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Abstract.

For semi-Markov decision processes with discounted rewards we derive the

well known results regarding the structure of optimal strategies (nonrandonr

ized, stationary Markov strategies) and the standard algorithms (linear

programming, policy iteration). Our analysis is completely based on a primal

linear programming formulation of the problem.

§ 1. Introduction.

In this memorandum discounted semi-Markov problems as discussed e.g. by

Jewell [4J, and De Ghellinck and Eppen [3J, will be treated.

We consider (semi-) Markov decision processes with a finite set of states,

S := {I ,2, ••• ,N}. For any i E S a finite set K(i) of allowed decisions 1.S

available. If k E K(i) has been chosen the probability for finding the
, . h ,.,. It k (k 0system 1.n state j at t e next dec1.s1.on p01.nt 1.S equa 0 p., p .. ~ ,

N 1.J 1.J

L p~, ~ 1). If this occurs, the interdecision time has a probability dis
j= J 1J

'b . f . ktr1 ut1.on unct10n F" f t = 0
1.J

a(n) (expected) reward rk(i)

has the form:

k = {OJF .. (t)
1.J

for t <

for t ~ 1 •

The goal is to maximize the total discounted expected reward over an infi

nite time horizon.

For these problems it is possible to give a linear programming formulation

(e.g. see d'Epenoux [2J, De Ghellinck and Eppen [3J, Howard [5J).

Also Howard's policy iteration algorithm (see e.g. [4J, [5J) can be used to

find optimal solutions for this type of problems. The relationship between

linear programming and policy iteration 1.S well known. Mine and Osaki [7J

discussed this relation for (semi-) Markov decision processes with and with

out discounting. Here we derived the known results concerning the structure

of optimal strategies (nonrandomized Markov or memoryless strategies) and

the relation between the standard algorithms (linear programming and policy

iteration) completely form a primal linear programming formulation of the

problem.
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§ 2. Semi-Markov decision processes with discounting.

Let the initial state or initial distribution {~.(O)} (~.(O) ~ 0,
J J

~.(O) = I) be given. Then an arbitrary decision rule determines the
JI

jES
stochastic process. This decision rule may be eventually randomized and non

Markov, hence basing decisions on the complete past of the process. For a

given decision rule let TI~(n,t), for the n-th decision point, be the joint
1.

probability that state i is observed, that decision k is made, and that this

n-th decision point occurs not later than time t.
kFor t ~ 0, j E S, the TI.(n,t) will satisfy the following recurrence relation:
J

(I ) I
kEK(j )

kTI.(n,t)
J

= jr ,:(0) ,if np£..o t

L L J ~i(n-I
iEs £EK(i) 1.J o

£, t-T)dF .. (T) ,
1.J

n=I,2, ••••

kWe assume that F .. (O) < 1 for all i,j E S and for all k E K(i). This assump
1.J

tion guarantees that the expected number of transitions in a finite interval

(O,T) is finite. Now we can state the following lemma.

Lemma. For any decision rule converges the total expected discounted reward

(using a discount rate S > 0)

00

(2)
00

I {I I rk(j)
n=O j ES kEK(j)

J e-Std~~(n,t)}
o

*
absolutely, and the sum 1.S uniformly bounded by ± I~ 0 with

r * := max Irk (j) I ,
j,k

00

6 := max
i,j,k Je- St d F~ . (t)

1.J

o
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Proof.

00
00

L {L L
n=O jES kEK(j)

Irk(j) I J e-Std7T~(n,t)} ::;

o

00

Consider:

\ r*{ \ \ J -St k( )}$ L. L. L. e d7Tj n,t
n=O j€S kEK(j) 0

00

\ \ J -St kL. L. e d7T.(n,t)
jES kEK(j) 0 J

00

L J e- St d (L 7T~(n,t» =
jES 0 kEK(j)

00 t

L J -St
d ( L L

9.- f 7T~(n-1 , t-T) d 9.-
= e p .. F.. (T» =

jES iES R.EK(i) ~J ~J

0 0

00 00

L L L
9.-

J
e- St d F: . (t) f

-St t
~p .. e d 7T . (n- 1, t)

j E: S itS tEK(i) ~J ~J ~

0 0

00

o ::; 6 < I, as a consequence of the assumption F~.(O) < I, i,j E: S, k E K(i).
~J

So

00

L {L L
n=O j ES kEK(j)

00

f
*

Irk(J')I -Stdk( )}<_r_._e 7T j n,t - 1-6

o
o

The problem ~sto determine a decision rule for which (2) is maximal.

Where, as a consequence of the absolute convergence of (2), it is also

possible to write (2) as
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00

(3) L L
jES kEK(j)

-(3t ke d'IT.(n,t).
J

§ 3. Linear programs and the structure of optimal strategies.

(3) depends only on the decision rule through

00

-(3t ke. dtr.(n,t)
J

Hence, with

00

(4) k'IT.(n) :=
J J

-(3t k
e d'ITj(n,t),

o

the problem can also be formulated as:

Determine the decision rule for which

(5) L L
j ES kEK(j)

00

L
n=O

k'IT . (n)
J

~s maximal.
kAs a consequence of (1) the 7T.(n) will satisfy the recurrence relation:
J

(6)

where

{

7T.(O) , n = 0

= ~ \ t t t
L L p.. n·· 'IT. (n ~ 1) ,

. ~J ~J ~uS tEK(i)
n =

£
ll·· : =
~J

00

I -(3t te dF .. (t)
~J

o
(hence 0

R,
::; n .• < 1) •

~J

Lemma. Every nonnegative solution {'IT~(n)} of (6) may be considered as the
J

transforms (4) of the 7T~(n,t) corresponding w~th a Markov decision rule.
J
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Proof. A Markov decision rule which satisfies the requirements 1S construct

ed in the following way:
kSelect at the n-th decision point with probability d.(n), decision k E K(j)
J

if at this point state j has been observed, with

1T~(n)
d~(n) := _ ..........J'--~_

L 1T~(n)
kEK(j) J

It is easy

transforms

kto verify that the {1T.(n,t)} related with this decision rule have
k J

{1T.(n)}. 0
J

As a consequence of this lemma it 1S permitted to consider only Markov

strategies.

Furthermore, the lemma legitimates to formulate the problem as follows:

kMaximize (5), subject to (6) and the nonnegativity constraints 1T.(n) ~ O.
J

This problem is a linear programming problem with an infinite number of

constraints and variables.

As a second step we define:

k
x' :=

J

00

L 7T~(n)
n=O

Then we have the transformed problem I (see also e.g. [3], [7]):
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L L k(') kmax r J x.
j€S k€K(j ) J

subj ect to

L k IT. (0) + I L t tx. = q .. x.
k€K(j ) J J i€s t€K(i) ~J ~

j E S

where

kx. ~ 0 ,
J

J E S, k E K(j)

t
q ..
~J

Now, problem I is a standard linear programming problem.

Lenuna. If lTj(O) > 0, j € S, then there exists a one to one correspondence

between basic feasible solutions of I and nonrandomized stationary Markov

strategies (see [3J, [7J).

To prove this lenuna we remark that IT.(O) > 0 implies I x~ > O. Hence
J kEK(j) J

for any basic feasible solution there is for each j E S exactly one

k(j) E K(j) with x~ > 0 and x~ = 0 for k # k(j). Conversely, given a non-
J J

randomized stationary Markov strategy denoted by f := (k( I) ,k(2), ..• ,k(N»,

the system of equations:

k(')x. J
J I

i€s

k(i) k(i)
q .. ·x. =1T.(0)
~J ~ J

j E S ,

has a unique solution {x~(j)} with x~(j) > O.
J J R,

This follows from the system I s diagonal dominance (0 $ n .. < 1) or from the fact

h Qn ~ 0 h' . . h~J 1 k(i)t at ~ as n ~ 00, were Q ~s an N x N matr~x w~ t e ements q.. 0
~J

Furthermore, it is permitted to take lTj(O) =*' in the linear programming

problem I, since an optimal solution of the linear programming problem I

remains optimal if the IT.(O) in the right hand side are changed (see Gass
J

[8J).

Theorem. In order to find an optimal decision rule it i~ permitted to re

strict the attention to nonrandomized stationary Markov strategies. This

optimal decision rule can be found by solving the linear programming problem

I, with arbitrary {IT.(O)}, IT.(O) > O.
J J
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This theorem follows from the fact that for any decision rule the trans

formes of the corresponding ~~(n,t) yield a feasible solution of I, while
J

conversely an optimal basic solution of I corresponds to a nonrandomized

stationary Markov strategy. The fact that a restriction to nonrandomized

stationary 'Markov strategies is permitted is also proved in another way by

Denardo [I J.

Remark. The total expected discounted reward, if the process starts 1n state

i and the optimal strategy f* is used (v.(f*», can be found by solving the
1

dual problem.

§ 4. Policy iteration.

It is easy to find a basic feasible solution: select for each j E S one

k(j) E K(j), then {x~(j)}. S form a basic solution and the corresponding
J JE

nonrandomized stationary Markov strategy is f = {k(I),k(2), .•• ,k(N)}.

Whether this basis yields an optimal solution or not may be checked by con

structing the price vector, as usual in linear programming (see Gass [8J).

Thus the problem is to find a linear combination of the N equality con

straints of I and the reward equation, such that the elements corresponding
k(')to the x. J equal 0, i.e. look for v.(f), j E S, with
J J

(8) v. (f)
J 2

iES

k(j) k(')q. . v. (f) - r J (j) =
J1 1 ° , j E S •

From (8) we see that vj(f) is the total expected discounted reward if the

system's initial state is j and strategy f (j + k(j» is followed (dynamic

programming equations).

For the other elements of the reward equation we have:

v.(f) - 2 q~. v.(f) - rk(j) , j E S, k E K(j).
J i€S J 1 1

If for all j E Sand k E K(j)

v. (f) 
J 2

iES

then strategy f (j + k(j» is optimal.

For the object value Wwe then have:



W :-= 1T.(O).v.(f)
J J
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If for some k E K(j) and j E 8

(9) v. (f) 
J L

iE8

k k
q .. v.(f) - r. < 0 ,

J 1 1 1

then a better solution is possible by selecting for each j E S one

k(j) E K(j) for which (9) holds. When for some j E 8 such a choice is not

available, the old k(j) E K(j) for which (8) holds is selected again. This

yields a new and better basic feasible solution.

That the new basic feasible solution and so the corresponding strategy

g t K := {K(I) x K(2) x ••• x K(N)} is better than the old one f E K can be

shown as follows:

Let

and

v(f) ref) + Q(f)v(f)

v(g) reg) + Q(g)v(g)

y(g,f) = reg) + Q(g)v(f) - ref) - Q(f)v(f) ,

where for simplicity a vector notation is used. Now from (8) en (9) it

will be clear that y(g,f) ~ 0

~v :-= v(g) - v(f) = y(g,f) + Q(g)v(g) - Q(g)v(f) -=

-= y(g,f) + Q(g)~v •

80,

~v -= (I - Q(g»-I y(g,f) ~ 0 and! 0 .

This implies that, when this improvement procedure is applied, an old

strategy will never appear again as long as real improvement is possible.

This leads to the following algorithm:

i)

ii)

iii)

select a nonrandomized strategy;

solve for this strategy the set of equations (8);

if possible select a better strategy based on (9)

such a strategy is not available, stop:

and goto ii); if
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Consequently such an algorithm will converge, in a finite number of itera

tions, to an optimal strategy f* with object value:

W:= L 'IT.(O).v.(f) •
j ES J J

This means that Howard's policy iteration method, that can be derived with

dynamic programming (see [6J, [4J), follows straightforward from the primal

linear programming formulation, using the possibility of changing more basic

variables in each iteration step (see also [7]).
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