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The present paper addresses the question of the form of the mathematical relation between the
time until a delayed reward and its present value. Data are presented from an experiment in which
subjects chose between hypothetical amounts of money available either immediately or after a delay
(Green, Fry, & Myerson, 1994). Analyses of the behavior of individual young adults demonstrated
that temporal discounting is better described by hyperbola-like functions than by exponential decay
functions. For most individuals, the parameter that determines the rate of discounting varied in-
versely with amount. Raising the denominator of the discounting function to a power resulted in
better descriptions of the data from most subjects. Two possible derivations of the temporal dis-
counting function are proposed, a repeated choice model and an expected value model. These
provide theoretical interpretations for amount-dependent discounting but amount-independent ex-
ponent parameters.
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Humans and other animals typically will
choose more immediate rewards over delayed
rewards of equal magnitude. What is surpris-
ing, at least from certain perspectives, is that
often they also will choose more immediate
rewards over delayed rewards of larger mag-
nitude. Many different accounts of the latter
finding have been offered (e.g., lack of im-
pulse control, poor ego strength, conflict be-
tween multiple selves), but the dominant ac-
count in the behavioral economic literature
relies on the assumption that the value of a
future reward decreases with increasing
length of time to its receipt (Kagel, Battalio,
& Green, 1995). This decrease in value as a
function of delay is termed temporal discount-
ing. The temporal discounting account posits
that a smaller, more immediate reward may
be chosen because the present (or subjective)
value of the larger, more delayed reward is
discounted; hence, its present value may be
less than that of the more immediate reward.
From the perspective of temporal discount-

ing, the question of interest becomes the na-
ture of the mathematical relation among
amount, delay, and value. Economists and
psychologists have typically employed two dif-
ferent approaches to determining this func-
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tion. Economists have taken a "rational" ap-
proach to the problem and have attempted
to derive a formula from theoretical assump-
tions, often based on a normative model of
what organisms ought to do. In contrast, psy-
chologists have taken an "empirical" ap-
proach and have attempted to find the for-
mula that best describes what organisms are
observed to do. The present work attempts to
bring these two approaches together. First, we
will present data from individual subjects for
the purpose of evaluating several different
formulas that have been proposed; second,
we will present two rational derivations of
what our analyses suggest is the best descrip-
tive formula.
One formula that has been proposed to de-

scribe the temporal discounting of delayed
rewards is based on the standard discounted
utility model in economics (Samuelson,
1937). This model assumes that the value of
a future reward is discounted because of the
risk involved in waiting for it. Given a contin-
gent relationship between an organism's
choice of a delayed reward and its eventual
receipt, it is further assumed that there is a
constant hazard rate that this relationship will
fail. In a foraging situation, for example, the
constant hazard rate might correspond to a
constant probability that, in any given unit of
time, a predator may prevent the forager
from obtaining the reward or that another or-
ganism may get the reward first. If there is a
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constant hazard rate associated with waiting,
then the form of the temporal discounting
function will be exponential:

V= Ae-D, (1)

where V is the present value of a future re-
ward, A is its amount, D is the delay to its
receipt, and k is a parameter indicating the
constant hazard rate.
Another formula that has been proposed

has the form of a hyperbolic relation between
value and delay (Ainslie, 1992; see also Mazur,
1987; Rachlin, 1989):

V= A/(1 + kD), (2)

where k is a parameter governing the rate of
decrease in value. Fit to the same data, the
hyperbola will initially (at short delays) de-
crease faster than the exponential, but will
then (at long delays) decrease more slowly
than the exponential. The hyperbola has
been justified primarily on empirical grounds
(Ainslie, 1992; Mazur, 1987; Rachlin, Raineri,
& Cross, 1991; Rodriguez & Logue, 1988), as
has a variation on this formula that involves
raising the denominator to a power (Green,
Fry, & Myerson, 1994; Loewenstein & Prelec,
1992).
The empirical justification for using the hy-

perbolic model rather than the exponential
model has been twofold. First, the hyperbolic
model permits preference reversals in sub-
jects' choices between a smaller reward ob-
tainable after a brief delay and a larger re-
ward obtainable after a longer delay. That is,
although subjects may prefer the smaller to
the larger reward, if an equal amount of time
is then added to each delay, subjects may now
prefer the larger reward (Green, Fisher, Per-
low, & Sherman, 1981; Green, Fristoe, &
Myerson, 1994; Navarick, 1982; Rachlin &
Green, 1972). Second, the hyperbolic model
predicts the slope of an indifference function
(Mazur, 1987) that gives the delay to a larger
reward as a function of the delay to a smaller
reward of equivalent subjective value. Both
exponential and hyperbolic models predict
linear relations between the two delays, but
only the hyperbolic model predicts that the
slope will be greater than 1.0. Studies with
both pigeons and humans have confirmed
this prediction (Green, Fristoe, & Myerson,
1994; Mazur, 1987; Rodriguez & Logue,
1988).

It has been argued that an exponential
model cannot account for either preference
reversals or the slope of indifference func-
tions. However, this argument assumes that a
given delay has the same proportional effect
on the value of both small and larger rewards.
That is, following the discounted utility mod-
el, the parameter k in the exponential func-
tion is assumed to be the same for smaller
and larger rewards, and an exponential mod-
el incorporating this assumption predicts nei-
ther preference reversals nor the slope of in-
difference functions.

Recently, however, the assumption of
amount-independent discounting has been
shown to be false. Studies of choice between
delayed rewards in humans have demonstrat-
ed that larger rewards are discounted less
steeply with increasing delay than are smaller
rewards (Benzion, Rapoport, & Yagil, 1989;
Green, Fry, & Myerson, 1994; Raineri & Rach-
lin, 1993; Thaler, 1981). Moreover, we have
shown that if the discount parameter k is in-
versely related to amount, then both the ex-
ponential and hyperbolic models predict
preference reversals (Green & Myerson,
1993), and both models also predict indiffer-
ence functions with slopes greater than 1.0
(Green, Fristoe, & Myerson, 1994). Thus, pre-
vious arguments against exponential dis-
counting are moot, and the correct form of
the discounting function is still an unresolved
issue.

Rachlin et al. (1991) have shown that a hy-
perbola (Equation 2) provides a better fit to
group data than does an exponential decay
function (Equation 1). However, it should be
recalled that the form of the function de-
scribing aggregate (e.g., group) data is not
necessarily the same as the form of the func-
tion describing unaggregated (e.g., individu-
al) data (Estes, 1956; Sidman, 1952). There-
fore, the Rachlin et al. finding does not
demonstrate that the hyperbolic model pro-
vides a more accurate description of data
from individual subjects than an exponential
model does. In order to compare hyperbolic
and exponential accounts of individual be-
havior, we now reanalyze the data from a pre-
vious study of human choice behavior
(Green, Fry, & Myerson, 1994). In addition
to considering simple one-parameter expo-
nential and hyperbolic models (Equations 1
and 2), we also examine several slightly more

264



TEMPORAL DISCOUNTING BY INDIVIDUALS

complicated versions of these models. Finally,
we provide rational derivations for the mod-
els that best describe the individual data.

METHOD
Subjects
The present study reanalyzes the data from

the 12 college students whose group median
data were reported by Green, Fry, and Myer-
son (1994).

Procedure
Participants were tested individually in a

quiet room. Hypothetical amounts of money
were printed on sets of cards (4 in. by 6 in.).
Two sets of cards were placed on a table in
front of the participant. One set indicated the
delayed, fixed-amount reward (i.e., $1,000 or
$10,000), and the other set indicated the im-
mediate variable amount (i.e., 30 values rang-
ing from 0.1% to 100% of the fixed amount).
Participants were told:

In this experiment, you will be asked to make
a series of hypothetical decisions between
monetary alternatives. As you can see, there
are two sets of cards in front of you. The cards
on your left will offer you an amount of money
to be paid right now. This amount will vary
from card to card. On the cards on your right,
the amount will be either $1,000 or $10,000,
but its payment will be delayed. Please look at
the sample cards at this time. It will be your
job to point to the card you would prefer. You
will be given four practice trials before you be-
gin, and the experimenter will turn the cards
for you.

Participants were shown two cards at a time
and made a series of choices between the
fixed-amount reward that could be obtained
after a delay (shown on the right card) and
an immediately obtainable reward that varied
in amount (shown on the left card). For ex-
ample, the participant had to make a choice
between $10,000 in 5 years or $6,000 now.
The eight delays at which the $1,000 and
$10,000 fixed amounts could be obtained
were 1 week, 1 month, 6 months, 1 year, 3
years, 5 years, 10 years, and 25 years.

Participants were studied first with one of
the two values of the fixed, delayed amount
paired with immediate reward amounts pre-
sented in both ascending and descending or-
der. This procedure was followed with the

same fixed amount at each of the eight delays
before the other fixed amount was presented.
The order of presentation of the fixed (i.e.,
$1,000 or $10,000) rewards and the corre-
sponding titration (i.e., either ascending or
descending) of the immediate rewards were
counterbalanced. However, the fixed-amount
delays were always presented from the short-
est delay (1 week) to the longest delay (25
years).

For each fixed amount at each delay, we
calculated the average of the immediate
amount at which the participant switched
preference from the immediate to the de-
layed reward on the descending titration and
the amount at which the participant switched
preference from the delayed to the immedi-
ate reward on the ascending titration. This
average immediate amount, termed the pres-
ent value of the delayed reward, corresponds
to Vin Equations 1 and 2.

RESULTS
Figure 1 shows temporal discounting func-

tions (i.e., present value as a function of de-
lay) for group data in the $1,000 and $10,000
delayed-reward conditions. Distributions of
the present value of delayed rewards typically
are skewed due to the limits imposed on sub-
jects' choices (i.e., the present value of an
amount of money available after a brief delay
can never be greater than the amount itself,
and the present value of an amount available
after a long delay can never be less than zero;
Rachlin et al., 1991), hence the median is the
appropriate measure of central tendency.
The hyperbola (Equation 2) provides a better
fit to the data than an exponential decay
function (Equation 1). Note that the expo-
nential overestimates the present value of a
delayed reward at briefer delays and under-
estimates the values at longer delays. Al-
though there is a tendency for the hyperbola
to also do this for the $10,000 reward, the
error is clearly much smaller. For the $1,000
delayed reward, the proportions of variance
accounted for by the hyperbolic and expo-
nential models were .992 and .923, respec-
tively. For $10,000, the corresponding pro-
portions of variance accounted for were .938
and .810.
The present value of the $1,000 delayed re-

ward decreased more sharply as a function of
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pendent should be considered provisional be-

:;,0 tnnncause they are based on analyses of group
41Tsp | ,vvvdata. With respect to the issue of the form of

Hyberbola the function (e.g., is the relation exponential
Exponential or hyperbolic?), it is well known that groupfunctions may not reflect the form of individ-

ual functions (e.g., Estes, 1956; Sidman,
1952). In addition, the question of whether
discounting is steeper for the smaller reward
is also best answered based on analyses of in-
dividual data. Even if group functions are
similar in form to individual functions, the
Type I error rate for decisions regarding pa-

| a |-_., .rameter estimates (e.g., does the k for $1,000
0 60 120 180 240 300 differ significantly from the k for $10,000?) is

inflated when those decisions are based on
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aggregate data from repeated measures de-
signs (Lorch & Myers, 1990).

Figures 2 and 3 show the data from each
of the 12 subjects. For ease of comparison,
the present value of the delayed reward is ex-
pressed as a proportion of its nominal value
(i.e., either $1,000 or $10,000). All subjects
showed fairly orderly temporal discounting.
Moreover, most subjects discounted the value
of the smaller reward more steeply, although
the opposite was seen in 2 subjects (S4 and
S12). In addition, there was a tendency for
present value to level off without reaching
zero in some subjects (e.g., S3 and S8).
Both exponential and hyperbolic models

(Equations 1 and 2) were fit to the data from
the individual subjects. Table 1 presents the
values of k and the proportions of variance
explained by exponential and hyperbolic dis-
counting functions for each subject as well as
the median of these k values and the median
proportion of explained variance for the
$1,000 and $10,000 delayed rewards. Because
the distributions of these values are skewed,
the median (rather than the mean) is the ap-
propriate measure of central tendency, and
nonparameteric tests provide the appropriate
basis for statistical inferences. For the $1,000
condition, the median of the R?s for fits to
individual subjects' data was .952 for the hy-
perbola versus .852 for the exponential decay.
When the R2s obtained with Equations 1 and
2 were compared using a Wilcoxon matched-
pairs signed-ranks test, the hyperbolic fits
proved to be significantly better, T = 8, p <
.05. A similar comparison based on the data
from the $10,000 condition again revealed
that the median of the R2s for the hyperbola

Delay (months)
Fig. 1. Temporal discounting functions (i.e., present

value as a function of delay) for the $1,000 (top panel)
and $10,000 (bottom panel) delayed rewards. For each
delay, the data point represents the median amount of
the immediate reward judged to be equal in value to the
delayed reward. The best fitting hyperbola (Equation 2)
and exponential decay (Equation 1) are represented by
solid and broken curves, respectively.

delay than did the present value of the
$10,000 reward. This is reflected in the k pa-

rameters that govern the rates of discounting
predicted by both the hyperbolic and expo-
nential models. For the hyperbola (Equation
2), the estimates of the k parameters were

.044 and .018 for the $1,000 and $10,000 re-

wards, respectively; for the exponential mod-
el (Equation 1), the corresponding estimates
of the k parameter were .025 and .011.
These conclusions regarding the form of

the temporal discounting function and
whether or not its parameters are amount de-
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Fig. 2. Temporal discounting functions for Subjects 1 through 6. For each delay, the data points represent the
amounts of the immediate reward (expressed as a proportion of the delayed reward) judged to be equal in value to
the delayed rewards. Solid symbols represent the present (proportional) value of the $1,000 delayed reward, and
open symbols represent the present (proportional) value of the $10,000 delayed reward. The curves represent the
fit of a theoretical model of temporal discounting (Equation 6).
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Fig. 3. Temporal discounting functions for Subjects 7 through 12. See Figure 2 for details.

was greater than that for the exponential de-
cay, .946 versus .796. Moreover, the hyperbol-
ic fits were again significantly better based on

a Wilcoxon matched-pairs signed-ranks test, T
= 3, p < .01.

Inspection of the aggregated data as well as

data from some individual subjects suggests
that the present value of a delayed reward de-
creases less sharply at long delays than is pre-
dicted by either Equation 1 or Equation 2
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Table 1

Individual values of k and proportions of explained variance (R2) for exponential (Equation
1) and hyperbolic (Equation 2) discounting functions.

$1,000 $10,000

Hyperbola Exponential Hyperbola Exponential

Subject kyp R2 kexp R22 k kxp R2

1 0.065 .978 0.035 .879 0.008 .937 0.005 .926
2 0.025 .973 0.015 .984 0.007 .992 0.005 .968
3 0.015 .706 0.009 .471 0.006 .738 0.003 .570
4 a .OOOb a .OOOb a .OOOb a .oob
5 0.048 .994 0.027 .934 0.022 .922 0.014 .764
6 17.402 .941 6.930 .696 2.480 .947 1.531 .822
7 3.941 .968 2.124 .824 8.580 .968 4.581 .769
8 0.015 .818 0.009 .648 0.010 .055 a .OOOb
9 0.008 .913 0.005 .969 0.009 .981 0.006 .992
10 0.040 .966 0.025 .984 0.037 .994 0.022 .970
11 0.006 .963 0.004 .940 0.004 .945 0.003 .874
12 a .OOOb a .OOOb 0.355 .948 0.157 .884

Median 0.033 .952 0.020 .852 0.010 .946 0.010 .796
a The value of k is omitted because the poor fit made the parameter estimate meaningless (see below).
b R2 of .000 indicates that the function accounted for less of the variance than did the mean.

(for a clear example, see the bottom panel of
Figure 1). A two-parameter exponential mod-
el that may capture this property of the data
is given by Equation 3:

V= (A-s) e-kD+ s. (3)
Rather than decaying to zero as D increases,
value approaches an asymptote of s. (In Equa-
tion 1 the expression e -kD was multiplied by
A, but in Equation 3 the exponential expres-
sion is multiplied by A - s so that, in both
cases, when D is zero, V equals A.) A two-pa-
rameter hyperbola-like model that may also
capture the form of the decrease in present
value has been proposed (Green, Fry, &
Myerson, 1994; Loewenstein & Prelec, 1992):

V= A/(1 + kD)s. (4)

Here, s modifies the form of the hyperbola
so that when s is less than 1.0, it flattens the
curve causing it to level off as D increases.
For the data from the $1,000 condition, the

median of the R2s for fits to individual sub-
jects' data was .979 for Equation 4 and .956
for Equation 3. When the RMs obtained with
Equations 3 and 4 were compared using a
Wilcoxon matched-pairs signed-ranks test,
the fits based on Equation 4 proved to be sig-
nificantly better, T = 11, p < .05. For the data
from the $10,000 condition, the median of
the R2s for Equation 4 was again greater than
that for Equation 3, .976 versus .919. More-

over, the fits based on Equation 4 were again
significantly better according to a Wilcoxon
matched-pairs signed-ranks test, T = 3, p <
.01. Thus, regardless of whether one com-
pares Equations 1 and 2 or Equations 3 and
4, a hyperbola-like model describes the tem-
poral discounting by individual subjects bet-
ter than an exponential model does.'
Up to this point, we have been comparing

models with different forms but of similar
complexity (i.e., Equation 1 vs. Equation 2
and Equation 3 vs. Equation 4). We now com-
pare models of related form that differ in
complexity (e.g., models with an amount-in-
dependent k parameter versus models in
which k varies with amount, and models with-
out an exponent versus models with an ex-
ponent). How can one decide between sim-
pler and more complicated models? Given
that the addition of a free parameter will gen-
erally improve the fit of a model to data, sim-
ple comparisons of the proportion of vari-

1 Strictly speaking, an equation with an exponent such
as Equation 4 is not a hyperbola. Hence, we have used
the term hyperbola-like when referring to Equation 4 and
similar formulations (e.g., Equation 6). In addition, it
may be noted that the term hyperbolic function refers to a
member of a class of trigonometric functions, and thus
Equation 2 is not a hyperbolic function. However, the
term hyperbolic may be used as an adjective in other ex-
pressions (as in hyperbolic model and hyperbolic rela-
tion, and even hyperbolic discounting function) that re-
fer to a hyperbola such as Equation 2.
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ance accounted for (such as those we used to
compare models with the same number of
free parameters) will not suffice. When the
question is whether an additional parameter
is needed in the sense that a particular pa-
rameter takes on different values in different
situations (as in the case in which the ques-
tion is whether a single k can be used for dif-
ferent amounts of delayed reward), parame-
ter estimates can be treatedjust like any other
measure, and standard statistical tests apply
(e.g., Lorch & Myers, 1990). When the ques-
tion is whether an additional parameter is
needed or not (as in the case in which the
question is whether the denominator of the
hyperbolic model must be raised to a power),
one standard approach (e.g., Gallant, 1987)
is to test whether estimates of the value of the
parameter differ significantly from the value
predicted by the null hypothesis (i.e., that the
value of the exponent is 1.0).
We first addressed the question of whether

separate k parameters are necessary for dif-
ferent amounts of delayed reward. That is,
does an equation that has only a single
amount-independent k parameter accurately
describe the data, or is a model with two k
parameters necessary because the smaller
amount is discounted more steeply? Consis-
tent with the latter view, the median of the
individuals' discount parameters for the
smaller ($1,000) amount was .033, compared
with .010 for the larger ($10,000) amount,
but is this difference statistically significant?
For 2 subjects (S4 and S12), the question

of whether there was a difference in the dis-
count parameters for the two delayed reward
amounts is moot because at least one of their
discount parameters could not be reliably es-
timated (i.e., a hyperbola accounted for less
of the variance than the mean). For 8 of the
remaining 10 subjects, the discount parame-
ter for the $1,000 reward was larger than that
for the $10,000 reward (see Table 1), and a
Wilcoxon matched-pairs signed-ranks test re-
vealed that, as predicted, the k parameter was
significandly greater for the smaller amount,
T= 10, p < .05.
Given that an adequate model of the pres-

ent data appears to require separate discount
parameters for $1,000 and $10,000 delayed
rewards, we next addressed the question of
whether it is necessary to raise the denomi-
nator to a power, as in Equation 4. That is, if

an exponent is added to an equation with two
amount-dependent discount parameters, will
the estimate of the exponent differ signifi-
cantly from 1.0?

In order to answer this question, Equation
4 was first reformulated in terms of propor-
tions to facilitate fitting the data for the two
delayed amounts with one equation. Recall
that V, the present value of the delayed re-
ward, is operationally defined as the amount,
A, of an immediate reward judged to be of
equivalent value. Substituting A for Vand di-
viding both sides of Equation 4 by the nom-
inal amount, Ad, of the delayed reward yields

A/Ad = 1/(1 + kD)s. (5)
Because the preceding analysis revealed that
the rate of temporal discounting is amount
dependent, separate k parameters for each
amount were incorporated into Equation 5 as
follows:

A/Ad= 1/[1 + (k' + aAk)D]s, (6)
where k' is the discount parameter for
$10,000 delayed rewards, Ak is the difference
between the discount parameters for $1,000
and $10,000 delayed rewards, and a is a dum-
my or indicator variable whose value is 0 when
the delayed reward is $10,000 and 1 when the
delayed reward is $1,000. Thus, when the
amount of the delayed reward is $10,000 (and
a = 0), Equation 6 is equivalent to

A/Ad= 1/(1 + k'D)s,
and when the delayed reward is $1,000 (and
a = 1), Equation 6 is equivalent to

A/Ad= 1/[1 + (k' + Ak)D]s.
Note that for the $1,000 amount, the dis-
count parameter is equal to the sum of k' and
Ak.
A Wilcoxon matched-pairs signed-ranks

test revealed that the median value of the ex-
ponent s did not differ significantlyfrom 1.0.
Nevertheless, inspection of data from individ-
ual subjects strongly suggested that some in-
dividuals' behavior might be much better de-
scribed by Equation 6 than by a similar model
without an exponent. After all, if the neces-
sary exponent were greater than 1.0 in some
cases but less than 1.0 in others, then the me-
dian value of the exponent need not differ
from 1.0. In order to determine whether an
exponent was needed in individual cases, we
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Table 2
Individual values of k, s, and proportions of explained
variance (R2) for the three-parameter model (Equation
6).

Subject k$1,000 kS10,000 s R2

1 0.126 0.013 0.677* .976
2 0.009 0.003 2.138** .987
3 0.428 0.105 0.197** .985
4 39.963 210.823 0.167** .738
5 0.118 0.053 0.589** .982
6 62.762 5.774 0.614** .980
7 5.617 12.806 0.815 .974
8 0.635 0.393 0.176** .847
9 0.0002 0.0001 46.564 .980
10 0.016 0.014 2.007 .985
11 0.011 0.007 0.680 .960
12 9.857 7.219 0.278** .752

Median 0.277 0.079 0.645 .978
* t(l3) = 2.36, p < .05. ** all ts(13) > 4.76, ps < .01.

subtracted the estimate of the s parameter for
each subject from 1.0 and divided the differ-
ence by the standard error of the estimate of
the exponent for that subject. The resulting
ratio follows the t distribution with (n - p)
degrees of freedom, where n is the number
of data points and p is the number of param-
eters in the model, and thus a simple t test
can be used to determine whether the ex-
ponent for an individual subject differs from
1.0 (Gallant, 1987).
For 8 of the 12 subjects, s was significantly

different from 1.0, and the median of the in-
dividual R2s increased to .978; for 7 of these
8 subjects, s was significantly less than 1.0 (see
Table 2). Although the improvement in the
median RI was small, the addition of the s
parameter allowed the model to fit the data
from 1 subject (S4) whose data were not de-
scribed by simple hyperbolas, and improved
the proportion of explained variance by more
than .20 for 3 other subjects (S3, S8, and
S12). Moreover, the number of subjects for
whom the discount parameter for $1,000 was
greater than that for $10,000 increased from
8 to 10 when their data were described by
Equation 6 rather than Equation 2 (cf. Tables
1 and 2).
Having concluded that a hyperbolic-like

model of individual decisions about delayed
rewards may require a separate discount pa-
rameter for each amount and at least one ex-
ponent, our final question concerned wheth-
er, as was the case with the discount

parameters, amount-specific exponents are
necessary. That is, if two exponent parame-
ters are estimated, one for each delayed re-
ward, will they differ significantly? To address
this question, Equation 6 was modified to

A/Ad = 1/[1 + (k' + aAk)D]s'+As. (7)

Again, a is a dummy variable whose value is
either 0 or 1 depending on whether the
amount of the delayed reward is $10,000 or
$1,000. Thus, when the delayed reward is
$10,000 (and a = 0), Equation 7 simplifies to

A,/Ad = 1/(1 + k' D)s',

whereas when the delayed reward is $1,000
(and a = 1), Equation 7 becomes

Al/Ad = 1/[1 + (k' + Ak)D]s'+s.
Simple t tests based on the ratio of As to its

standard error (Gallant, 1987) were used to
evaluate whether, for individual subjects, es-
timates of As differed significantly from the
null hypothesis (i.e., As = 0). The estimated
value of As differed significantly from zero in
only two of the 12 cases. Moreover, the me-
dian proportion of explained variance in-
creased by less than .001. Thus, amount-spe-
cific exponent parameters added little or
nothing to a description of temporal dis-
counting by individual subjects, and an equa-
tion such as Equation 6 with a discount pa-
rameter for each delayed amount but only a
single exponent appears to be the most ap-
propriate model.

Fits of the three-parameter model (Equa-
tion 6) to the data from each individual sub-
ject are represented by the curves in Figures
2 and 3. For each subject, the values of k and
s and the proportions of variance explained
by the three-parameter model are presented
in Table 2. The three-parameter model also
accurately described the group data for both
delayed rewards fit simultaneously (RF =
.984), as shown in Figure 4. The estimate of
the exponent parameter was 0.583, consistent
with the fact that most subjects had expo-
nents less than 1.0. The discount parameters
of the equation that best described the group
data shown in Figure 4 were 0.111 and 0.045
for the $1,000 and $10,000 rewards, respec-
tively, consistent with amount-dependent dis-
counting.
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served in the behavior of individuals. Com-
Group Medians parisons of models with different numbers of

* $1,000 free parameters highlighted the need for
O $1o0,00 amount-dependent discount parameters and,

in addition, suggested that raising the de-
0\o nominator of a hyperbola-like model to a

power often significantly improves its fit to in-
dividual data. More specifically, the exponent
parameter (s) is typically less than 1.0, and
has the effect of causing the theoretical curve
to decline much more slowly at long delays,
corresponding to the leveling off in present
value observed in many subjects.

Unlike the discount parameter, the expo-
I nent parameter was not amount dependent.

0 60 120 180 240 300 That is, one exponent generally sufficed todescribe discounting of both $1,000 and
Delay (months) $10,000, although its value varied consider-

4. Temporal discounting functions (i.e., ably between individuals. This suggests that
s a function of delay) for the $1,000 (solid sym- the exponent may be viewed as an individual-
nd $10,000 (open symbols) delayed rewards. For difference variable, and may reflect some-
delay, the data points represent the median thing about the sensitivities of different indi-
its of the immediate reward (expressed as a pro- viduals to variations in the magnitudes ofnof the delayed reward) judged to be equal in d a a
o the delayed rewards. The curves represent the delays and amounts. Logue, Rodriguez Pena-
ting function based on a three-parameter model Correal, and Mauro (1984) have made a sim-
ion 6) that includes an amount-dependent dis- ilar suggestion with respect to exponents in
parameter (k) and a single amount-independent the generalized matching law (Baum, 1974).
Ent. A precise quantitative description of behav-

ior is obviously of considerable value even in

DISCUSSION the absence of a theoretical account of why
the description takes a particular form. How-

the group level, orderly temporal dis- ever, the present findings invite consideration
Ling of delayed rewards was observed, of possible mechanisms that may underlie the
the smaller delayed amount was dis- form of the temporal discounting function.
Led more steeply. Hyperbolas provided Although our findings involve choices be-
better fits to the group data than did tween hypothetical monetary rewards, results

xponential decay functions. This same consistent with hyperbola-like discounting
rn was also observed at the individual functions have been obtained at the group
That is, all subjects showed orderly dis- level using real rewards with human and non-
Ling that in most cases was better de- human subjects (Mazur, 1987; Rodriguez &
d by hyperbolas than exponentials (al- Logue, 1988). However, discounting func-
rh in some subjects, the present value of tions of individual subjects have not previous-
ed rewards tended to level off without ly been examined systematically using either
iing zero, a characteristic not captured real or hypothetical rewards. Future research
:her a simple hyperbola or an exponen- is needed to determine the generality of the
nodel). Most subjects discounted the present results. Nevertheless, it does not ap-
0 reward more steeply than the $10,000 pear to be premature to speculate on their
d, resulting in a larger discount param- possible theoretical implications.
'k) for the smaller reward. The standard economic view of temporal
ese findings replicate previous reports discounting, consistent with the discounted
on analyses of aggregate data (e.g., utility model of Samuelson (1937), is that dis-

[in et al., 1991; Raineri & Rachlin, 1993) counting compensates for the risks associated
lemonstrate that the same relations ob- with waiting for a delayed reward. Given the
d at the group level may also be ob- assumption that there is a constant hazard
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rate, an exponential decrease in value over
time follows directly. This derivation is theo-
retical in the normative sense; it assumes that
a decision-making model should prescribe
optimal choice behavior.

In contrast to the theoretical underpin-
nings for the exponential discounting func-
tion favored by economists, psychologists
have favored a hyperbolic discounting func-
tion because of its ability to describe behavior,
but have been less concerned with a possible
underlying mechanism. Rachlin and Green
(1972) and Ainslie (1975) suggested that a
reciprocal relation between value and delay
(i.e., V = AID) could account for preference
reversals, thereby taking the empirical ap-
proach characteristic of most subsequent psy-
chological research on discounting. That is,
one begins by discovering lawful empirical re-
lations; then, one seeks a form of equation
that accurately describes these relations. The
reciprocal relation between value and delay
has an obvious problem, however, in that it is
undefined for immediate rewards. Mazur
(1987) presented a related equation (Equa-
tion 2), a hyperbola (of which the reciprocal
is a special case), that avoids this problem
while preserving the ability to predict pref-
erence reversals. Rachlin and Raineri (1992)
pointed out that the hyperbolic relations and
consequent reversals are commonly found in
nature and therefore suggested that the ap-
plication of the hyperbola to temporal dis-
counting may not require any special expla-
nation.2
Mazur (1987) showed that a hyperbolic re-

lation between value and delay predicts a lin-
ear indifference function, that is, a linear re-
lation between the delay to a larger reward
and the delay to a smaller reward when both
are judged to be equal in value. Loewenstein
and Prelec (1992) reversed this logic and
showed that given a linear indifference func-
tion, the relation between value and delay

2 It is interesting to note that Rachlin takes a position
with regard to temporal discounting similar to that at-
tributed to Isaac Newton with regard to gravitation, in
that both see the precise mathematical description of em-
pirical relations as an end in itself. Feynman (1967)
writes that "Newton was originally asked about his theory
[of gravitation]-'But it doesn't mean anything-it
doesn't tell us anything,' to which Newton replied, 'It
tells you how it moves. That should be enough. I have
told you how it moves, not why' " (p. 37).

must be a hyperbola-like function similar in
form to Equation 6, of which the hyperbola
is a special case. However, neither Mazur nor
Loewenstein and Prelec deal with the ques-
tion of mechanism, that is, they do not spec-
ulate on the nature of the process underlying
changes in value as a function of delay. In
both cases, it is the data that drive the deri-
vation, and no rationalization of the funda-
mental equations or their parameters is of-
fered. Although such restraint during the
initial exploration of phenomena is appro-
priate and even laudable, at some point phe-
nomena become sufficiendly well established
that some speculation as to underlying mech-
anisms may be in order. We believe that the
study of choice between delayed rewards may
have reached such a point and present two
possible explanations for the hyperbolic-like
form of the temporal discounting function.
One mechanism is suggested by the notion

that subjects respond as if they will have re-
peated choice opportunities with some time
interval between receipt of a reward and the
next choice opportunity (Rachlin, Logue,
Gibbon, & Frankel, 1986). Assume further
that value is proportional to rate (Rachlin,
1971). That is, let the value, V, of a reward be
directdy proportional to the ratio of the
amount, A, to the interreward interval. Let m
represent the amount of time that elapses be-
tween receipt of a reward and the next choice
opportunity, so that the total interreward in-
terval equals m + D. These assumptions may
be formalized in the equation

V = b[A/ (m + D)], (8)
where b is the proportionality constant that
converts rate into units of value. When sub-
jects choose the amount of an immediate re-
ward (A.) whose value (Vi) is equal to the val-
ue (Vd) of a delayed amount (Ad), that is,
when V1 = Vd, it follows that

bA/rm = bAd/(m + D). (9)
Multiplying both sides of the preceding equa-
tion by (m/b) yields

A = rnAd/(m + D),
and dividing both the numerator and denom-
inator by m yields

A = Ad/(I + D/rm).
Substituting k for (1/rm) results in the familiar
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hyperbolic relation (Equation 2) between the
present value, V, of a delayed reward (mea-
sured as the amount, A, of an immediate re-
ward judged to be of equivalent value) and
the nominal delay until its receipt. Thus, a
possible theoretical explanation for the dis-
count parameter k is that it represents the re-
ciprocal of the delay from receipt of a reward
until the next choice opportunity.

This derivation can be generalized to ex-
plain the s parameter. Assume that amount
and time are nonlinearly scaled (Stevens,
1957), such that

V= cAr/a(m + D)q, (10)

where the constants c and rgovern the scaling
of amount and the constants a and q govern
the scaling of time. Thus, when subjects
choose the amount of an immediate reward
(A.) whose value is equal to the value of a
delayed amount (Ad),

cA1r/a(m) q = cAdr/a(m + D)q. (11)

Multiplying both sides of the equation by
[a(m)q/ cAdr] and simplifying yields

Ar/Adr = [m/(m + D)]q.
Taking the ith root of both sides, dividing
both the numerator and denominator of the
fraction on the right side of the equation by
m, and multiplying both sides by Ad yields

A = Ad/ (I + D/m) /r.

This is equivalent to Equation 6 with k = 1/
m and s = q/r, and provides a theoretical ex-
planation for the single amount-independent
exponent. That is, s reflects individual differ-
ences in scaling amount and time. Thus, if
the preceding derivation is correct, the ex-
ponent s might be expected to remain con-
stant when the same individual confronts dif-
ferent choice situations.

Alternatively, instead of following psychol-
ogists and basing an interpretation of tem-
poral discounting on rate of reward, as in the
preceding repeated choice model, one can
follow the lead of economists and assume that
the discounting of delayed rewards reflects
the risk involved in waiting for their receipt,
which leads to the following expected value
model. In order to derive a hyperbolic rela-
tion for the present value of a delayed re-
ward, one simply assumes that as time passes,
the number of possible alternative outcomes

increases at a constant rate, k. Thus, the prob-
ability that one will receive an immediate re-
ward equals 1.0, whereas the probability that
one will receive a delayed reward is given by
p = 1/ (1 + kD). The assumption that the like-
lihood of an alternative outcome increases
with time seems to have no less face validity
than the economists' assumption that the
likelihood of an alternative outcome is con-
stant.

If the amount of an immediate reward that
is judged to be equal in value to a delayed
reward depends on the expected value of the
latter (EV= pA, where p is the probability of
receiving amount A), then

A- = [1/(1 + kD)]Ad, (12)

which is equivalent to Equation 2. Nonlinear
scaling of amount and probability may be in-
corporated easily into this model. When sub-
jects judge an immediate, and therefore cer-
tain, reward to be equal in value to a delayed
reward,

[1.0]u*cAjT = [1/(1 + kD)]ucAdr. (13)
(It may be noted that whereas amount is
scaled by raising it to a power, r, and then
multiplying by a constant, c, probability is sim-
ply raised to a power, u; otherwise, the scaled
probability of a certain outcome would not
equal 1.0.) Simplifying, one may obtain

Air = [1/(1 + kD))]uAdr,
and taking the rth root of both sides yields

A1 = Ad/(l + kD) u/r

This is equivalent to Equation 6 with s = u/
r, providing an alternative theoretical expla-
nation for the single amount-independent ex-
ponent. In this case, s reflects individual dif-
ferences in scaling amount and probability,
and again would be expected to remain con-
stant across choice situations.
The contribution of these derivations may

be that they provide a theoretical interpreta-
tion for each parameter. Such interpretations
are testable. For example, consider a third
derivation of Equation 2, one based on the
assumption that no reward is immediate.
That is, if there is some minimum time that
elapses between the act of choosing an im-
mediate reward and the consumption of that
reward, then incorporating this minimum
time leads to a derivation of Equation 2 iso-
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morphic to that offered for the repeated
choice model but with m now representing
the minimum time from choice to consump-
tion rather than the time from reward to the
next choice opportunity. The obtained esti-
mates for m = 1/k obtained by fitting Equa-
tion 2 seem to be too large to represent rea-
sonable magnitudes for a minimum time to
consumption of an "immediate" reward. For
example, the estimate of m based on the me-
dians of the individual ks for the hyperbolas
fit to the data for the $1,000 reward (k =
0.033; see Table 1) was approximately 30
months (m = 1/0.033). On the other hand,
this estimate seems to be more reasonable for
the interval between choice opportunities
that is assumed by the repeated choice mod-
el. Thus, comparing estimated values for pa-
rameters with the values one might expect
based on different interpretations provides
one way of evaluating such interpretations.

It may be possible to distinguish between
the repeated choice model and expected val-
ue model based on independent estimates of
the scaling of amount, time, and probability.
Based on the present finding that the expo-
nent (s) in Equation 6 was generally less than
1.0, the repeated choice model predicts that
if power functions are used to describe psy-
chophysical scaling (Stevens, 1957), then the
exponent in the power function describing
the scaling of amount will be greater than the
exponent for time in most subjects, and the
expected value model predicts that the ex-
ponent for amount will be greater than that
for probability. Moreover, individual differ-
ences in s should be predictable from individ-
ual differences in the scaling of amount and
either time or probability. These predictions
are obviously testable.

In summary, the present findings suggest
that temporal discounting by individual sub-
jects may be well described by hyperbola-like
functions with amount-dependent discount
parameters and amount-independent expo-
nents, and two possible derivations of the
temporal discounting function are proposed.
The interpretations of the discount parame-
ter associated with these models suggest that
our subjects' behavior was controlled by certain
specific characteristics of choice situations
outside the laboratory. That is, the repeated
choice model suggests that opportunities to
make choices involving large amounts are rar-

er than opportunities involving small
amounts, whereas the expected value model
suggests that for equal delays, choosing large
amounts involves less risk than choosing
small amounts. In addition, the exponent
may be interpreted as reflecting an indivi-
dual's characteristic scaling of amount and
time or probability.

It may not always be necessary to incorpo-
rate an exponent in quantitative descriptions
of temporal discounting. Simple hyperbolas
account for more than 90% of the variance
in aggregate data from adult humans (e.g.,
Rachlin et al., 1991; Raineri & Rachlin, 1993;
the present data). However, including an ex-
ponent in the discounting function may sig-
nificantly improve its fit to individual data. In
addition, an exponent may prove to be useful
in describing aggregate data from other pop-
ulations. For example, our attention was orig-
inally called to the need for an exponent
when analyzing data from children. As a
group, the children had a smaller exponent
and larger discount parameters than the
young adults did, suggesting developmental
changes in both the exponent and discount
parameters (Green, Fry, & Myerson, 1994).
Although to date the children's data have
been analyzed only in aggregate form, anal-
ysis of individual data provides a further op-
portunity to test the notion that for a given
individual at a specific age, the value of the
exponent is consistent across choice situa-
tions.
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