
Scientific Programming 16 (2008) 31–47 31

DOI 10.3233/SPR-2008-0243

IOS Press

Discover gene specific local co-regulations

from time-course gene expression data

Ji Zhang a,∗, Qigang Gao a and Hai Wang b

a Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
b Sobey School of Business, Saint Mary’s University, Halifax, NS, Canada

Abstract. Discovering gene co-regulatory relationships is one of most important research in DNA microarray data analysis. The

problem of gene specific co-regulation discovery is to, for a particular gene of interest (called target gene), identify the condition

subsets where strong gene co-regulations of the target gene are observed and its co-regulated genes in these condition subsets.

The co-regulations are local in the sense that they occur in some subsets of full experimental conditions. The study on this

problem can contribute to better understanding and characterizing the target gene during the biological activity involved. In this

paper, we propose an innovative method for finding gene specific co-regulations using genetic algorithm (GA). A sliding window

is used to delimit the allowed length of conditions in which gene co-regulations occur and an ad hoc GA, called the progressive

GA, is performed in each window position to find those condition subsets having high fitness. It is called progressive because the

initial population for the GA in a window position inherits the top-ranked individuals obtained in its preceding window position,

enabling the GA to achieve a better accuracy than the non-progressive algorithm. kNN Lookup Table is utilized to substantially

speed up fitness evaluation in the GA. Experimental results with a real-life gene expression data demonstrate the efficiency and

effectiveness of our technique in discovering gene specific co-regulations.

1. Introduction

DNA microarray technology provides faster, more

efficient and accurate way for measuring the rela-

tive representation of each mRNA species in the total

mRNA population. A microarray experiment involves

measuring the relative representation of a large number

of mRNA species simultaneously, typically thousands

or even tens of thousands, in a set of related biological

conditions (e.g., time points taken during a biological

process). The experimental results for each condition

is compared to a common reference condition and the

result for each gene is the ratio of the relative abun-

dance of the gene in the experimental condition com-

pared to the reference. Typically, the microarray exper-

iment results are represented in a two-dimensional ta-

ble or matrix, with each row representing a gene and

each column representing an experimental time condi-

tion. The entry of the table is the log-transformed ex-

pression ratio of the gene under the given time condi-

tion. The expression ratio measures the relative expres-

sion level of gene in the experimental condition. Pos-

*Corresponding author: Ji Zhang, Faculty of Computer Science,

Dalhousie University, Halifax, NS, Canada. E-mail: jiz@cs.dal.ca.

itive values indicate higher expression level compared

to the reference and vice versa.

DNA microarray provides us with a global view of

gene expression and has been used in a number of dif-

ferent ways. One interesting research direction is to

study co-regulatory relationships among genes under

different temporal conditions. These temporal condi-

tions are the experimental time points along the course

of some biological activity when the expression of

genes are extracted. It has been known that a gene

may be regulated by multiple regulators along the full

timeline and the phenomenon of partial (or local) co-

expression between genes has been identified, meaning

that gene profiles may simultaneously change in a sub-

range of the time course rather than the overall time

course [24]. An interesting problem is to find condi-

tion subsets for observing strong co-regulations for the

target genes and the regulators of target gene in these

condition subsets. This is called Single Gene Approach

for gene microarray analysis [18]. The discovered co-

regulated genes and the associated condition subsets

are gene specific. The answer to this question is very

helpful for human users to better understand and char-

acterize the target gene by means of its co-regulations

with other genes in the discovered sets of experimental

1058-9244/08/$17.00 2008 – IOS Press and the authors. All rights reserved

32 J. Zhang et al. / Gene specific local co-regulations

conditions during the biological activity involved. As

early DNA microarray experiments have shown that

genes of similar function yield similar expression pat-

terns [16], gene-specific co-regulations are therefore

able to assist in function prediction of unknown genes

through in-depth study on its correlated genes whose

function has been known. In this paper, we are inter-

ested in studying the local co-regulations of the tar-

get gene that occur in a few neighboring, but not nec-

essarily consecutive, conditions. Those co-regulations

among conditions located far apart from each other in

the timeline are disregarded. The biological rationale

behind this is that genes are more likely to display

biologically meaningful co-regulations at neighboring

conditions. These co-regulations may experience time-

lag [12], but such lagged co-regulation still often occur

within a relatively short time period compared to the

entire timeline involved.

Even though the problem of gene co-regulation dis-

covery has been studied intensively in recent years,

there is rare research work on gene specific co-

regulation discovery. The most naive way is to evalu-

ate co-regulation between target gene g and each other

gene in the dataset in each possible condition subset.

Another way to approach this problem is to use cluster-

ing analysis to find gene clusters in each condition sub-

set and evaluate the members of the clusters to which g
belongs in order to find its closely co-regulated genes.

Unfortunately, the complexities of these two methods

are at least O(NM2), where N and M correspond to

the number of genes and number of conditions in the

dataset, respectively. Given the fact that M is usually

large for gene expression data, therefore these meth-

ods are prohibitively expensive. Note that genetic al-

gorithm can be applied to these two native methods to

improve their efficiency. However, in pair-wise evalua-

tion method, N runs of genetic algorithm is required to

evaluate co-regulation between g and each other gene.

This will still be rather slow if there are large number

of genes in the dataset. While for the clustering-based

methods, the fitness function tailored to clustering pur-

pose will guide the search process towards the condi-

tion subsets where the overall quality of gene clusters

is better. Quite likely, this may lead to the loss of those

condition subsets in which the overall cluster quality is

inferior but the target gene is in fact significantly co-

regulated with others.

In this paper, we propose an approach for mining

local gene-specific co-regulation using genetic algo-

rithm. The basic idea of our approach is to first find

the condition subsets in which the target gene g is

most significantly co-regulated with others and the co-

regulated genes of g are then selected from its near-

est neighbors in these condition subsets. Specifically,

a sliding window is used to scan all the experimen-

tal conditions sequentially and the search of condi-

tion subsets is performed within each window posi-

tion. A progressive genetic algorithm is presented, in

which the top-ranked condition subsets obtained in one

window position will be used to find good subsets in

the subsequent window position. kNN Lookup Table

is used to remarkably boost the efficiency of the ge-

netic algorithm by speeding up the fitness evaluation.

Experimental results demonstrate the efficiency and ef-

fectiveness of the technique we propose.

Roadmap. The remainder of this paper is organized

as follows. Section 2 reviews some of the related work.

Section 3 presents a formal formulation of local gene-

specific co-regulation discovery problem. Our tech-

nique for discovering local gene co-regulation using

genetic algorithm is discussed in details in Section 4.

In Section 5, we elaborate on the technique for speed-

ing up the genetic algorithm. Experimental results are

presented in Section 6 and the last section concludes

the whole paper.

2. Related work

Unsupervised learning, i.e. clustering analysis, is

currently the most commonly used technique for gene

co-regulation study from microarray data. It is able

to identify genes that are co-regulated in a similar

manner, forming groups or clusters, under a set of

specific experimental conditions. The research efforts

have mainly been taken in two aspects in clustering

analysis of time-course gene expression data, i.e. the

clustering algorithms and similarity measures used in

the clustering analysis.

The commonly used clustering algorithms in dis-

covering gene co-regulations include hierarchical clus-

tering method [13], k-means algorithm [13], self-

organization maps (SOMs) [14] and SVD-based clus-

tering algorithm [10] that have come to existence in the

domain of machine learning and data mining for a long

time. Even though they are capable of grouping simi-

lar microarray data into clusters, most of them perform

clustering based on the entire set of conditions (i.e. full

dimensionality). This causes them to miss out those in-

teresting co-regulations embedded in the lower dimen-

sional condition subsets. This renders them incapable

to cope with local co-regulation discovery problem.

J. Zhang et al. / Gene specific local co-regulations 33

To find the gene co-regulations in some subsets of

conditions, a few subspace clustering methods for gene

expression data, such as coupled two-way clustering

[9], bi-cluster [5] and δ-cluster [21], are proposed.

They try to find sub-matrices/blocks defined by a sub-

set of genes on a subset of conditions that satisfy some

user-defined clustering criterion. Since gene expres-

sion dataset is high-dimensional by nature, thus find-

ing all these coherent blocks is a NP problem due to

the curse of dimensionality. Therefore, these methods

are mostly very slow. Moreover, the condition sub-

sets where clusters are observed are not neighboring;

most of them are actually far apart from each other.

This is inappropriate when deal with time-course mi-

croarray data. The temporal conditions where mean-

ingful co-regulations can be observed should be rela-

tively close in the time frame. To handle local gene co-

regulations, Ji et al. [12] recently proposed a method

for identifying local time-lagged gene clusters. In this

method, each gene will be clustered into a few so-

called q-clusters whose members share the same lo-

cal change pattern for q consecutive conditions. Al-

though this method does not suffer the problem of full

dimensionality, it can only identify co-regulations oc-

curring in a few consecutive conditions. The conditions

in which the gene exhibit co-regulation may not con-

secutive in the sense that one or a few conditions may

be skipped in practice. In addition, the local patterns

are rigidly restricted to have a fixed length q so this

method cannot find those patterns with smaller variable

lengths.

As for as the similarity measures are concerned, the

Euclidean-based distance metrics and Pearson’s cor-

relation coefficient are among the widely used ones.

Recently, there are a number of research work fo-

cusing on improving the effectiveness of similarity

measures in handling time series of gene expression

data. These work take into account of some limita-

tions in the Euclidean-based distance metrics and Pear-

son’s correlation coefficient. Feng et al. proposed a

time-frequency approach for clustering gene expres-

sion time series [7]. This method considers time se-

ries data as mathematical functions within a larger sys-

tem and identifies the relationship in these functions

by means of time-frequency analysis. Ramoni et al.

consider the time-series being generated by some sto-

chastic processes and these data can thus be grouped

into clusters that corresponding to their generating

processes [17]. In this work, each gene expression data

is represented as a so-called autoregressive equation

and clusters are generated in a way such that the pos-

terior probability of the resulting clusters can be max-

imized. In [6], Erdal et al. convert each microarray

time-series data into a binary string. This allows for

the modeling of positive and negative co-regulations.

The authors then use longest common subsequence

(LCS) to measure the similarity between genes expres-

sion data in the clustering. Similarly, Kwon et al. mark

the changes of gene expression as an event (rising (R),

constant (C) or falling (F)) by calculating the slope of

the expression value at each time interval, resulting in

a string of events [15]. A global sequence alignment

algorithm, the Needleman–Wunsch algorithm, is then

employed to match the corresponding events of two

genes, based on which a numerical score is generated

as an indicator of the likelihood of a regulatory rela-

tionship existing between those two genes. Yeung et al.

employ dominant spectral component to measure the

similarity between microarray time-series data [22].

Amato et al. focus on the pre-processing of microarray

data for noise removal and feature selection and they

use Negentropy as the similarity metric for clustering

purpose [1]. Because obvious heuristics are not avail-

able, the co-regulation discovery process using these

metric will be rather slow in exploring the subsets of

experimental conditions across the whole timeline.

Filkov et al. address a few fundamental problems in

analysis of microarray time-series data including regu-

lation prediction, edge detection, periodicity and phase

analysis, correlation comparison of distinct length se-

quences and correlation significance of small alphabet

sequences [8]. However, gene-specific co-regulation

discovery problem is untouched in this paper. Inter-

ested readers can refer to [4] for a survey of important

issues in analysis microarray time-series data.

It is worthy noting that, the most salient drawback

of clustering-based analysis methods, regardless of the

algorithms and similarity measures they use, lies in

that they cannot provide direct and efficient support

to the gene specific co-regulation discovery problem.

As discussed in the Introduction section, it will be

computationally prohibitive to extract single gene co-

regulations directly from the gene clusters. Using clus-

tering in the search method such as genetic algorithm

will divert the search direction towards the subsets of

conditions that optimized the overall clustering qual-

ity instead of those where strong co-regulations of the

target gene can be found. Furthermore, the clustering

methods are less appropriate when only a few genes are

likely to co-regulated [18] as these co-regulated genes

may not form a strong cluster. Our approach adopts a

more direct manner to deal with this problem. It first

34 J. Zhang et al. / Gene specific local co-regulations

finds the condition subsets in which the target gene is

most significantly co-regulated with others, and then

find the co-regulated genes of the target gene from

these condition subsets.

3. Problem formulation

To define local gene co-regulations, we need to de-

limit the allowable length of a condition subset. To this

end, a sliding window with a fixed size, ω, will be used.

The size of this window is specified by human users

a priori. This may require some biological knowledge

to decide the maximum possible number of conditions

under which meaningful co-regulations of the target

genes are to be studied. A large window allows for a

study on gene co-regulations within a wider span of

conditions and vice versa. To examine all the possi-

ble condition subsets, this window will be slided from

the leftmost to the rightmost position, with one condi-

tion offset each time. Therefore, for a gene expression

dataset with M dimensions, there will be M − ω + 1

different positions for a sliding window with a size

of ω. In the extreme case when M = ω, there will

be only one position for the window as it now covers

the full dimensionality. Hence, the problem studied in

this paper is general in the sense that it is applicable

to co-regulation discovery in both partial and full di-

mensionality, depending on the specification of win-

dow size ω.

Having discussed the sliding window, we can now

formulate the problem to be studied in this paper math-

ematically. Some of the frequently used symbols in this

paper, together their annotations, are presented in Ta-

ble 1. let D = N×M be the table with N genes and M
conditions, representing the given microarray data, and

C = {d1, d2, . . . , dM } be the full set of experimental

Table 1

Notations

Symbols Meaning

N Number of genes in the expression dataset

M Number of conditions in the expression dataset

ω Size of the sliding window

n Top-n subsets of conditions having highest fitness

k The number of closest neighbors considered

Ns Number of genes in the sampling dataset

P Number of individuals in each population of GA

Ng Number of generations in GA

pc Probability of applying crossover

pm Probability of applying mutation

conditions. Given a target gene g, the set of top n con-

dition subsets, denoted as S, in which target gene g is

most significantly co-regulated with some other genes

are defined as follows:

S = {s1, s2, . . . , sn},

where each element si (1 � i � n) of S is subject to

the following constraints:

1. si ⊆ C and |si| � ω;

2. For any other condition subset s /∈ S, s ⊆ C and

|s| � ω, we have f (g, si) � f (g, s),

where |s| denotes the number of conditions in subset s.

f (g, s) is the function computing the normalized dis-

tance between g and its kth nearest neighbors in con-

dition subset s, i.e.

f (g, s) =
dist(g, gi, s)

√

|s|
,

gi is kth NN(g, s, D), (1)

where kth (g, s, D) is the kth nearest neighbors of g
from dataset D in s, where k is a human-specified pa-

rameter, and dist(g, gi, s) is the metric used to com-

pute Euclidean distance between g and gi in s. Suppose

x = {x1, x2, . . . , x|s|} and y = {y1, y2, . . . , y|s|} are

the projections of two genes x and y in s. The distance

between x and y in s is formulated as follows:

dist(x, y, s) =

√
√
√
√

|s|
∑

i=1

(xi − yi)
2, (2)

√

|s| used in Eq. (1) serves as a normalization factor.

It helps render f (g, s) to have comparable magnitude

across different condition subsets s. The set of top co-

regulated genes for the target gene g in a condition sub-

set si ∈ S (1 � i � n) are simply the kNNs of g
in si.

Finally, by putting together S and the co-regulated

genes of g in each member of S, we can obtain the

answer set A to gene specific co-regulation problem as

follows:

A = {〈si, gj〉 | si ∈ S and

gj ∈ kNN Set(g, si, D)}. (3)

The answer to the problem is basically a set of

pairs whose first element represents condition subset si

J. Zhang et al. / Gene specific local co-regulations 35

and the second element represents a top co-regulated

gene gi of g in si.

4. Genetic algorithm for discovering gene

co-regulations

The evolutionary algorithm [11], such as genetic al-

gorithm, is inspired by the Darwinian theory of evo-

lution that a competition among the various species

lead to survivals of the only fittest after a natural se-

lection process. The fitter individuals tend to mate

each other more often, resulting in better individu-

als [3]. The basic elements of genetic algorithm con-

sist of individual representation, fitness function, se-

lection operators and search operators. The individu-

als represent the candidate solutions of the problem.

There are various representation of individuals in dif-

ferent problems such as bit vector, LISP program, tree-

like structure, etc. The fitness or goodness of an indi-

vidual is evaluated by means of the fitness function.

The fitness value of an individual is similar to the

objective function value. A higher fitness value indi-

cates a fitter individual and vice versa. The commonly

used fitness function include classification/clustering

accuracy, cost of learning algorithm and complexity

of individuals. Selection operators are responsible for

selecting good individuals in the current population

for generating offerings in the subsequent generation.

Fitness-proportionate selection, rank-based selection

and tournament-based selection are among the most

common selection methods. The search operators are

then applied on these selected individuals to produce

their offerings. Mutation and crossover are two basic

search operators in GA applications.

Often, typically general-purpose black-box GA soft-

ware on straightforward string encodings does not

work very well [2]. Therefore, an ad hoc genetic al-

gorithm needs to be designed to well suit the specific

problem under study basing on a good understanding

of the problem. This involves choosing appropriate in-

dividual representation, fitness function, selection op-

erators and search operators. In the sequel, we will

elaborate on the designing details of the genetic algo-

rithm for gene specific co-regulation discovery.

4.1. Individual representation

To prevent a terminological ambiguity arisen from

the “gene” in the microarray dataset and the “gene” of

individual used in GA domain, we will call the “ene”

of individual used in GA domain as “bit” instead for

the rest of this paper. Our GA technique uses standard

binary individual encoding; all individuals are repre-

sented by strings with fixed and equal length ω, where

ω is the window size. Using binary alphabet Σ = {0, 1}

for gene alleles, each bit in the individual will take on

the value of “0” and “1”, indicating whether or not its

corresponding condition is selected, respectively (“0”

indicates the corresponding condition is absent and

vice versa for “1”). For a simple example, the indi-

vidual “100101” when ω = 6 means that the 1st, 4th

and 6th conditions in the current window are selected,

which is a 3-dimensional subset.

Please note that the locus of a bit in an individual

represents only its relative position with respect to the

window it belongs to. The final answer to our prob-

lem may entail a mapping from genotype to phenotype

that involves converting a bit’s relative locus within an

individual into the full dimensionality. This needs the

index of the window to which the individual belongs.

More precisely, let Index(W) be the index of a win-

dow W , L(b, W) be the relative offset of bit b in win-

dow W and L(b) be the absolute locus of b w.r.t. full

dimensionality, then we have the following mapping:

L(b) = Index(W) + L(b, W) − 1, (4)

where 1 � Index(W) � M−ω+1 and 1 � L(b, W) �

ω, M is the number of conditions in the dataset. For

instance, if an individual in the 2nd window position

is “100110” (the window size ω is 6), then by apply-

ing the above bit-wise mapping, this individual can be

converted to a condition set {2, 5, 6}, meaning that the

above individual represents a 3-dimensional condition

set containing the 2nd, 5th and 6th conditions in the

whole set of experimental conditions of the microarray

data.

4.2. Fitness function

The fitness function in our GA-based technique, de-

noted by ffit(g, s), is defined based on f (g, s) that is

given in Eq. (1). Its definition is presented as follows:

ffit(g, s) = f (g, s)−1
=

{
dist(g, gi, s)

√

|s|

}−1

,

gi is kth NN(g, s, D). (5)

The purpose to make fitness function ffit(g, s) to be

the inverse of f (g, s) is to achieve a consistence be-

36 J. Zhang et al. / Gene specific local co-regulations

tween fitness function value and fitness of condition

subsets; that is, a high fitness function value corre-

sponds to a fitter solution and vice versa. Give the tar-

get gene g, our problem can be formulated as a maxi-

mization problem that aims to search for those condi-

tion subsets s that are able to maximize ffit(g, s).

4.3. Selection

In our work, fitness-proportionate selection, also

known as roulette-wheel selection, is used to select

fitter solutions in each step of the evolution. Fitness-

proportionate selection is a stochastic selection method

where the selection probability of a condition subset,

w.r.t. the target gene g, is proportional to the value of

its fitness function ffit(s, g), i.e.,

Pr(s) =
ffit(s, g)

∑P
i=1 ffit(si, g)

, (6)

where P is the population size. Since ffit(g, s) > 0,

then each individual stands a chance of being selected

for the next generation.

4.4. Crossover and mutation

Crossover and mutation are two most commonly

used search operators in genetic algorithm. Follow-

ing Holland’s canonical GA specification [11], the

crossover and mutation used in this paper is single-

point crossover and bit-wise mutation. In single-point

crossover, a crossover locus on two parent individu-

als is selected and all the bits beyond that locus in

the strings are swapped between the two parents, pro-

ducing two new children. The bit-wise mutation in-

volves flipping each bit randomly and leads to generat-

ing a new children. In our work, all the new individuals

generated by crossover and mutation are of the same

length, i.e. ω, as their parent(s). There are two asso-

ciated probabilities, pc and pm, used to determine the

frequencies for applying crossover and mutation, re-

spectively. Please note that the application of crossover

and mutation is not mutually exclusive in the sense that

each selected pair of parents will go through tests of

crossover and mutation to decide which search opera-

tor(s) is/are to be applied on them. Normally, we have

pc ≫ pm, meaning that crossover is performed in a

much higher frequency than mutation.

4.5. Progressive genetic algorithm

The naive GA-based approach to deal with our prob-

lem involves multiple steps, with a sliding window po-

sition being examined in each step. Genetic algorithm

is applied for each sliding window position indepen-

dently in order to identify top condition subsets in the

window. The initial population for each window posi-

tion is generated randomly. The top n condition subsets

within the window will be maintained as the candidate

individuals. Therefore, the total number of condition

subsets obtained after a window scan on all conditions

will be n∗ (M −ω+1), given that there are M −ω+1

different window positions. The top n condition sub-

sets are selected from these n ∗ (M − ω + 1) individ-

ual candidates, together with the closely co-regulated

genes in respective condition subsets relative to the tar-

get gene.

Considering the fact that the windows locating at

two consecutive positions are highly overlapped with

each other and the results of a window position are

very useful for the subsequent one, thus a more ef-

fective method is to adapt a progressive fashion in

the search process. In contrast to the naive GA-based

method, the progressive method includes into the ini-

tial population for each window position, except the

first one, the modified individuals produced in its pre-

vious window. The initial population comes from two

sources, the modified individuals from previous win-

dow and some other individuals generated randomly

with a bias. Please note that the entire initial popula-

tion for the window in the first position is generated

randomly without any bias. Next, we will elaborate on

individual modification and biased random population

generation. The detailed description of the progressive

genetic algorithm is presented at the end of this sub-

section.

• Individual modification

Let us suppose that a top-ranked condition subset s
is obtained in the window at the ith position, denoted as

Wi. Two cases will be considered here in which differ-

ent modification schemes will be applied accordingly:

• Case 1: The first bit of s is “1”, meaning that s
contains the first condition in window Wi. An ex-

ample of such a subset s can be “101101”;

• Case 2: The first bit of s is “0”, suggesting that s
does not contain the first condition in window Wi.

An example of such a subset s can be “001101”.

J. Zhang et al. / Gene specific local co-regulations 37

Two modification operations, deletion and insertion,

will be performed on s to generate new individuals for

the next window as follows:

1. The first bit of s will be deleted;

2. If the first bit of s is “1”, then two new individ-

uals will be generated by inserting “0” and “1”

respectively into the tail position of the string ob-

tained in the first substep. If the first bit of s is

“0”, then only one new individual will be gener-

ated by inserting “1” into the tail position.

For instance, if a top-ranked condition subset in Wi

is “100010”, then by deleting the first bit and inserting

“0” and “1” respectively at the end, we end up obtain-

ing two new individuals, i.e. “000100” and “000101”,

for Wi+1. Whereas if the top-ranked condition subset

in Window i is “000010”, then only one new individ-

ual will be generated from it by deleting the first bit

and inserting “1” at the end for Wi+1, which generates

“000101”.

Now, let we denote by regular expressions Ω{ω −
1}0 and Ω{ω − 1}1 the strings with the format of

Ω . . . Ω
︸ ︷︷ ︸

ω−1

0 and Ω . . . Ω
︸ ︷︷ ︸

ω−1

1, respectively. Ω is a “don’t

care” symbol that can be instantiated by either “0”

or “1”. Based on the modification scheme, we can

see that the number of modified individuals matching

Ω{ω − 1}1 is no less than the number of those match-

ing Ω{ω − 1}0.

The motivation for modifying the top-ranked indi-

viduals in a window is that they preserve the segment

of strings that are potentially contained in the good in-

dividuals in next window due to the high degree of

overlap between two consecutive window positions.

Thus, these modified individuals, if properly modified,

can provide useful guidance to the search process for

the next window. Noted that the reason why we do not

add “0” to those individuals in Case 2 is because the

new modified individuals, with “0” being added at end,

has been evaluated in the current window and therefore

should be excluded from the initial population of its

subsequent window.

• Random population generation with bias

For a window position, besides modifying the top-

ranked individuals obtained from the preceding win-

dow, we will generate a set of individuals randomly to

create its initial population. To achieve the necessary

diversity of the initial population, it is desired to have

approximately equal probability for the presence of

each condition in every individual of the initial popula-

tion for each window. Unfortunately, random popula-

tion generation without any bias is not able to meet this

need due to inclusion of modified individuals from the

preceding window. As discussed earlier, among those

individuals coming from the preceding window, there

is usually a higher number of modified individuals

matching Ω{ω − 1}1 than those matching Ω{ω − 1}0.

Therefore, it is necessary to have a mechanism to off-

set this unbalance by means of introducing some bias

in the initial population generation for each window.

Probabilistically speaking, such bias will help generate

more individuals with the format of Ω{ω − 1}0 than

those with the format of Ω{ω − 1}1. To this end, we

first generate random binary strings with a length of

ω − 1 and then add “0” and “1” to the end of these

strings with a probability of p0 and p1, respectively,

p0 � p1. p0 and p1 are defined in three cases as fol-

lows:

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p0 =
0.5P − n0

P − n0 − n1
,

p1 =
0.5P − n1

P − n0 − n1
,

if n0 � n1 < 0.5P ,

p0 = 1, p1 = 0, if n0 < 0.5P � n1,

p0 = 0, p1 = 0, if n0 + n1 = P ,

(7)

where n0 and n1 denote the number of modified indi-

viduals from the preceding window matching Ω{ω −
1}0 and Ω{ω−1}1, respectively. n0 and n1 are subject

to n0 � n1 and n0 + n1 � P .

1. When n0 � n1 < 0.5P , the expected number

of individuals matching Ω{ω − 1}0 and Ω{ω −
1}1 introduced by random population generation

should be 0.5P −n0 and 0.5P −n1, respectively.

The total number of individuals to be generated

randomly is P − n0 − n1. Therefore, we have

p0 =
0.5P−n0
P−n0−n1

and p1 =
0.5P−n1
P−n0−n1

.

2. When n0 < 0.5P � n1, the modified individuals

with format of Ω{ω − 1}1 has exceeded half of

the initial population, so only the individuals that

match Ω{ω − 1}0 will be generated randomly.

Thus, we have p0 = 1 and p1 = 0.

3. n0 + n1 = P suggests that the number of modi-

fied individuals alone has reached the number of

individuals in the initial population, therefore the

step of random generation is purely omitted, with

a zero probability for both p0 and p1.

Based on the above discussions, we can see that the

diversity of initial population can only be guaranteed

38 J. Zhang et al. / Gene specific local co-regulations

in the first case. This is because, in the second and third

cases, the randomly generated individuals cannot fully

compensate the unbalance introduced by inheriting the

modified individuals from preceding window. If one

wishes to ensure that the first case can always occur

in the algorithm, then we should have n < 0.5P . We

prove this in the following lemma.

Lemma 1. If n < 0.5P , then we have n0 � n1 <
0.5P .

Proof. Let x0 and x1 be number of individuals, out of

the top n individuals obtained in the preceding win-

dow, whose the first bit is “0” and “1”, respectively.

Obviously, x0 +x1 = n. Based on our aforementioned

method for modifying individuals, we have n0 = x1

and n1 = x0 + x1 = n. Thus if n < 0.5P , then

n0 � n1 < 0.5P , as desired. �

Lemma 1 has established that, as long as the number

of top-ranked individuals n to be obtained in each win-

dow position is less than half of the initial population

size P , the diversity of initial population can thereby

be realized. Since n0 and n1 may be changed for dif-

ferent window positions, therefore we have different

p0 and p1 for the initial population generation of dif-

ferent window positions which need to be dynamically

updated as the algorithm proceeds.

The detailed algorithm of progressive GA for gene

specific co-regulation discovery is given in Fig. 1.

CandidateSet is the set for storing the top n individ-

uals obtained in all generations and it is generation-

wisely updated (lines 7–8). There are two nested while

loops (lines 2 and 4). The outer while loop examines all

the possible window positions, whereas the inner loop

performs GA-based subset search within each window.

The progressive GA differs the naive GA in the initial

population generation for each different window posi-

tion (line 3), in which individual modification and bi-

ased random population generation are performed.

5. Speed up genetic algorithm

Like many other GA applications, the most com-

putationally expensive step performed in our genetic

algorithm lies in the fitness evaluation of individuals.

The problem of relative slow fitness evaluation in our

work is because the fitness evaluation for each indi-

vidual (i.e. subset of conditions) involves scanning all

the genes in the dataset in order to find the kth near-

est neighbors of the target gene for computing fitness

function ffit(g, s). Using indexing methods to speed up

kth NN search is not efficient in our problem whatso-

ever due to two major reasons. First, since a large num-

ber of condition subsets may be evaluated in the GA,

it will be expensive to index the genes in each pos-

sible condition subset. Second, for gene-specific co-

regulation discovery problem, we may be only inter-

ested in a small number of target genes, thus the cost

associated in building indexing cannot be amortized by

the one-time performance gain resulting from gene in-

dexing.

To speed up fitness evaluation, we draw on the kNN

Lookup Table proposed in [23] to speed up compu-

tation of fitness function in our technique. A kNN

Lookup Table for a target gene g, denoted as T g , is a

M ×k table containing information about its k nearest

neighbors in each single dimension of full data space

Algorithm: Progressive_GA (the target gene g)

1. CandidateSet ← ∅;

2. WHILE (the window does not reach the last position) DO {

3. Spop ← initial population of P strings;

4. WHILE (evolution_stop_criterion=false) DO {

5. FOR each individual s in Spop DO

6. evaluate fitness of s;

7. CandidateSet ← CandidateSet ∪ top n individuals in the current generation;

8. Spop ← selection(Spop);

9. Spop ← crossover(Spop, pc);

10. Spop ← mutation(Spop, pm); } }

11. S ← Top n individuals in CandidateSet;

12. G ← Co-regulated kNNs of g in S;

13. Return (S , G).

Fig. 1. Progressive genetic algorithm.

J. Zhang et al. / Gene specific local co-regulations 39

with M dimensions. The entry xij of the table repre-

sents the jth nearest neighbor of g in the ith dimension,

where 1 � i � M and 1 � j � k.

The idea of using kNN Lookup Table for speeding

up ffit(g, s) is to approximate ffit(g, s) by quickly com-

puting its lower and upper bounds, i.e. fk
min(g, s) and

fk
max(g, s). For the details regarding how to compute

fk
min(g, s) and fk

max(g, s) efficiently by means of kNN

Lookup Table, please refer to [23]. The approximated

fitness of s with respect to the target gene g is com-

puted by using the average of fk
min(g, s) and fk

max(g, s)

as follows:

fapp(g, s) =
fk

min(g, s) + fk
max(g, s)

2
. (8)

kNN Lookup Table is advantageous in the following

two aspects: (1) its construction cost is O(NM), which

is linear with respect to both number and dimension-

ality of genes in the gene expression data set. For the

whole gene expression data, only one kNN Lookup Ta-

ble is needed; (2) The total complexity for computing

fk
min(g, s) and fk

max(g, s) is O(k2|s|2), which becomes

independent of N and M . It has been shown in [23]

that this fitness approximation scheme leads to a com-

putation saving by up to a factor of k|s|N compared to

the case when no approximation is performed. In our

work, a pre-processing step is performed to construct

kNN Lookup Table based on the gene expression data

set prior to the GA-based condition subset search.

Since we approximate ffit(g, s) in the GA, the ac-

curacy of computation is thus somehow limited. To

address this problem, we can perform a refinement

step on the top condition subsets we obtain in the GA

(stored in CandidateSet). Instead of using the lower

and upper bounds of ffit(g, s) for a fast fitness ap-

proximation, the refinement step computes the accu-

rate fitness for top candidate condition subsets and

the top n condition subsets among them will be re-

turned. Admittedly, evaluating each condition subset in

this refinement process is more expensive than the ap-

proximation as it involves more accurate computations.

However, the number of candidate condition subsets is

typically much smaller than the total number of con-

dition subsets approximated in the GA. Furthermore, a

pruning optimization strategy can be devised to speed

up the computation. The basic idea of this pruning op-

timization strategy is that, after the fitness of n candi-

date condition subsets have been accurately evaluated,

we start to maintain the minimum ffit(g, s) for the top

n condition subsets we have found thus far, denoted as

MinFit. Those unevaluated condition subsets that satis-

fies fk
max(g, s) < MinFit cannot become the top n con-

dition subsets and can therefore be safely pruned. This

is because that MinFit is monotonically increasing as

we examine more condition subsets in the refinement

step. Specifically, the refinement process takes the fol-

lowing steps:

1. We start the condition subset evaluation with

those subset candidates that have the maximum

fk
max(g, s) value. After n condition subsets candi-

dates have been evaluated, the minimum ffit(g, s)

value for the top n condition subsets we have

evaluated thus far is assigned to MinFit;

2. For each condition subset s′ in CandidateSet that

has yet been examined, if fk
max(g, s′) < MinFit,

then s′ is pruned away;

3. For a candidate condition subset s that have not

been pruned in Step 2, if ffit(g, s) > MinFit, then

s is included into the top n list and the condi-

tion subset that has the smallest value of ffit(g, s)

in the current list is removed. MinFit is also up-

dated;

4. Repeat steps 2–3 until all the condition subsets in

CandidateSet have been evaluated.

6. Experimental results and evaluation

6.1. Experimental setup

In our experiments, the Spellman’s dataset is used

that can be downloaded from http://genome-www.

stanford.edu/ cellcycle/data/rawdata. This dataset con-

tains all the data for the alpha factor, cdc15, and elutri-

ation time courses, and includes the data for the Clb2

and Cln3 induction experiments. We used only the

alpha-factor and CDC28 datasets for our experiments,

as did in [12] and [15]. The dataset used for experi-

mental purpose contains 6178 genes at 35 time points,

forming a 6178× 35 matrix (this dataset can be down-

loaded at http://www.comp.nus.edu.sg/jiliping/p2/

YeastData.xls).

As the experimental setup, we set the size of the

sliding window ω = 10, the nearest neighbors con-

sidered k = 10, the number of top condition subsets

returned in the end (as well as the number of top in-

dividuals kept as individual candidates in each win-

dow) n = 10, the number of generations for the GA

in each window position Ng = 20, the population size

in each generation P = 30, the frequency of apply-

ing crossover pc = 0.8 and the frequency of apply-

40 J. Zhang et al. / Gene specific local co-regulations

ing mutation pm = 0.2. The same setting is applied

for all experiments except that some major parameters,

such as the window size, number of genes, number of

conditions and total number of individuals to be evalu-

ated, will be varied when experiments are performed to

evaluate their respective effect on the performance. To

create test datasets with desired number of gene and/or

conditions for our experimental purpose, random sam-

pling is performed horizontally and vertically on the

aforementioned real-life dataset. The running time re-

ported in the experiments are averages over 5 samples

with the same number of genes and/or conditions. All

the experimental evaluations are carried out on a Pen-

tium 4 PC with 512 MB RAM.

6.2. Efficiency study

We start the performance evaluation with the effi-

ciency study of our technique. Specifically, we will in-

vestigate the effect of parameters such as the number

of condition, the number of genes, the window size and

the number of individuals needs to be evaluated on the

efficiency of our method.

• Effect of number of conditions

Given that the number of conditions for most gene

expression data sets is large, we thus first evaluate the

effect of number of conditions on the performance.

Figure 2 presents the running time of our technique

when varying the number of conditions. Opposite to

what is normally perceived, the time spent grows lin-

early, rather than exponentially, when the number of

conditions increases. The underlying reason is that the

increase in the number of conditions will only lead

to an linear increase of the number of window posi-

tions (recall that the number of window positions is

M − ω + 1). Hence, the time complexity scales up

in a linear manner, providing that the search workload

for each window remains unchanged. This property en-

ables the good scalability of our method with regard to

number of conditions.

• Effect of number of genes

Figure 3 presents the running time of kNN Lookup

Table construction and our progressive genetic algo-

rithm under different number of genes. The number of

genes only affects the efficiency of constructing kNN

Lookup Table. For each single-dimensional subspace,

we need to find the kNNs of the target gene. Thus,

the complexity of kNN Lookup Table construction is

in a linear order with regard to the number of genes.

When kNN Lookup Table has been constructed, we no

longer need to scan all the genes in the data set for kth

NN search in fitness computation. As such, the cost of

fitness computation is independent of the number of

gene; the complexity curve in Fig. 3 becomes roughly

a horizontal line.

• Effect of window size

The window size determines the size of the search

space for condition subsets within each window, which

is in an exponential order of the window size. This

does not necessarily mean that the running time of our

method will be exponential with respect to the win-

dow size whatsoever. The actual running time is de-

pended on how the search workload within each win-

dow is specified. More precisely, if we use the fixed

number of generations and population size for each

generation in the GA, i.e. fixed number of individuals

to be evaluated in each window, then the total search

Fig. 2. Running time under varying number of conditions.

J. Zhang et al. / Gene specific local co-regulations 41

Fig. 3. Running time under varying number of genes.

Fig. 4. Running time under varying window sizes.

workload for each window will be the same. In this
case, increase in window size will consequently lead
to a decrease, rather than an increase, in the number
of window positions and therefore a drop of running
time. Yet, using a fixed search workload for windows
with different sizes is obviously not an effective strat-
egy. A fixed ratio search scheme, in contrast, performs
a search workload that is proportional to the size of
search space in this window. The time complexity for
each window now becomes quadratic with respect to
the window size. Even though the number of window
positions is decreased, the overall complexity is domi-
nated by the quadratic complexity increase within each
window. The running time of these two search schemes
are presented in Fig. 4. For each window position, the
search workload with a fixed number of individuals is
set to be 400 and that of a fixed ratio is 30% of the
search space of the window.

• Effect of search workload

The search workload, i.e. the number of individu-

als to be evaluated, in each window position is mainly

decided by two factors in the GA, the number of gen-

erations Ng and the population size P in each of the

generations. The total workload is equal to P ∗ Ng .

As a result, under a fixed number of window positions,

any change in either P or Ng will give rise to a lin-

ear change in the total running time of the algorithm

accordingly. We test five workloads for each window

position in this experiment, ranging from 500 to 1500,

and the results are presented in Fig. 5.

• Comparison with brute force method

The naive brute force method searches exhaustively

the subsets of conditions in each window position for

the optimal solutions. It can be considered as the base-

line method for solving our problem. Apparently, the

42 J. Zhang et al. / Gene specific local co-regulations

Fig. 5. Running time under varying number of individuals to be evaluated.

Table 2

Efficiency comparison between brute force method and our method

Methods 5 10 15 20

Brute forth 39 71 219 624

GA-based method (fixed ratio) 12 24 69 210

GA-based method (fixed number) 41 38 34 28

search complexity depends entirely on the window

size that determines the whole search space lattice. In

this experiment, we demonstrate the efficiency of our

method by comparing the time spent in our method

with that in the native brute force method. Different

window sizes, ranging from 5 to 20, are studied. The

results are tabulated in Table 2. We can see that our

method, by using GA, is more efficient than the brute

force method. The fix ration GA-based method is faster

than the brute force method by roughly a factor of 1
α ,

where α is the ratio of computational workload in GA

against the total workload in each window. Our fix-

number GA-based method, which is independent of the

window size, is faster than the brute force method by a

significantly large margin, especially when the window

size is large.

6.3. Effectiveness study

For effectiveness analysis, experiments are per-

formed to test fitness enhancement of progressive GA

versus non-progressive scheme, the convergence and

finally the accuracy of our approach.

• Fitness enhancement by using progressive GA

For effectiveness study, we first investigate the con-

tribution of progressive GA used in our method to

enhancing the fitness of individuals, compared to the

case when non-progressive GA is used. They primar-

ily differ in that the progressive GA inherits the top-

ranked individuals obtained from the previous window

position with appropriate modifications and introduces

bias in the initial random population generation, while

the non-progressive GA evaluates each window inde-

pendently and the entire initial population for each

window position is generated randomly. Figure 6

presents the averaged fitness of top 10 individuals for

each window position (from No. 1 to 26). The re-

sult demonstrates that the progressive GA outperforms

non-progressive scheme in term of fitness in up to 88%

of the window positions and fitness improvement by

over 10% is observed at about 25% of the window

positions. This result indicates that progressive GA is

more capable of finding fitter individuals than the non-

progressive GA under the same computational work-

load.

• Convergence study

GA tends to produce an increasing number of fit-

ter individuals as evolution proceeds, referring to as

the phenomenon of convergence. In this experiment,

we investigate the convergence of our technique. With-

out losing generality, three window positions, the first,

middle and last (i.e. 1st, 13th and 26th), are picked up

for this study. For a better representation, we normalize

the fitness of condition subsets by dividing them with

the best fitness we observe in the GA. In this way, we

convert the fitness of condition subsets into the range

of (0,1]. For each generation, the number of individu-

als with relative good fitness (�0.7 in our experiment)

are counted. As we can see from Fig. 7 that the number

of individuals with good fitness is increased as the GA

J. Zhang et al. / Gene specific local co-regulations 43

Fig. 6. Fitness of non-progressive and progressive GA.

Fig. 7. Number of individuals having high fitness values in three window positions.

evolves, which indicates a good convergence of our

method. In addition, the good individuals do not only

appear in the last generation, though the overall con-

vergence of the GA has been observed. A small num-

ber of good individuals have been observed in the ear-

lier generations of the GA. This verifies the validity

of keeping track of the top-ranked individuals in each

generation of GA in our approach to prevent the loss

of good individuals appearing in different, particularly

the early, generations of the GA.

• Comparative study

Finally, we explore the accuracy of our method in

detecting co-regulated condition subsets for the target

44 J. Zhang et al. / Gene specific local co-regulations

gene. Comparative study are first carried out between
our method and random search method. A reference

result for comparative study purpose needs to be ob-
tained and appropriate accuracy metric should be de-
rived. To get the reference result, we perform an ex-
haustive search for all the possible condition subsets in
each of possible window positions for 10 test genes. In
this search process, we only maintain the top-ranked
condition subsets, rather than their closely co-regulated
genes, for each of the test genes. This is because once
one method can correctly identify a condition subset,
then it becomes trivial to find the closely co-regulated
genes for the test genes in this condition subset. Thus,
the focus of our study is the accuracy evaluation on
the methods in detecting correct co-regulated condi-
tion subsets. The results obtained by the exhaustive
search method, used as the reference, is apparently the
best possible result we can expect to achieve. The re-
sults of our method and the random search method
will both be compared with the reference result. As far
as the accuracy metric is concerned, we define accu-

racy to measure the robustness of the method in cor-
rectly identify the condition subsets. It is defined as
follows:

Accuracy =
Na

n
× 100%, (9)

where Na denotes the number of correctly identi-
fied condition subsets by a method a and n denotes

the number of top subsets users are interested in ob-

taining. Here, the instances of method a are random

search method and our method. The correctly identi-

fied condition subsets by a method is the intersection

of this method’s result and that of the exhaustive search

method. The number of condition subsets returned by

the exhaustive search, random search and our method

are all fixed to n. The key considerations in design-

ing this experiment are (1) allowing the same search

workload for random search method and our method to

ensure a fair comparison and (2) the search workload

for the two methods should be considerably smaller

than that required in the exhaustive search method to

prevent them from reducing to the exhaustive search.

In this experiment, the search workload for random

search and our method is set to be 50% of that of

the exhaustive search method. Figure 8 is the box-

plot of the accuracy for the 10 test genes. The first

and second columns in the boxplots present the re-

sults for the random search and our method, respec-

tively. It illustrates that our method is able to achieve

an accuracy of 79%, which is remarkably higher than

the random search method’s 54%. This is due to the

convergence property of GA in our method. Also as

expected, the accuracy of the random search method

(54%) is approximately equal to the workload allo-

cated (50%) simply because there is no involvement

of heuristics to positively guide the search process

in random search. Of course, the accuracy is largely

Fig. 8. Accuracy of random search method and our method.

J. Zhang et al. / Gene specific local co-regulations 45

depended on the search workload allocated; a large

workload will certainly lead to a higher accuracy but

a more expensive computation is required and vice

versa.

Besides conducting comparative study between our

method and the random search method, we further

explore the capability of clustering methods in tack-

ling gene-specific co-regulation discovery problem. In-

stead of directly finding the top n condition subsets,

by whichever means, in which the best overall quality

of gene clusters are observed, we choose the following

way for our evaluation purpose that is more economic

to implement. First, we find the top n condition sub-

sets returned by the exhaustive search method and mix

them with a number of randomly generated condition

subsets that are considered to be noise. Then, cluster-

ing is performed and top n condition subsets are found

that feature the best clustering quality. The result of

clustering will be compared with that of the exhaustive

search method to compute its accuracy. The rationale

of this experiment is that if clustering methods cannot

find all or most of the correct top n condition subsets

from the above-mentioned mixture of condition sub-

sets (i.e. the correct top n and noise subsets), then we

can conclude that the clustering methods are sensitive

to the noise we introduce and are not able to correctly

identify the true top n condition subsets. This renders

them fail to cope with gene-specific co-regulation dis-

covery problem successfully. The reason is that search-

ing a larger number of condition subsets, rather than

a small number of them as we do in this experiment,

will only increase the likelihood of end up with an even

lower accuracy level.

Now, we discuss the clustering quality metric. The

intra-cluster sum of distance of a cluster j, 1 � j � k,

in condition subset s, denoted as Es
j , is defined as the

sum of distance between each gene in cluster j and its

center, i.e.

Es
j =

ns
j∑

i=1

dist(gs
i,j , ms

j , s),

where ms
j =

∑ns
j

i=1 gs
i,j

ns
j

, (10)

where ns
j , gs

i,j and ms
j correspond to the number of

genes within cluster j in s, the ith gene within cluster

j in s and the center of cluster j in s, respectively. The

overall quality of clustering result in s is quantitized

by the total intra-cluster sum of distance of all the k
clusters we obtain in s. That is,

Es
=

k∑

j=1

Ej
s . (11)

A lower value of Es indicates a better clustering qual-

ity in s.

In this experiment, we employ k-means clustering

method for clustering genes due to its widespread use

in microarray data analysis. Since cluster quality in k-

means clustering is largely depended on the choice of

pre-defined cluster number k, we therefore test 8 dif-

ferent values for k, ranging from 3 to 10, and pick up

the best cluster quality from these 8 different settings.

We vary the number of randomly generated condition

subsets from 0 to 50 and mix them with the 10 top-

ranked subsets return by the exhaustive search method.

Figure 9 illustrates the results of the clustering

method. 10 genes are tested in this experiment. As the

number of noise condition subsets increases, the ca-

pability of the clustering method in returning the cor-

rect condition subsets drops substantially. Therefore,

it is predictable that, as the number of condition sub-

sets we examine is increased to some large number, the

accuracy of clustering method will tend to become 0

for all the genes under study. The underlying reason is

because the quality of clusters is not compatible with

the objective for strong co-regulations with respect to

a particular gene. In contrast, our GA-based method is

able to achieve a high accuracy (79%) (as presented in

Fig. 8) even when working on a much larger number

of subsets. Its accuracy is able to be further improved

as long as a larger computational workload (still much

smaller than that of exhaustive search) is allowed.

7. Conclusions and discussions

This paper investigates the problem of gene co-

regulation discovery problem in DNA microarray data.

Unlike most of the existing methods that find gene co-

regulations utilizing clustering analysis, our approach

aims to discover co-regulations from the single gene

perspective. The basic idea of our approach is to first

find the subsets of conditions in which the given gene

g is most significantly co-regulated with other genes

and the co-regulated genes of g are reported by select-

ing from its nearest neighbors in these subsets of con-

ditions.

46 J. Zhang et al. / Gene specific local co-regulations

Fig. 9. Accuracy of clustering method

Considering the search space of subsets of condi-
tions is typically large for microarray dataset, genetic
algorithm (GA) is employed. Due to inapplicability of
the general-purpose black-box GA for our problem, an
ad hoc GA-based algorithms that adopt a progressive
paradigm is proposed. Its salient feature is that they try
to make use of the top-ranked solutions found in each
window position in guiding the search process for its
subsequent window position to boost the overall accu-
racy of the algorithm.

A wide spectrum of experiments are conducted for
performance evaluation. The major experimental re-
sults suggest that our method is linearly scalable with
major parameters such as the number of conditions,
the number of genes, the total search overload exe-
cuted in each window position, etc. The only excep-
tion is the window size. It quadratically determines the
search workload in each window position if the fixed-
ratio search workload is chosen. Given its typical small
value (10 in our work) relative to the number of con-
ditions in the expression data set, the window size will
not give rise to a dramatic blowout of the search space.
In terms of effectiveness, our method features a good
convergence and has a higher accuracy compared to the
naive random search method. We have also shown that
clustering method is not able to successfully cope with
gene-specific co-regulation discovery problem. We be-
lieve that our method can serve as a promising tool for
discovering new and interesting gene co-regulations in
time-course gene expression data.

Acknowledgement

The authors would like to thank Dr. Malcolm I. Hey-

wood from Evolutionary Algorithm Research Group

and Dr. Christian Blouin from Computational Biology

Research Group, both from Faculty of Computer Sci-

ence at Dalhousie University, for their useful sugges-

tions on the draft of this paper.

References

[1] R. Amato, A. Ciaramella, N. Deniskina, C. Del Mondo,

D. di Bernardo, C. Donalek, G.Longo, G. Mangano, G. Miele,

G. Raiconi, A. Staiano and R. Tagliaferri, A multi-step ap-

proach to time series analysis and gene expression clustering,

Bioinformatics 22(5) (2006), 589–596.

[2] C.C. Aggarwal, J.B. Orlin and R.P. Tai, Optimized crossover

for the independent set problem, Oper. Res. 45(2) (1997), 226–

234.

[3] C.C. Aggarwal and P.S. Yu, An effective and efficient algorithm

for high-dimensional outlier detection, VLDB J. 14 (2005),

211–221.

[4] Z. Bar-Joseph, Analyzing time series gene expression data,

Bioinformatics 20(16) (2004), 2493–2503.

[5] Y. Cheng and G.M. Church, Biclustering of expression data,

in: Proc. International Conference on Intelligent Systems for

Molecular Biology (ISMB), Vol. 8, 2000, pp. 93–103.

[6] S. Erdal, O. Ozturk, D. Armbruster, H. Ferhatosmanoglu and

W. Ray, A time series analysis of microarray data, in: 4th IEEE

International Symposium on Bioinformatics and Bioengineer-

ing, 2004.

J. Zhang et al. / Gene specific local co-regulations 47

[7] J. Feng, P.E. Barbano and B. Mishra, Time-frequency feature

detection for timecourse microarray data, in: 2004 ACM Sym-

posium on Applied Computing (SAC’04), 2004.

[8] V. Filkov, S. Skiena and J. Zhi, Analysis techniques for mi-

croarray time-series data, in: 5th Annual International Confer-

ence on Computational Biology, 2001.

[9] G. Getz, E. Levine and E. Domany, Coupled two-way clus-

tering analysis of gene microarray data, Proc. Natl. Acad. Sci.

USA 97 (2000), 12079–12084.

[10] G.H. Golub and C.F. Van Loan, Matrix Computations, Johns

Hopkins University Press, 1983.

[11] J. Holland, Adaption in Natural and Artificial Systems, MIT

Press, Cambridge, 1992.

[12] L. Ji and K.L. Tan, Identifying time-lagged gene clusters on

gene expression data, Bioinformatics 21(4) (2005), 509–516.

[13] R.A. Johnson and D.W. Wichern, Applied Multivariate Statis-

tical Analysis, Prentice Hall International, USA, 1998.

[14] T. Kohonen, Self-Organization Maps, Springer-Verlag, Berlin,

Heidelberg, 1995.

[15] A.T. Kwon, H.H. Hoos and R. Ng, Inference of transcriptional

regulation relationships from gene expression data, Bioinfor-

matics 19 (2003), 905–912.

[16] C.A. Orengo, D.T. Jones and J.M. Thornton, Bioinformatics.

Genes, Proteins and Computers, BIOS Scientific Publishers,

Oxford, 2003.

[17] M.F. Ramoni, P. Sebastiani and I.S. Kohane, Cluster analysis of

gene expression dynamics, Proc. Natl. Acad. Sci. USA 99(14)

(2002), 9121–9126.

[18] T. Speed, J. Fridlyand, Y.H. Yang and S. Dudoit, Discrimina-

tion and clustering with microarray gene expression data, in:

2001 Spring Meeting of International Biometric Society East-

ern North American Region (ENAR’01), Charlotte, NC, 2001.

[19] P.K. Sharpe and R.P. Glover, Efficient GA-based technique for

classification, Appl. Intell. 11 (1999), 277–284.

[20] R. Tibshirani, T. Hastie, M. Eisen, D. Ross, D. Bostein and

P. Brown, Clustering methods for the analysis of DNA microar-

ray data, Technical report, Stanford, 1999.

[21] J. Yang, W. Wang, H. Wang and P.S. Yu, δ-Cluster: Capturing

subspace correlation in a large data set, in: Proc. 18th Interna-

tional Conference on Data Engineering (ICDE’02), San Jose,

CA, USA, 2002, pp. 517–528.

[22] L.K. Yeung, H. Yan, A.W. Liew, L.K. Szeto, M. Yang and

R. Kong, Measuring correlation between microarray time-

series data using dominant spectrum component, in: Sec-

ond Asia-Pacific Bioinformatics Conference (APBC 2004),

Dunedin, New Zealand, 2004, pp. 309–314.

[23] J. Zhang, Q. Gao and H. Wang, A novel method for detect-

ing outlying subspaces in high-dimensional databases using ge-

netic algorithm, in: International Conference on Data Mining

(ICDM’06), Hong Kong, China, 2006, pp. 731–740.

[24] Y. Zhang, H. Zha, J.Z. Wang and C. Chu, Gene co-regulation

vs. co-expression, in: 8th Annual International Conference

on Research in Computational Molecular Biology (RECOMB

2004), San Diego, CA, 2004.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

