
which guarantee that, given a continuous stabilizing feedback
law, the celebrated logarithmic quantization does not cancel the
stabilizing effect. A first proposition can be viewed as a discon-
tinuous version of the results about stability under vanishing
perturbations (e.g. [25]). A second proposition is a nonlinear
version of a result in [17] (see also [14,21]). Previous results
for nonlinear systems have appeared in [30]. Our contribution

http://www.elsevier.com/locate/sysconle
mailto:ceragiol@calvino.polito.it
mailto:depersis@dis.uniroma1.it
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differs from the latter in two ways. First, we put a special em-
phasis on how the solution of the closed-loop system should be
intended. Second, a connection between the coarseness of the
quantizer and a finite L2-gain problem is obtained in the robust
control setting pointed out by [17]. Further, it is shown how,
trading off global asymptotic stability against semi-global prac-
tical stability, it is possible to overcome the limitation on the
coarseness of the quantizer by appropriate redesign of the con-
trol law. A logarithmic quantizer requires an infinite number of
quantization levels to guarantee asymptotic stability. Neverthe-
less, it is possible to cope with a finite number of quantization
levels and obtain semi-global practical stability without affect-
ing the coarseness of the quantizer. This is discussed as well.

As clearly pointed out in [17], in problems of stabilization
under logarithmic quantization, the uncertainty introduced by
the quantizer is a sector bounded uncertainty. An effective way
to deal with stability of nonlinear systems in the presence of
sector bounded uncertainties is to rely on the theory of dissi-
pative systems. This simple observation motivates the second
aim of the paper, namely to show how some classical results
on feedback stabilization of nonlinear dissipative systems can
be restated in this setting. The idea of extending stabilization
results which use dissipativity to “non-classical” systems is not
new, but there is still not a wide literature on the subject. To the
best of the authors’ knowledge, the most complete paper on the
subject is [18]. In this paper hybrid systems which generate left
continuous dynamical systems are considered: our approach is
quite different, since we do not assume uniqueness of solutions
of the implemented systems. Relations with the paper [31] are
discussed as well. Despite what the robust control approach
allows to do, characterizing the coarsest quantizer in the dissi-
pativity framework is harder. Nevertheless, for a special class
of dissipative systems, namely the passive ones, we give con-
ditions under which asymptotic stabilizability can be achieved
with a finite and “minimal” number of quantization levels.

We remark that, once the classical control laws have been
“quantized”, i.e. approximated by new control laws taking val-
ues in U, the new feedbacks are necessarily discontinuous, and
solutions of the implemented systems must be intended in some
generalized sense. A number of different notions of generalized
solutions have been proposed (see [16,19,10,32]). Here we fo-
cus on Krasowskii and Carathéodory solutions. There are sev-
eral reasons for studying Krasowskii solutions. In the literature,
there are many handy results concerning existence and continu-
ation of Krasowskii solutions and a complete Lyapunov theory.
Moreover, the set of Krasowskii solutions include Filippov and
Carathéodory solutions, then results which use Krasowskii so-
lutions also hold for Filippov and Carathéodory solutions. On
the other hand, the set of Krasowskii solutions may be “too
large”. In particular, it may contain “unfeasible” sliding modes.
Krasowskii solutions may not be completely satisfactory from
another point of view: it has been argued in [3] that, in general,
they may not be reproduced by any open loop control taking
values in the set U. Concerning Carathéodory solutions, it is in-
teresting to recall that they have been recently used in order to
achieve a number of powerful results about discontinuous sta-
bilization [1,2,35]. Moreover, they fit very well in the context

of switched systems as discussed in [5,9]. The major difficulty
in their use is establishing their existence and continuation (see
[1,26,9]). Nevertheless, in the case we treat, some reasonable
conditions for existence and uniqueness can be given.

The plan of the paper is the following. In Section 2, the ro-
bust control approach to the quantized stabilization of nonlin-
ear systems is pursued. Section 3 deals with the dissipativity
approach. A special notable case (passive systems) is dealt with
in Section 4. Conclusions are drawn in Section 5.

1.1. Preliminaries

We recall here some notations and definitions. We denote by
| · | the norm in Rn, n�1 and, if x0 ∈ Rn, we use the notation
B�(x0) = {x ∈ Rn: |x − x0| < �}. Given a set S ⊂ Rn, the

symbols co S,
◦
S, S denote, respectively, the convex closure of

S, i.e. the smallest closed set containing the convex hull of S,
the interior of the set S and its closure.

Consider a system of ordinary differential equations

ẋ = G(t, x), (1)

where G : [0, +∞) × Rn → Rn.

Definition 1. A curve � : [0, +∞) → Rn is a

• Carathéodory solution of (1) if it is absolutely continuous
and satisfies (1) for almost every t �0.

• Krasowskii solution of (1) if it is absolutely continuous and
for almost every t �0 it satisfies the differential inclusion
ẋ ∈ K(G(t, x)), where K(G(t, x)) = ∩�>0co G(t, B�(x)).

Clearly, Carathéodory solutions are Krasowskii solutions.

Definition 2. System (1) is said to be globally asymptotically
stable at the origin with respect to Carathéodory (Krasowskii)
solutions if

• for any x0 ∈ Rn there exists a Carathéodory (Krasowskii)
solution of (1), and all Carathéodory (Krasowskii) solutions
of (1) are defined on [0, +∞);

• the origin is Lyapunov stable with respect to Carathéodory
(Krasowskii) solutions, i.e. for any � > 0 there exists � > 0
such that for any x0 ∈ Rn with |x0| < � and for any
Carathéodory (Krasowskii) solution � of (1) with �(0)=x0,
we have |�(t)| < � for all t ∈ [0, +∞);

• the origin is attractive, i.e. there exists � > 0 such that for any
x0 ∈ Rn with |x0| < � and for any Carathéodory (Krasowskii)
solution � of (1), we have limt→+∞ �(t) = 0.

We introduce here the input-affine systems we will consider
in the paper:

ẋ = f (x) + g(x)u,

y = h(x), (2)

where x ∈ Rn is the state, u ∈ U is the input variable, with U a
subset of R to be specified below, y ∈ R is the output variable.
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In the following we make the following assumptions:

• f, g : Rn → Rn are vector fields of class C1, f (0) = 0;
• h : Rn → R is of class C1, with h(0) = 0;
• U ⊂ R, 0 ∈ U , U symmetric, i.e. if u ∈ U then also −u ∈ U .

The set U of admissible inputs is formed by all measurable and
locally bounded functions u : [0, +∞) → U . For each initial
state x0 and each admissible input u ∈ U, system (2) has a
unique local Carathéodory solution.

2. Robust control approach

2.1. Logarithmic quantizer and global stabilizability results

An important part of the literature about quantized control
focuses on techniques which allow to approximate stabilizing
feedback by means of control laws which take values in a
properly chosen discrete set. In the context of linear systems,
the logarithmic quantizer [14] had a great success.

Let u0 > 0 and 0 < � < 1 be fixed, let ui = �iu0 and U =
{0, ±ui, i ∈ Z}. Let � = (1 − �)/(1 + �) and [14,17]

�(y) =

⎧⎪⎪⎨
⎪⎪⎩

ui,
1

1 + �
ui < y� 1

1 − �
ui,

0, y = 0,

−�(−y), y < 0.

(3)

The map � is represented in Fig. 1.
Following [17], one can consider both state and output feed-

back and, in the latter case, one can further distinguish between
the cases of quantized input or quantized measurement. When
the full state is measured, the controller is u=�(k(x)). On the
other hand, in the presence of input quantization, the dynamic
output feedback takes the form

�̇ = fc(�, h(x)) + gc(�, h(x))�(kc(�, h(x))),

u = �(kc(�, h(x))), (4)

whereas, in the presence of output quantization,

�̇ = fc(�) + gc(�)�(h(x)),

u = kc(�) + �c(�)�(h(x)), (5)

Fig. 1. Quantized control and sector bound.

with � ∈ Rnc . The closed-loop system turns out to be

Ẋ = F(X) + G(X)�(K(X)), X ∈ RN , (6)

where the actual expressions of X, N, F, G, K depend on
the feedback employed and are understood from the con-
text. Clearly, the “nominal”, i.e. with no quantization, system
writes as

Ẋ = F(X) + G(X)K(X), X ∈ RN . (7)

We now give two propositions which state sufficient con-
ditions for a stabilizing feedback law to be “quantizable” by
means of the logarithmic quantizer (3). As a first step we con-
sider Krasowskii solutions of the system in which the quantized
feedback law is implemented. More precisely, we remark that
Krasowskii solutions of (6) are absolutely continuous functions
which satisfy the following differential inclusion:

Ẋ ∈ F(X) + G(X)K(�(K(X)))

⊆

⎧⎪⎨
⎪⎩
F(X) + G(X){1 + 	�, X 
= 0,

	 ∈ [−1, 1]}K(X),

0, X = 0.

(8)

In fact, let X be such that K(X) > 0 (analogous con-
siderations can be repeated for K(X) < 0). Since (1 −
�)K(X)��(K(X))�(1 + �)K(X) then for all v ∈
K(�(K(X))), (1 − �)K(X)�v�(1 + �)K(X), i.e. v ∈
{K(X)(1 + 	�) , 	 ∈ [−1, 1]}. Hence, given V : RN →
R, for any X ∈ RN and any v ∈ K(�(K(X))), we will
need to study ∇V(X)(F(X) + G(X)v). We can rewrite
K(X) − v = 	�K(X), for some 	 ∈ [−1, 1], so that

∇V(X)(F(X) + G(X)v)�∇V(X)(F(X) + G(X)K(X)

− G(X)	�K(X)). (9)

Proposition 1. Assume that there exist V,W : RN → R

continuous positive definite, V is of class C1 and radially
unbounded, K : Rn → R continuous such that for all X ∈ RN ,

∇V(X)(F(X) + G(X)K(X))� − W(X) (10)

and assume moreover that there exists 
 > 0 such that for all
X ∈ RN


|∇V(X)G(X)K(X)|�W(X). (11)

Then for every � < 
 the closed-loop system (6) is globally
asymptotically stable at the origin with respect to Krasowskii
solutions.

Proof. We prove that ∇V(F(X)+G(X)v) < 0 for every X 
=
0 and for every v ∈ K(�(K(X))). Let us first consider the
case X 
= 0 is such that ∇V(X)G(X)K(X) 
= 0. Thanks to
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(8) and (11) we have

∇V(X)(F(X) + G(X)v)

= ∇V(X)(F(X) + G(X)K(X))

+ 	�∇V(X)G(X)K(X)

� − W(X) + �|∇V(X)G(X)K(X)|
< − W(X) + 
|∇V(X)G(X)K(X)|�0.

Let us now consider X 
= 0 such that ∇V(X)G(X)K(X)=0.
From (10) we deduce ∇V(X)F(X) < 0 and then also

∇V(X)(F(X) + G(X)v) = ∇V(X)F(X) < 0. �

Remark. Proposition 1 recalls the results about stability under
vanishing perturbations which are collected in [25, Section 5.1,
p. 204]. In fact, the term 	�K(X), 	 ∈ [−1, 1], can be seen
as a discontinuous vanishing perturbation affecting system (7).
Bearing in mind this, it is not difficult to realize that, if (7) is
exponentially stable, then system (6) is exponentially stable as
well.

In case a stabilizing feedback and a Lyapunov function are
known, but condition (11) is not satisfied, one can turn to the
following proposition, which is inspired by the linear discrete-
time scenario studied in [17], and shows a connection between
the coarseness of the quantizer and a finite L2-gain problem.

Proposition 2. Assume that system (7) is globally asymptoti-
cally stable and there exist V : RN → R of class C1, posi-
tive definite and radially unbounded and � > 0 such that for all
X ∈ RN ,

∇V(X)(F(X) + G(X)K(X))

+ 1

4�2 |∇V(X)G(X)|2 + K2(X)�0. (12)

Then for any ��1/� the closed-loop system (6) is globally
asymptotically stable at the origin with respect to Krasowskii
solutions.

Proof. For any X ∈ RN and for any v ∈ K(�(K(X))), con-
sider the equality (9). Completion of the squares yields

∇V(X)(F(X) + G(X)v)

�∇V(X)(F(X) + G(X)K(X))

+ �2

4
|∇V(X)G(X)|2 + K2(X)

�∇V(X)(F(X) + G(X)K(X))

+ 1

4�2 |∇V(X)G(X)|2 + K2(X)�0, (13)

where the latter inequality holds thanks to (12). Let now X be
such that K(X) = 0. From (12) we get that

∇V(X)(F(X) + G(X)v)�∇V(X)F(X)

� − 1

4�2 |∇V(X)G(X)|2 �0. (14)

Thanks to LaSalle invariance principle for differential inclu-
sions (see [4]), we obtain that all solutions of (6) tend to the
largest weakly invariant subset of

{X ∈ RN : ∃v ∈ K(�(K(X))) such that ∇V(X)(F(X)

+ G(X)v) = 0} ⊆ {X ∈ RN :K(X) = 0},
the inclusion being deduced from (13), (14). The thesis is then
deduced by recalling that, since � is continuous at 0, solutions
of (12) which lie on {X ∈ RN :K(X) = 0} coincide with solu-
tions of (7). �

Remark. The same result could be given using nonlogarithmic
quantizers. For this class of quantizers, in fact, the map �
satisfies (1 − �−)y��(y)�(1 + �+)y, with �−, �+ a given
pair of positive constants. Then, Proposition 2 continues to hold
provided that the constant � in the statement is replaced by
max{|�−|, |�+|}.

Remark. Roughly speaking, Proposition 2 states that, if we
know a stabilizing static or dynamic, state or output feedback
controller such that we can solve (12) for some V, then any
quantization of the control input or of the measured output by
means of a function � in a sector bound whose “amplitude”
is smaller than 1/� does not cancel the stabilizing effect of the
controller. In the case of a static state-feedback control law, the
fulfillment of inequality (12) implies the existence of a map k
which renders the L2-gain from w to z of the system

ẋ = f (x) + g(x)u + g(x)w,

z = u

less than or equal to �. Observe that, in [17], it is shown how,
for linear discrete-time systems, the inverse of the smallest �
for which the above L2-gain attenuation problem is solvable
gives the coarsest quantizer for which (quadratic) stabilization
via quantized state feedback is achievable. Related results are
also found in [24, Lemma 1 and Remark 4]. On the other
hand, in the case of a dynamic output feedback controller with
quantized output, the fulfillment of (12) implies the existence
of a controller of the form

�̇ = fc(�) + gc(�)y,

u = kc(�) + �c(�)y,

which renders the L2-gain from w to z of

ẋ = f (x) + g(x)u,

y = h(x) + w,

z = h(x)
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less than or equal to �. Again, in the case of linear discrete-
time systems, the smallest value of � for which this attenuation
problem is solvable corresponds to the coarsest quantizer for
which (quadratic) stabilization via dynamic quantized-output
feedback is solvable (see [17, Theorem 3.2]).

Until now we have considered Krasowskii solutions. On
the other hand, as already discussed in the Introduction,
Carathéodory solutions seem to be appropriate in order to deal
with problems in which the control takes values in a discrete
set. Their use is limited by the difficulty in giving sufficient
conditions for existence and continuation of solutions for gen-
eral discontinuous vector fields. Nevertheless, in some particu-
lar cases of great interest for applications, such conditions can
be actually given in a reasonably easy form. Here we consider
the case of system (6).

Lemma 1. Assume that K is of class C1, ∇K(X) 
= 0 for
X 
= 0 and

(i) for all i ∈ Z, for all X 
= 0 such that K(X) = ui/(1 − �)

one of the following alternative conditions holds:
(i.a) ∇K(X) · (F(X) + (1/�)G(X)ui) > 0,
(i.b) ∇K(X) · (F(X) + G(X)ui) < 0,
(i.c) there exists � > 0 such that if X̄ ∈ B�(X) and

K(X̄) = ui/(1 − �) then ∇K(X̄) · (F(X̄) +
G(X̄)ui) = 0,

(ii) for all i ∈ Z, for all X 
= 0 such that K(X)=−ui/(1−�)

one of the following alternative conditions holds:
(ii.a) ∇K(X) · (F(X) − (1/�)G(X)ui) < 0,
(ii.b) ∇K(X) · (F(X) − G(X)ui) > 0,
(ii.c) there exists � > 0 such that if X̄ ∈ B�(X) and

K(X̄) = −ui/(1 − �) then ∇K(X̄) · (F(X̄) −
G(X̄)ui) = 0,

(iii) for all X 
= 0 such that K(X) = 0 one of the following
alternative conditions holds:
(iii.a) ∇K(X) · F(X) 
= 0,
(iii.b) there exists � > 0 such that if X̄ ∈ B�(X) and

K(X̄) = 0 then ∇K(X̄) · F(X̄) = 0.

Then for any initial condition at least one local Carathéodory
solution of (6) exists.

The proof of the previous lemma is postponed to the Ap-
pendix. We use the lemma in order to give results analogous to
Propositions 1 and 2 in terms of Carathéodory solutions.

Proposition 3. Let the assumptions of Proposition 1 and
Lemma 1 be satisfied. Then, for any � < 1/
, system (6) is
globally asymptotically stable with respect to Carathéodory
solutions.

Proof. Local existence of Carathéodory solutions is obtained
thanks to Lemma 1. We recall that Carathéodory solutions are
also Krasowskii solutions. Note that from the proof of Propo-
sition 1 we deduce that (6) is Lyapunov stable with respect to
Krasowskii solutions and then also with respect to Carathéodory

solutions. This implies that Carathéodory solutions are
bounded. Using the fact that the right-hand side of (6) is
locally bounded it can be easily deduced that Carathéodory
solutions are right continuable up to +∞. By recalling again
that Carathéodory solutions of (6) are also Krasowskii solu-
tions, we conclude, as in the proof of Proposition 1, that (6)
is globally asymptotically stable with respect to Carathéodory
solutions. �

Proposition 4. Assume that the conditions of Proposition 2
and Lemma 1 are satisfied. Then, for any ��1/�, system (6)
is globally asymptotically stable with respect to Carathéodory
solutions.

The proof follows exactly the same line as the proof of
Proposition 3.

2.2. Overcoming the limitation of the quantization density

We have seen so far that, unless a solution is found to in-
equality (12), it may be difficult to asymptotically stabilize a
nonlinear system using a coarse quantization. To overcome this
limitation, we resort here to a different approach. Rather than
investigating the conditions under which the quantization error
can be tolerated by the controlled system, we pose the prob-
lem in the following terms. Given the uncertainty due to the
quantization, is it possible to devise a control law that, besides
stabilizing, is able to actively counteract the quantization error?
The (positive) answer is provided by the following statement.

Proposition 5. Assume there exist V,W : RN → R contin-
uous positive definite, V of class C1 and radially unbounded,
K : Rn → R continuous such that (10) holds for all X ∈ RN .
For any pair 0 < r < R, for any � ∈ (0, 1), there exist u0 �0
and a continuous function K̃ : RN → R such that for any
Krasowskii solution � of

Ẋ = F(X) + G(X)�(K̃(X)), (15)

if �(0) ∈ BR(0), then there exists T > 0 such that �(t) ∈ Br(0)

for all t �T .

Remark. Compared with Proposition 2, the result states that,
even for those � which are not smaller than 1/�, it is possi-
ble to stabilize, although not asymptotically, the system under
feedback quantization.

Proof. Let M = maxX∈BR(0) V(X), �M = {X ∈ RN :V(X)

�M}, m be such that
◦
�m={X ∈ RN :V(X) < m} ⊂ Br(0), =

maxX∈�M
|K(X)| and 2��min

X∈�M\
◦
�m

W(X). Then define

K̃(X) = K(X) − 
∇V(X)G(X),

with 
�(�)2/(4�(1 − �)) a fixed constant. Finally, let u0 =
max

X∈�M\
◦
�m

|K̃(X)| in the definition of the map �.
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For any X ∈ �M , for each v ∈ K(�(K̃(X))), we have

∇V(X)(F(X) + G(X)v)

�−W(X)−
|∇V(X)G(X)|2+∇V(X)G(X)(v−K̃(x))

� − W(X) − 
|∇V(X)G(X)|2 + �|∇V(X)G(X)||K̃(x)|
� − W(X) − 
(1 − �)|∇V(X)G(X)|2

+ �|∇V(X)G(X)| · |K(x)|
�−W(X)−
(1−�)|∇V(X)G(X)|2+�|∇V(X)G(X)|

� − W(X)

2
− W(X)

2
− 
(1 − �)|∇V(X)G(X)|2

+ �|∇V(X)G(X)|.

In particular, for X ∈ �M\ ◦
�m, by definition of � and 
, it is

easily seen that the latter inequality becomes ∇V(X)(F(X)+
G(X)v)�−W(X)/2�−�, which shows the thesis, by standard
arguments. �

Remark. In the case of output feedback, the actual implemen-
tation of this result may require additional hypotheses.

It is seen from the latter proposition that we must trade off
global asymptotic stability against semi-global practical stabil-
ity in order to stabilize the system without posing any constraint
on the quantization density. Nevertheless, in a special notice-
able case pointed out below, it is possible to recover asymptotic
stability.

Corollary 1. Let the hypothesis of Proposition 5 hold, with
K continuously differentiable, and additionally assume that
K renders the closed-loop system locally exponentially stable.
Then, for any R > 0 and any � ∈ (0, 1), there exists a contin-
uous function K̃ : Rn → R such that the closed-loop system
(15) is locally asymptotically stable at the origin with respect
to Krasowskii solutions, and for any Krasowskii solution �,
�(0) ∈ BR(0) implies limt→∞ �(t) = 0.

Proof. Note that, without loss of generality (cf. e.g. [23,
Lemma 10.1.5]), one can always assume that, for r sufficiently
small, W(X)= c|X|2, for some c > 0, over the set Br(0). Take
K̃ as in the proof of Proposition 5, with


� �2

1 − �
max

{
2

2�
,
k2

c

}
,

k being the Lipschitz constant of K on Br(0). Any Krasowskii
solution converges in finite time to Br(0), over which, from the
proof of Proposition 5, the following is known to hold:

∇V(X)(F(X) + G(X)v)

� − c|X|2 − 
(1 − �)|∇V(X)G(X)|2

+ �k|∇V(X)G(X)||X|.

Fig. 2. Finitely quantized control.

By the definition of 
, a trivial completion-of-the-squares argu-
ment shows that the right-hand side of the inequality is bounded
from above by −c|X|2/2, and asymptotic convergence is im-
mediately inferred. �

As in the previous subsection, it is possible to restate the
results in terms of Carathéodory solutions.

2.3. Semi-global practical stabilization by means of finite
valued feedback laws

The results of the previous section require an infinite number
of quantization levels. Here we investigate the case in which
only a finite number of quantization levels can be used. This
problem has been deeply investigated in the case of linear
discrete-time systems in [14,15]. When a continuous stabiliz-
ing feedback law is known, it is relatively easy for nonlinear
continuous-time systems to obtain semi-global practical sta-
bilization by quantizing such feedback law. We introduce the
truncated version of (3) (Fig. 2):

�f (y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0,
1

1 + �
u0 < y,

ui,
1

1 + �
ui < y� 1

1 − �
ui, 1� i�j,

0, 0�y� 1

1 + �
uj ,

−�f (−y), y < 0,

(16)

with j to determine.

Proposition 6. Assume that there exist V,W : RN → R con-
tinuous positive definite,V of class C1 and radially unbounded,
K : Rn → R continuous such that (10) holds for all X ∈ RN .
For any pair 0 < r < R, for any � ∈ (0, 1), there exist u0 �0,
j ∈ N, and a continuous function K̃ : RN → R such that for
any Krasowskii solution � of

Ẋ = F(X) + G(X)�f (K̃(X)), (17)

if �(0) ∈ BR(0) then there exists T > 0 such that �(t) ∈ Br(0)

for all t �T .
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Proof. Let M, �M ,
◦
�m, , �, 
, K̃ and u0, be as in the proof of

Proposition 5. We prove that for an appropriate choice of j, we

have ∇V(X)(F(X)+G(X)v)� −� for any X ∈ �M\ ◦
�m and

for any v ∈ K(�f (K̃(X))). As
◦
�m ⊆ Br(0) ⊂ BR(0) ⊆ �M ,

the thesis is inferred in a standard way.
We distinguish the cases max

X∈�M\
◦
�m

|∇V(X)G(X)| = 0

and max
X∈�M\

◦
�m

|∇V(X)G(X)| > 0. In the former case, we

have ∇V(X)G(X) ≡ 0 on �M\ ◦
�m, and it follows from (10)

that

∇V(X)(F(X) + G(X)v)

= ∇V(X)F(X)� − W(X)� − 1
2 W(X)� − �.

In the latter case, let

� =
min

X∈�M\
◦
�m

[W(X)/2 + 
|∇V(X)G(X)|2]
max

X∈�M\
◦
�m

|∇V(X)G(X)| ,

and j ∈ N satisfy

j �
(

log
�(1 + �)

u0

) (
log

1 − �

1 + �

)−1

. (18)

From the proof of Proposition 5, we have that for any X ∈
�M\ ◦

�m, for each v ∈ K(�f (K̃(X))),

∇V(X)(F(X) + G(X)v)

� − � −
[
W(X)

2
+ 
|∇V(X)G(X)|2

]

+ ∇V(X)G(X)(v − K̃(x)).

Hence, it is sufficient to prove that for any X ∈ �M\ ◦
�m

|v − K̃(X)|��� W(X)/2 + 
|∇V(X)G(X)|2
|∇V(X)G(X)| . (19)

If uj/(1+�) < |K̃(X)|�u0, then |v−K̃(X)|��|K̃(X)|, and
that (19) is satisfied has already been proven in the proof of
Proposition 5. If |K̃(X)|�uj/(1 + �), then

|v − K̃(X)|� |K̃(X)|� uj

1 + �
= 1

1 + �

(
1 − �

1 + �

)j

u0,

and (19) is satisfied because of (18). �

Remark. Employing the “zooming-in” technique of [27] (see
also [22,12]), it is not difficult to modify the previous arguments
to obtain asymptotic stability. The difference with [27] is that
we do not assume input-to-state stability.

As for the case of the logarithmic quantizer, Proposition 6 can
be reformulated in terms of Carathéodory solutions provided
that sufficient conditions for local existence are given.

3. Stabilization of dissipative systems

As the conditions of Propositions 1 and 2 may be quite
demanding, whereas Proposition 5 guarantees semi-global
practical stabilizability (but see Corollary 1 for a result on
semi-global asymptotic stabilizability), we are led to consider
special classes of control systems for which classical asymp-
totic stabilization results are known, and whose features allow
for extensions in case discontinuous control is employed.
The remaining part of the paper focuses on a special class of
nonlinear single input systems (2), namely those which are
dissipative with respect to a quadratic supply rate [20,23].

We consider Krasowskii solutions (but a comment on
Carathéodory solutions is provided later) and prove a result
on asymptotic stability of interconnected dissipative systems
where one of the systems is a memoryless dissipative function,
possibly discontinuous. In particular, we examine the case this
function is sector bounded and give a nonlinear discontinuous
version of the circle criterion.

The technique used in the proofs does not differ very much
from the classical one, but in the novel context further technical
assumptions are needed. The study performed until now is not
comprehensive: some possible developments are outlined in the
conclusions.

The class of dissipative systems is recalled below. In order to
deal with possibly discontinuous systems, we need to slightly
extend the notion of dissipativity.

Definition 3. System (2) is said to be dissipative, respectively
co-dissipative, with respect to a quadratic supply rate

q(u, y) = uRu + 2uSy + yQy (20)

with R, S, Q ∈ R, if there exists a C1, positive definite and
radially unbounded function V : Rn → R such that, for all x ∈
Rn, for all u ∈ U , for all y = h(x),

∇V (x) · (f (x) + g(x)u)�q(u, y), (21)

respectively, for all x ∈ Rn, for all v ∈ co U , for all y = h(x),

∇V (x) · (f (x) + g(x)v)�q(v, y). (22)

Any function V which verifies either (21) or (22) is said to be
a storage function for (2).

Remark. Important classes of nonlinear systems are dissipa-
tive. If q(u, y) = uy the system is said to be passive. In the
latter case, since we have assumed 0 ∈ U , by taking u = 0
in (21), we get that for all x ∈ Rn, ∇V (x) · f (x)�0, which
implies that the unforced system

ẋ = f (x) (23)

is Lyapunov stable. Since system (2) is affine in the input vari-
able u, dissipativity with respect to the supply rate q(u, y)=uy

(i.e. passivity) is equivalent to co-dissipativity (that we may
call co-passivity).

Analogously we introduce the notion of dissipativity for
a static memoryless system. Since we are interested in the
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negative interconnection of such systems with (2), we restrict
to functions taking values in U.

Definition 4. A system with input ũ ∈ R and output ỹ ∈ U

related by the function ỹ = �(ũ), � : R → U , is said to be
dissipative, respectively co-dissipative, with respect to a supply
rate q̃ : R × U → R, if for all ũ ∈ R, for all ỹ = �(ũ),
q̃(ũ, ỹ)�0, respectively, for all ũ ∈ R, for all ȳ ∈ K(�(ũ)),
q̃(ũ, ȳ)�0. Equivalently the function �is said to be dissipative,
respectively co-dissipative.

Remark. An important class of static memoryless systems are
sector bounded systems. More precisely the system is said to
be sector bounded if it is dissipative with respect to

q̃(ũ, ỹ) = (ỹ − 
ũ)(�ũ − ỹ) (24)

for some pair of real numbers � > 
 > 0.
Note that if � : R → U is dissipative with respect to the

previous q̃, i.e. it is sector bounded, then it is locally bounded,
continuous at zero, �(ũ)=0 if and only if ũ=0, and moreover
it is also co-dissipative, i.e. we may say it is also co-sector
bounded.

To infer asymptotic stabilizability for dissipative systems, the
following property is relevant.

Definition 5. Let Zh = {x ∈ Rn: h(x) = 0}. System (2) is said
to be zero-state detectable if for any Carathéodory solution � :
[0, +∞) → R of system (23) such that �(t) ∈ Zh for all t �0,
it holds limt→+∞ �(t) = 0.

The previous notion of zero-state detectability may be
strengthened when dealing with discontinuous systems. The
following definition was given in [31].

Definition 6. System (2) is said to be strongly zero-state de-
tectable if for any measurable function v : [0, +∞) → R tak-
ing values in a closed subset of R and for any Carathéodory
solution � : [0, +∞) → Rn of the system ẋ = f (x) + v(t)

such that �(t) ∈ Zh for all t �0, it holds limt→+∞�(t) = 0.

It is not hard to characterize conditions under which dissi-
pative systems can be asymptotically stabilized. This descends
from a result about asymptotic stability of interconnected dis-
sipative systems (see e.g. [23]), where one of the systems is a
memoryless dissipative function. The usual assumption on the
function � is to be sufficiently regular (for instance, locally
Lipschitz). Our first result shows that such assumption can be
removed. On the other hand, the assumption of co-dissipativity
must be adopted.

Proposition 7. Let U ⊂ R be given. Assume that

(i) system (2) is co-dissipative with respect to the quadratic
supply rate (20) and zero-state detectable;

(ii) � : R → U is measurable, locally bounded, continuous at
0 with �(ũ)=0 if and only if ũ=0, and � is co-dissipative

with respect to the quadratic supply rate

q̃(ũ, ỹ) = ũR̃ũ + 2ỹS̃ũ + ỹQ̃ỹ; (25)

(iii) there exists a > 0 such that the matrix

M =
[

Q + aR̃ −S + aS̃

−S + aS̃ R + aQ̃

]

is definite negative.

Then the closed-loop system

ẋ = f (x) − g(x)�(h(x)) (26)

is globally asymptotically stable at the origin with respect to
Krasowskii solutions.

Proof. We consider Krasowskii solutions of system (26), i.e.
solutions of the differential inclusion

ẋ ∈ K(f (x) − g(x)�(h(x))). (27)

Note that

K(f (x) − g(x)�(h(x))) = f (x) − g(x)K(�(h(x))).

By co-dissipativity of �, we have that q̃(y, v)�0 for all y ∈ R

and v ∈ K(�(y)). Using co-dissipativity of (2), one can show
(see e.g. [23]) that, for any v ∈ K(�(y)), with y = h(x),

∇V (x)(f (x) − g(x)v)�[h(x) v]M
[
h(x)

v

]
.

As �(0) = 0 and � is continuous at 0 we have that, for any
v ∈ K(�(h(x))), x ∈ Rn,

∇V (f (x) − g(x)v)

{
< 0 if h(x) 
= 0,

= 0 if h(x) = 0.
(28)

Hence, for each Krasowskii solution � of (26), � is right con-
tinuable up to +∞, V is decreasing along � and system (26)
is Lyapunov stable with respect to Krasowskii solutions (see,
e.g. [6, p. 131]). Moreover, thanks to LaSalle’s invariance prin-
ciple (see e.g. [3]), we get that Krasowskii solutions of (26)
tend to the largest weakly invariant subset M of {x ∈ Rn: ∃v ∈
K(f (x) − g(x)�(h(x))) : ∇V (x) · v = 0} ⊂ Zh.

We now prove that every Krasowskii solution � actu-
ally tends to 0. Since V ◦ � is monotone, there exists
limt→+∞ V (�(t))=c, for some c�0. We now prove that c=0.
Since V is assumed to be continuous and positive definite, this
will imply that limt→+∞�(t) = 0. Let � be the �-limit set
associated with �. � is nonempty, compact, weakly invariant
and is contained in the set Zh.

By definition, V (x) = c for all x ∈ �. Let �� be a Kra-
sowskii solution of (26) such that ��(t) ∈ � for all t �0. As
� ⊆ Zh, h(x) = 0, �(0) = 0, and � is continuous at 0, we
have that K(f (x) − g(x)�(h(x))) = f (x) for x ∈ � ⊆ Zh.
Hence, h(��(t)) = 0 for all t �0 implies ��(t) → 0 as t →
∞, as a consequence of the zero-state detectability. Since c =
V (��(t)) for all t �0 we conclude that c=limt→∞ V (��(t))=
V (limt→∞ ��(t)) = 0. �
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Remark. One of the interests of this result lies in the pos-
sibility of stabilizing nonlinear systems using quantized feed-
back. In fact, consider a discontinuous sector-bounded static
nonlinearity � satisfying (24). A possible function of this kind
is illustrated in Fig. 1 in the case 0 < 
 = 1 − �, � = 1 + �.
It is straightforward to determine conditions on Q, R, S under
which any nonlinear system (2) co-dissipative with respect to
a supply rate (20) in negative feedback interconnection with
a sector bounded memoryless nonlinearity is such that M < 0,
and, as such, is asymptotically stabilizable under the hypothesis
of zero-state detectability. Note that dissipative systems which
satisfy conditions as discussed above can be well unstable when
u = 0, as it is the case for the system in [37, Example 2.35].

In some cases, when it is not possible to find a > 0 such that
M < 0, similar arguments can be applied: a result analogous
to the previous one can be given the form of the nonlinear
discontinuous version of the celebrated circle criterion [23,37].

Proposition 8. Let U ⊂ R be given. Assume that

(i) system (2) is zero-state detectable;
(ii) there exists a pair of real numbers � > 
 > 0 such that

system (2) is co-dissipative with respect to the supply rate

q(u, y) =
(

y + 1

�
u

) (
u + k

(
y + 1

�
u

))
,

with k = �
/(� − 
);
(iii) the function � : R → U is measurable and dissipative

with respect to (24), with q̃(ũ, ỹ) = 0 if and only if ũ = 0.

Then, system (26) is globally asymptotically stable at the origin
with respect to Krasowskii solutions.

Proof. (Sketch) One can repeat the arguments used in [37]. Co-
dissipativity of (2) implies that there exist a C1 positive definite
and radially unbounded function V : Rn → R such that for
any x ∈ Rn, for any v ∈ K(�(h(x))), for any ȳ = h(x) − v/�

∇V (x)(f (x) − g(x)v)� − vȳ + kȳ2.

Then one shows that, for any x ∈ Rn, for any v ∈ K(�(h(x))),
for any y = h(x)

∇V (x)(f (x) − g(x)v)� − 1

� − 

(�y − v)(v − 
y)�0,

where the latter inequality holds by (24) and Remark 3, and that
the equality holds if and only if v = y = 0. Then, it is possible
to apply the same machinery as in the proof of Proposition 7
to infer the result. �

Remark. In case � is a sector bound nonlinearity of the form
(3), conditions of Lemma 1 can be used in order to get stabi-
lization results for dissipative systems in terms of Carathéodory
solutions.

4. Stabilization of passive systems via small inputs

The results of the previous section require continuity of �
at the origin. Investigating the case in which this requirement
is not met is particularly interesting if the sector bound is such
that 
=0 and �=+∞. In the case of passive systems, we derive
the following propositions in which stabilization is obtained by
means of feedback laws taking values in a finite set U. We recall
here that a previous result on stabilization of passive systems
which makes use of Krasowskii solutions was proved in [31].

Proposition 9. Let U = {0, �, −�}, � ∈ R, � > 0. Assume that
system (2) is passive. Moreover, assume that one of the follow-
ing condition holds:

(i) for each x ∈ Zh, x 
= 0,

∇h(x) · (f (x) + 	g(x)) 
= 0, (29)

for any 	 ∈ [−�, �];
(ii) system (2) is zero-state detectable and for each x ∈

Zh, x 
= 0, for which there exists 	 ∈ [−�, �] such that

∇h(x) · (f (x) + 	g(x)) = 0, (30)

either 	 = 0 or g(x) = 0;
(iii) system (2) is strongly zero-state detectable.

Then, the closed-loop system

ẋ = f (x) − �g(x) sgn h(x) (31)

is globally asymptotically stable at the origin with respect to
Krasowskii solutions.

Proof. First of all we remark that K(f (x) − �g(x) sgn h(x))

is included in{ {f (x) − �g(x) sgn h(x)} if h(x) 
= 0,

{f (x) + 	g(x), 	 ∈ [−�, �]} if h(x) = 0.

Let v ∈ K(f (x) − �g(x) sgn h(x)). From the fact that system
(2) is passive and the Remark following Definition 3 it follows
that

∇V (x) · v =
{−|h(x)| if h(x) 
= 0,

0 if h(x) = 0.

Then, as in the proof of Proposition 7, the system is proven
to be Lyapunov stable and that Krasowskii solutions of (31)
tend to the largest weakly invariant subset of {x ∈ Rn : ∃v ∈
K(f (x) − �g(x) sgn h(x)) : ∇V (x) · v = 0} ⊂ Zh. To prove
that every Krasowskii solution � actually tends to 0, it suffices
to show that V (x) = 0 for all x ∈ �, with � ⊆ Zh the �-limit
set associated with �. Let �� be a Krasowskii solution of (31)
such that ��(t) ∈ � for all t �0. Since � ⊆ Zh, we have that
h(��(t)) = 0 for all t �0 and then ∇h(��(t))�̇�(t) = 0 for
almost every t �0.

Assume that (i) holds. We show that �� is indeed the triv-
ial solution. Suppose on the contrary this is not the case.
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Then, there must exist a time t0, with ��(t0) 
= 0, where
�� is differentiable, such that ∇h(��(t0))�̇�(t0) = 0. The for-
mer equality clearly contradicts (29), for �̇�(t0) ∈ K(f (x) −
�g(x) sgn h(x)).

Now, assume that (ii) holds. Then, thanks to (30), �̇�(t) =
f (��(t)) for almost every t �0 and ��(t) → 0 as t → ∞,
as a consequence of the zero-state detectability. Since c =
V (��(t)) for all t �0 we conclude that c=limt→∞ V (��(t))=
V (limt→∞ ��(t)) = 0.

Finally, assume that (iii) holds. Then there exists a measur-
able function v taking values in the closed set {	g(��(t)), t ∈
[0, +∞), 	 ∈ [−�, �]}, for which �̇�(t) = f (��(t)) + v(t) for
almost every t �0. Since ��(t) ∈ Zh for all t �0, strong zero-
state detectability implies that ��(t) → 0 as t → +∞. The
conclusion is obtained as in the previous case. �

Remark. A few observations are in order:

• It is worth comparing this result with Proposition 7, from the
point of view of switched systems. Proposition 7, when �
is a function of the kind illustrated in Fig. 1, allows to con-
clude stabilizability of a nonlinear dissipative system using
a countable number of control values. On the other hand,
Proposition 9 proves stabilizability using a finite number of
control values. This is possible because of the additional
condition (i), (ii) or (iii). If the latter are not fulfilled, it is
still possible to stabilize the system, but at the expenses of
employing “more” control values.

• Proposition 9 can be seen as the quantized counterpart of
a well-known consequence of passivity: the possibility of
stabilizing systems via small inputs (see e.g. [23, Chapter
14]).

• To the purpose of establishing a deeper connection with the
literature in switched control, Proposition 9(i) can be given
an alternative form. Define the vector fields

f1(x) = f (x) − �g(x), f2(x) = f (x) + �g(x),

and correspondingly the system

ẋ = uf 1(x) + (1 − u)f2(x),

with u taking values in the set {0, 1}. Suppose there exists a
C1 positive definite and radially unbounded function V and
a real number 
 ∈ (0, 1) such that ∇V (x)(
f1(x) + (1 −

)f2(x))�0 for all x ∈ Rn. Assume additionally that, for any
x 
= 0 such that ∇V (x)f1(x)=∇V (x)f2(x), and for any � ∈
[0, 1], ∇(∇V (x)(f1(x)−f2(x)))(�f1(x)+(1−�)f2(x))) 
=
0. Then, there exists a static state (discontinuous) feedback
u=k(x) with values in the set {0, 1} such that the closed-loop
system is globally asymptotically stable at the origin with
respect to Krasowskii solutions. When both f1 and f2 are
linear, the result is Theorem 1 in [3]. The reader is referred
to the latter reference for a thorough discussion of the result
within the framework of switched control.

• The main difference of the latter proof (ii) with respect to the
one of Proposition 7 lies in guaranteeing that the solution ��
asymptotically tends to zero as t → ∞ notwithstanding the

fact that it is evolving on the discontinuity manifold h(x) =
0. To this purpose, condition (ii) plays a fundamental role.
In fact, the second one of the examples below shows that
zero-state detectability alone is not enough in order to get
asymptotic stability of system (31).

• Strong zero-state detectability may seem a very conservative
condition. On the other hand it is satisfied in some very
interesting cases (see [31]).

Of course, Proposition 9 can be reformulated in terms of
Carathéodory solutions. In this case, conditions for local exis-
tence become particularly easy.

Proposition 10. Let U ={0, �, −�}, � ∈ R, � > 0. Assume that

(i) system (2) is passive and zero-state detectable;
(ii) if x ∈ Zh is such that ∇h(x) = 0 then x = 0;

(iii) if x ∈ Zh, x 
= 0, one of the following conditions holds:
(iii.a) ∇h(x) · (f (x) − �g(x)) > 0,
(iii.b) ∇h(x) · (f (x) + �g(x)) < 0,
(iii.c) there exists � > 0 such that for all z ∈ B�(x), such

that h(z) = 0, it holds ∇h(z) · f (z) = 0.

Then the closed-loop system (31) is globally asymptotically
stable with respect to Carathéodory solutions.

Proof. First of all we remark that the feedback law is discon-
tinuous on Zh. Conditions (ii), (iii) guarantee local existence of
solutions issuing from Zh (the proof is analogous to the proof
of Proposition 2 in [9] under conditions (H2) and (H3)). Since
Carathéodory solutions are also Krasowskii solutions, we con-
clude, as in the proof of Proposition 9, that (26) is Lyapunov
stable with respect to Krasowskii and Carathéodory solutions.
This implies that Carathéodory solutions are bounded. Using
the fact that the right-hand side of (31) is locally bounded it can
be easily deduced that Carathéodory solutions are right continu-
able up to +∞. By recalling again that Carathéodory solutions
are Krasowskii solutions, we deduce, as in the proof of Propo-
sition 9, that they tend to a subset of the largest weakly invari-
ant subset of Zh. Next we remark that Carathéodory solutions
of (31) lying in Zh satisfy ẋ = f (x), and we can argue as in
the proof of Proposition 7 and conclude that all Carathéodory
solutions of (31) actually tend to the origin. �

Remark. A desirable property for the closed-loop system is
that switches among the different vector fields do not arise too
quickly. If in Proposition 10 we make the additional assumption

(iv) if x ∈ Zh is such that ∇h(x) · f (x) = ∇h(x) · g(x) = 0
then g(x) = 0,

we get that Carathéodory solutions are piecewise differentiable
and that for any Carathéodory solution � of (31) the times (also
called switching times) where the control law −� sgn(h ◦ �)

changes value do not accumulate in finite time, i.e. the so called
Zeno phenomenon does not occur. This is a consequence of
Theorems 1 and 2 in [9].
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We now discuss the results about passive systems by means
of some examples.

Example. Consider the system

ẋ1 = x2,

ẋ2 = −x1 + x1u,

y = x1x2. (32)

Let U = {0, �, −�}, with � < 1. Condition (i) of Proposition 9
holds, then the feedback law u=k(x)=−� sgn(x1x2) stabilizes
the system asymptotically with respect to Krasowskii solutions.
In this case if Carathéodory and Krasowskii solutions actually
coincide then the closed-loop system is asymptotically stable
also with respect to Carathéodory solutions.

The following example shows that the assumption of zero-
state detectability is not sufficient in order to prove stabilizabil-
ity of passive systems with respect to Krasowskii solutions.

Example. Consider again system (32) with U = {0, −1, 1}.
Condition (i) of Proposition 9 does not hold on the x1-axis.
It is immediate to verify that the system is passive with stor-
age function V (x) = xT x/2. The system is also zero-state de-
tectable. As a matter of fact, let u(t) = 0 and y(t) = 0 for
all t �0. Then x1(t)x2(t) = 0 for all t �0. Then ẋ1(t)x2(t) +
x1(t)ẋ2(t) = x2

2 (t) − x2
1 (t) = 0 which implies x2(t) = ±x1(t),

then x1(t) = 0, x2(t) = 0 for all t �0. In this case the feedback
controller is given by u = −sgn(x1x2). Note that K(f (·) −
g(·) sgn h(·))(x1, 0) = {(0, −(1 − 	)x1), 	 ∈ [−1, 1]}, then, by
taking 	 = 1, we get that the points on the x1-axis are equilib-
rium positions for the closed-loop system, which is not asymp-
totically stable. In this example the set of Krasowskii solutions
of the closed-loop system is larger than the set of Carathéodory
solutions. Let us then consider Carathéodory solutions of the
closed-loop system. Condition (iii.c) of Proposition 10 is veri-
fied on the points of Zh, then Carathéodory solutions exist and
the system is asymptotically stable with respect to these so-
lutions. Note that also condition (iv) of Remark 4 holds. This
implies that any Carathéodory solutions are piecewise differ-
entiable and that switching times do not accumulate in finite
time. Actually it could also be seen that there is a lower bound
onthe distance between any two switching times [5,9].

In the following example condition (ii) of Proposition 9
applies.

Example. Consider the system

ẋ1 = x2,

ẋ2 = −x1 + xk
1x�

2u,

y = xk
1x�+1

2 , (33)

where k, � are integers not smaller than 1. Choosing as storage
function V (x)=xT x/2, it is immediately shown that the system
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Fig. 3. Switched control of the system ẋ1=x2, ẋ2=−x1+x1x2u, y=x1x2
2 . The

graph at the top illustrates the state response of the system under the action
of the control law u = −sgn x1x2

2 depicted in the figure at the bottom. Note
that in this case for every initial condition there exists a unique Krasowskii
solution.

is passive. It is also zero-state detectable. We have h(x) =
xk

1x�+1
2 and

∇h(x)(f (x) + 	g(x))

= kxk−1
1 x�+2

2 + (� + 1)xk
1x�

2(−x1 + xk
1x�

2	).

Any x 
= 0 such that h(x) = 0 can be equal either to (x1, 0)

or (0, x2). In the former case, ∇h(x)(f (x) + 	g(x)) = 0 for
any 	, and g(x) = 0. In the latter case, if k > 1, then again
∇h(x)(f (x)+	g(x))=0 for any 	, and g(x)=0, whereas, if k=
1, ∇h(x)(f (x)+ 	g(x))= kx�+2

2 , and therefore never equal to
zero. We conclude that the feedback u=−sgn xk

1x�+1
2 globally

asymptotically stabilizes the system with respect to Krasowskii
solutions. Moreover, along the two switching manifolds x1 = 0
and x2 = 0, the vector field is continuous, and no sliding mode
will arise. Finally, we observe that in the polar coordinates
(�, �), the system satisfies the equation

�̇ = −1 − xk+1
1 x�

2

�2 sgn xk
1x�+1

2 ,

which, bearing in mind that V (�, �)=�2/2 and that V is mono-
tone nonincreasing along any trajectory of the system, yields

|�̇ |�1 + �k+�−1(0).

This allows to conclude that, after a switching has occurred, a
certain amount of time (dwell time) must elapse before a new
switching can take place (see also [9]). Simulation results are
reported in Fig. 3 in the case k = � = 1.

5. Conclusions

For switched and quantized systems, it is interesting to study
how the powerful stabilization techniques developed within the
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robust control framework and for dissipative systems can be
reinterpreted. In this paper we give a contribution in this direc-
tion in the case of single input-affine systems: the multi-input
case may be analogously treated. For quantized nonlinear con-
trol systems, state quantization deserves further attention. We
have pointed out how the choice of solution concept gives rise
to different results. When solutions of the implemented system
are considered in the Carathéodory sense, it would be impor-
tant to further investigate, in the case the set U is countable,
the problem of guaranteeing that Carathéodory solutions are
piecewise differentiable and Zeno phenomenon does not occur.
Investigating the scenario in which switching occurs not too
fast is also of importance.

Appendix A. Proof of Lemma 1

In the cases (i) and (ii) and if X0 is such that K(X0) 
= u for
all u ∈ U , the proof of the existence of a local Carathéodory
solution is perfectly analogous to the proof Proposition 2 in
[9]. We now consider case (iii). Let X0 
= 0 be such that
K(X0)=0. Let us consider the case (iii.a) and, more precisely,
let us assume ∇K(X)·F(X) > 0 (the case ∇K(X)·F(X) < 0
can be analogously treated). X0 is an accumulation point for the
set of discontinuity points of �◦K, but, thanks to the continuity
of F,G and �◦K at 0, there exist �, � > 0 and i� ∈ N such that
for all X ∈ B�(X0), for all i > i� it holds ∇K(X) · (F(X) +
G(X)ui) > �. Let M=max{|F(X)|+|G(X)|ui� ,X ∈ B�(X0)}
and let T < �/M . We consider a sequence of points {X0i

} ⊂
RN, i ∈ N, i� i� such that X0i

→ X0 as i → +∞ and
�(K(X0i

))=ui . For any i let �i be the Carathéodory solution
of (6) defined in the following way. �i is the Carathéodory
solution of the Cauchy problem

Ẋ = F(X) + G(X)ui ,

X(T i
i ) = X0i

on the interval [T i
i , T i−1

i ] where T i
i = 0 and T i−1

i is such that
�(K(�i (t)))=ui for all t ∈ (T i

i , T i−1
i ] and for all � > 0 there

exists y ∈ B�(�i (T
i−1
i )) such that �(K(y)) = ui−1. Note

that the existence of T i−1
i is a consequence of the fact that

∇K(X)·(F(X)+G(X)ui) > � on B�(X0). �i is continued by
induction for k ∈ N such that i −k� i�: �i is the Carathéodory
solution of the Cauchy problem

Ẋ = F(X) + G(X)ui−k ,

X(T i−k
i ) = �i (T

i−k
i )

on the interval [T i−k
i , T i−k−1

i ] where T i−k−1
i is such that

�(K(�i (t))) = uk for all t ∈ (T i−k
i , T i−k−1

i ] and for all � > 0
there exists y ∈ B�(�i (T

i−k−1
i )) such that �(K(y))=ui−k−1.

We remark that the solutions �i are defined on [0, T ] for
i sufficiently large. Let us consider the sequence of con-
tinuous function {�i} on the compact interval [0, T ]. They
are uniformly bounded and uniformly continuous, in fact
|�i (t)|�� + T M for all t ∈ [0, T ] and, for all t, t ′ ∈
[0, T ], it holds |�i (t) − �i (t

′)|�M|t − t ′|. Then, thanks to

Ascoli–Arzelà’s theorem, there exists a subsequence of {�i}
that we still call {�i}, which uniformly converges to some
continuous function � on [0, T ]. We now prove that such �
is a Carathéodory solution of (6) on [0, T ]. For any i let us
consider the sequence in R defined as follows: T

j
i = 0, if j � i,

and T
j
i has been defined before if j < i. We remark that for

every fixed i, j one has T
j
i �T

j−1
i . Let us fix j and consider

the sequence T
j
i , i� i�. Since it is bounded it admits a subse-

quence (that we still call T
j
i ) converging to some T j ∈ [0, T ].

We remark that T j �T j−1 (otherwise we would definitively
have T

j
i > T

j−1
i , contradiction). We prove that � satisfies (6)

for every t̄ ∈ [0, T ]\{0, T , T j }, i.e. � is a Carathédory solution
of (6) on [0, T ]. Let � > 0 such that [t̄ − �, t̄ + �] ⊂ (T j , T j−1)

for some j. Note that �i are definitively classical solutions of
(6) on [t̄ − �, t̄ + �], then, since �i → � uniformly on [0, T ],
we have that � is a classical solution of (6) on [t̄ − �, t̄ + �]
and, in particular, � satisfies (6) at t̄ . Finally, case (iii.b) is
analogous to the cases (i.c), (ii.c) since there is a local solution
of (6) which lies on the set {X ∈ RN :K(X) = 0}.
Note added in the proof

After the paper was accepted, we became aware of
Ref. [40]. In that paper, under the hypothesis of the existence of
a Hamilton–Jacobi–Isaacs equality analogous to the inequality
(12) below, the authors devise an adaptive quantized control
strategy for unknown nonlinear systems. The arguments em-
ployed to prove the main results in the two papers are both of
Lyapunov-type. There are a number of differences however. In
[40], in view of the adoption of an hysteresis-like mechanism
among the switchings, uniqueness of solutions is assumed.
Moreover, while the uncertainty in the model is tackled by
adaptive techniques in [40], we regard the uncertainty due to
the quantization as a perturbation to counteract in a robust
control framework. We thank H. Ishii for making the preprint
[40] available to us.
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