
A. Bouguettaya, I. Krueger, and T. Margaria (Eds.): ICSOC 2008, LNCS 5364, pp. 691–707, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Discovering and Deriving Service Variants from Business
Process Specifications*

Karthikeyan Ponnalagu and Nanjangud C. Narendra

IBM India Research Lab, Bangalore, India
{karthikeyan.ponnalagu,narendra}@in.ibm.com

Abstract. Software service organizations typically develop custom solutions
from scratch in each project engagement. This is not a scalable proposition,
since it depends too heavily on labor alone. Rather, creating and reusing soft-
ware “assets” is more scalable and profitable. One prevalent approach to build-
ing software solutions is to use service-oriented architecture (SOA) to compose
software services to support business processes. In this context, the key to reus-
ing assets is to discover (from existing assets in a portfolio) or derive service
variants to meet the requirements of a stated business process specification. To
that end, this paper presents our Variation-Oriented Service Design (VOSD) al-
gorithm for the same. Via IBM’s Rational Software Architect modeling tool, we
also demonstrate the practical usefulness of our algorithm via a prototype im-
plementation in the insurance domain.

Keywords: Service-oriented Architecture, Business Process, Reuse.

1 Introduction and Motivation

Software service organizations developing custom business solutions are being faced
with the increased need to effectively reuse existing assets and thereby enhance profit-
ability. The emergence of service oriented architecture (SOA) [5], with its emphasis on
loose coupling and dynamic binding of services, promises to enable more effective reuse
by developing business processes as loosely-coupled collections of services modeled as
reusable assets. However, one major obstacle against the realization of this vision is the
cost involved in modeling and manipulating service variants in order to meet varied
business process specifications. Currently this practice is carried out manually, making it
cumbersome and error-prone. To that end, in this paper we present an algorithm called
Variation Oriented Service Design (VOSD), which automatically discovers (from reus-
able assets in a portfolio) and/or derives (in case the reusable asset is not available) ser-
vice variants from a portfolio of existing services to meet a stated business process
specification. Our approach leverages from our earlier Variation-Oriented Engineering
methodology (VOE) [3], which is an end-to-end approach spanning business processes to
their SOA implementation to formally model and develop these variants, so that the reuse
of solutions with variants can be facilitated.

* Thanks to Dipayan Gangopadhyay, Biplav Srivastava and Islam Elgedawy for their feedback.

692 K. Ponnalagu and N.C. Narendra

Variation Modeling via
VOE

Portfolio of
Process Models &
Service Variants

New and Existing
Reusable Assets

Service Variant Discovery
(Matching)

New Business
Process

Specification

Service Variant Derivation
(VOSD)

Fig. 1. Integrated Service Variant Discovery and Derivation Approach

This paper is an extension of an earlier paper [7], which introduced our basic
VOSD algorithm. That paper, however, only focused on deriving service variants
from stated business process specifications; in this paper, we extend the algorithm in
[7] to the problem of selecting the appropriate (variant of) services in a portfolio, said
variants being stored in a manner consistent with VOE principles. Service variant
derivation is resorted to only if the appropriate variant is not available. We also dem-
onstrate that this extension is non-trivial, and show how the meta-modeling approach
in VOE is able to assist in automatic service variant discovery. Our overall approach
is illustrated in Figure 1. Throughout the paper, we illustrate our algorithm on a sim-
ple yet realistic running example (drawn from a real-life project engagement) in the
insurance domain. We also demonstrate our algorithm on a prototype implementation
using IBM’s Rational Software Architect (RSA) modeling tool, thereby demonstrat-
ing its practical usefulness (please note, however, that our algorithm is independent of
the modeling tool used).

This paper is organized as follows. We will first describe our running example. We
then describe some preliminary concepts on which our integrated approach is based. We
then describe our integrated VOSD discovery + derivation algorithm. We will then illus-
trate our algorithm on the running example via the RSA tool (however, our algorithm is
not dependent on RSA, and can be implemented on any UML-based modeling tool). The
paper will finally conclude with discussions on related & future work.

2 Running Example

Let us assume a basic insurance claims process solution, Sol1, which has been im-
plemented for a customer, as in Figure 2. The net output of the execution of this
process is an evaluation of the applicant’s claim; if the claim is accepted, the output
would also include information on the payment to be made to the applicant. For this
paper, we focus on the Verify Claim sub-process; in this sub-process, the Determin-
eLiability and PotentialFraudCheck services are first executed in parallel, and send
their results to Claim Investigation service. A final review of the verified claim is then
implemented by FinalReview service.

 Discovering and Deriving Service Variants from Business Process Specifications 693

1.2
Verify
Claim

1.3
Claim Analysis

& Report

0.Insurance
Claim

1.1.1
Receive
Claim

1.2.1
Determine

Liability

1.2.2
Potential

Fraud
Check

1.2.3
Claim

Investig-
ation

1.2.4
Final

Review

1.3.1
Analyze
Injuries

1.3.2
Analyze

&
Estimate

Loss

1.3.3
Record
Details

1.3.4
Claims
Report

&
Payment

1.1
Record
Claim

1.1.2
Enter
Claim
Details

N.B: Services 1.2.1 and 1.2.2 executed
in parallel

Fig. 2. Basic Insurance Claims Process – Solution Sol1

Let us assume that the same solution should now be tailored for a second customer
to produce Sol2, with the following changed requirements:

• Improve cycle time for Verify Claim sub-process – for a new class of “high
priority” applicants not previously served

• Improve fraud checking – a new and improved fraud checking module to be
incorporated, given the fact these are now high-value claims

Based on these inputs, the following variations to Sol1 are anticipated:

• DetermineLiability & PotentialFraudCheck services to be outsourced for im-
proved speed

• Also, PotentialFraudCheck service should be modified to take into account ex-
tent of liability – this would eventually involve changes in its business logic

• New Liability+FraudChecks service to be added

Let us assume that these variations would result in solution Sol2, as shown in
Figure 3.

1.2
Verify

Claim (v2)

1.3
Analyze Claim &

Report

0.Insurance
Claim (v2)

1.1.1
Receive
Claim

1.2.1 v2
Liability +

Fraud
Checks

1.2.2 v2
Claim

Investigation

1.2.4
Final

Review

1.3.1
Analyze
Injuries

1.3.2
Analyze &
Estimate

Loss

1.3.3
Record
Details

1.3.4
Claims

Report &
Payment

1.1
Record
Claim

1.1.2
Enter Claim

Details

1.2.2.1
Determine

Liability

1.2.2.2
Potential Fraud

Check

N.B: Services 1.2.2.1 and 1.2.2.2 executed sequentially!!

Fig. 3. Modified Insurance Claims Process – Solution Sol2

694 K. Ponnalagu and N.C. Narendra

The original inputs and outputs for the services to be modified in Sol1 are as in
Figure 4.

Determine
Liability

Customer
Info

Claim
Info

Liability
Info Claim

Investigation

Claim
Eligibility

Info

Potential Fraud
Check

Result

Customer
Info

Claim
Info

Fig. 4. Original Services from Sol1

The modifications for Sol2 are shown in Figure 5.

Liability + Fraud Checks
(new service to be generated)

CustInfo

ClaimInfo

Determine
Liability

Potential Fraud
Check (modified for

processing
Liability Info)

Result

CustInfo

LiabilityInfo

Result

ClaimInfo

LiabilityInfo

CustInfo

ClaimInfo

LiabilityInfo

Fig. 5. Modified Services for Sol2

Upon examination of Figures 4 and 5, the following question arises: how do we
decide that the DetermineLiability and PotentialFraudCheck services need to be se-
quentialized while they were originally executing in parallel? Also, how do we deter-
mine what the inputs and outputs of Liability+FraudChecks service should be?
Current practice would be to determine the answers to these questions based on a
combination of visual inspection (perhaps based on modeling the business processes
in a process modeling tool) and manual calculation.

From a software engineering perspective, however, such an approach is cumber-
some and time-consuming, and hence does not scale to large business processes. Ad-
ditionally, such a calculation is in general non-trivial. For example, if a service Sk
were to be sequentially inserted between Si and Sj, this may involve the introduction
of new control and data dependencies among Si, Sj and Sk. The question that then
arises, is how should the functionality of Si and Sj be modified? That is, some outputs
of Si may need to be redirected to Sj; also, some inputs of Sj may have to be obtained
from Sk. The introduction of Sk may also create new outputs, which would have to be
redirected to Sj, thereby necessitating an enhancement of the functionality of Sj, i.e.,
the source code of the service Sj will need to be modified. This can be observed from

 Discovering and Deriving Service Variants from Business Process Specifications 695

the example of inserting the Liability+FraudChecks service between DetermineLi-
ability and PotentialFraudCheck services. Now, when the number of such business
process-level changes grows, determining all the sevice-level code changes becomes a
major design exercise that can only be eased and speeded up via automation. Hence
the need for an algorithm such as VOSD.

3 Preliminaries

3.1 Meta Model-Based Representation of Variations

We leverage the metamodel introduced in [3] that allows one to separately model the
static and variable parts of any software component (service or business process) for
our VOSD algorithm. This metamodel consists of the following parts, and is depicted
in Figure 6:

• Variation Points - these are the points in the component where variations can be
introduced. They are in turn of two types. Implementation variation
points are the points in the component where the implementations of certain
methods can be modified, without affecting the externally observable behavior of
the component. Whereas, specification variation points are the
points at the interface of the component which can be modified. This may neces-
sitate changes to the internal implementation of the component, which are speci-
fied via implementation variation points. Specification variations could therefore
involve adding new input/output data, and/or removing input/output data to the
component.

• Variation Features – these further refine variation points, by specifying the ac-
tion semantics of the variation and its specific applicability. The same variation
point can admit more than one variation feature, and one variation feature can be
applied to many variation points.

Meta Model

Initial Solution Derived Solution

Variant
Part

Service-level Variation

Static
Part

Variation Feature applied to a Variation Point

Process-level Variation

Implementation Variation Point

Specification Variation Point

Implementation Variation Point

Specification Variation Point

Fig. 6. VOE Meta-Model

696 K. Ponnalagu and N.C. Narendra

This meta model will be further specialized to instantiate conceptual models for
modeling service-level and business process-level variations. These conceptual mod-
els can then be treated as design templates from which actual variation-oriented de-
sign can be accomplished. Hence for our running example, an example of a variation
point would be a method in DetermineLiability service for calculating insurance li-
ability. A variation feature would be an action to replace that method by a different
method. The actual service variant would be the modified DetermineLiability service.1

3.2 Modeling Business Process and Service Level Variations

Based on the metamodel from [3], we broadly categorize variations in a business
process-based solution into two cases. Service-level Variations are variations at the
level of individual services. They can in turn be classified into two sub-cases.

• Service implementation (ServImpl) variations model changes only to the internal
service implementations, without requiring changes to their interfaces, and this is
realized via implementation variation points. An example would be to modify the
internal fraud checking method in PotentialFraudCheck service.

• Service Interface (ServIntf) variations model changes to the interfaces of the
services, which will also require implementation changes – this is realized via
specification variation points. An example would be to add the outputs custInfo
and claimInfo to DetermineLiability service. This would also require concomitant
ServImpl variations, as follows:

o Input data received by the service – this could arise due to the following
triggers. First, a change in the output data sent by a previously executed
service, which is to be consumed by the service in question; second, a
change in the input data needed by a service to be executed later - this
data may have to be transmitted by the service in question, perhaps after
modification.

o Output data sent by the service - this would be a trigger for modifica-
tions to the services to be executed next, i.e., those that are dependent on
the service in question.

Process-level variations are variations in the application flow of the business process.
These are realized via combinations of ServImpl and ServIntf variations, and can be
classified as follows:
• AddSeqSvc: a service Sj is added between Si and Sk. If this does not cause any

modifications to the inputs of Sk and outputs of Si, then the output methods of Si
and input methods of Sk have to be redirected towards Sj – this can be realized as
ServImpl variation, since this will involve modifying the input and output meth-
ods for the services Si and Sk. However, if modifications are required, then this
will be realized as a ServIntf variation on Si and/or Sk, and needs to be modeled
as such. An example is to add a suitably modified PotentialFraudCheck service
between DetermineLiability service & Liability+FraudChecks service.

1 Please note that our approach resembles inheritance-based variations from the object-oriented

(OO) domain only in the implementation variation points; otherwise, the well-known “open to
extension - closed to modification” principle prevalent in the OO domain does not apply for
specification variation points.

 Discovering and Deriving Service Variants from Business Process Specifications 697

• DeleteSvc: service Si+1 (predecessor is Si and successor is Si+2) is deleted. If this
does not cause any modifications to the outputs of Si or the inputs of Si+2, then the
output methods of Si and input methods of Si+2 need to be redirected towards each
other. However, if modifications are required, this will require ServIntf variation
on Si and Si+2, and needs to be modeled as such.

• AddParSvc: Add service in parallel – a service Sj is added between Si and Sk in
parallel – this would require ServIntf variations to Si and Sk. If this does not cause
any modifications to the inputs of Sk and outputs of Si, then additional methods
would need to be added to each service to accommodate the new service Si – this
would be an ServImpl variation. However, if modifications are required, then this
will be realized as ServIntf variations on Si and Sk, and needs to be modeled as
such.

• AddFlow: Add dependency between two services – akin to adding an edge in the
business process – this will be a ServIntf variation, requiring interface changes to
the services.

• DelFlow: Delete dependency between two services – akin to deleting an edge in
the business process – this is similar to AddFlow, in that it would require a Serv-
Intf variation.

4 Integrated VOSD Algorithm

Before we describe our algorithm, we first informally introduce a process and its
associated services, before giving a formal definition. Briefly, a process is defined as
consisting of four parts: (a) a set of associated service models, (b) data dependencies
between the services based on the execution of preceding services (also called pro-
duced data dependencies), (c) data dependencies between the services based on the
input model of preceding services (also called received data dependencies), and (d)
control flow dependencies that provides the choreography of the services. Please note
that this definition is quite realistic from a business perspective. Most business ana-
lysts in software organizations (who are not expected to possess programming exper-
tise) would typically represent a business process as a collection of services with their
respective inputs and outputs, and then augment it with control flow and data depend-
encies among pairs of services that do not share the predecessor/successor relation-
ship. Therefore, such business analysts would also find it easy to distinguish between
received and produced data dependencies, which is crucial for our algorithm (as we
will see later in this section).

4.1 Formal Process and Service Model

We define a process P = {S, E, D, C}, wherein

S = {S1.. Sn) is the set of services that participate in P

S ⊂ U, where U is the total portfolio of services (and their associated variations) for
that particular domain of P.

698 K. Ponnalagu and N.C. Narendra

E = ij∀ {Eij}, {iff Si ⎯→⎯eij Sj = true}, is the set of all produced data dependencies

of service Sj with Si, where ji ≠

Eij, with the value of true, lets us know that the data produced by the execution of Si,
irrespective of Si‘s input is part of the data dij that needs to be passed from Si to Sj.

D = ij∀ {Dij}, {iff Si ⎯→⎯dij Sj = true }, is the set of all received data dependencies

of service Sj on Si, where ji ≠ . Here Service Si needs to pass its input data without

modifications to Service Sj. This is represented by Dij with the value of true.

The distinction between produced and received data dependencies is absolutely cru-
cial, since this will help in the case of removal of Si from the process flow P or se-
quential inclusion of a new Service Sx between Si and Sj (i.e., DelSvc- and
AddSeqSvc-type variations – see Section 3.2), as we will illustrate later in this Sec-
tion with the help of the running example of Section 2.

C = ij∀ {Cij}, {iff Si ⎯→⎯
Cij

 Sj = true}, where ji ≠ , is the set of control flow

dependencies between Si and Sj, where Cij is either true or false, based on whether Si
controls the execution of Sj, i.e., iff Si precedes Sj in terms of control flow.

Only with the value of Cij being true, can we know that a service Si precedes the Ser-
vice Sj in the business process. Only with this information, can we expect Service Si
to pass on the received data Dj for Service Sj from Service Sj’s predecessor services.
On the other hand, Cij having a value of false means Sj would execute in parallel with
respect to Sj and Si is not expected to carry any additional data for Sj.

We also define a service S via its inputs and output sets respectively, i.e.

S = {Din, Dout}, where {Din} = Set of input Data required for invoking S, and {Dout}
= Set of Output Data expected after invoking S.

To illustrate via our running example, from Figure 2, let Start Service = S0, which is
the initial service that provides all the inputs for subsequent services; let Determin-
eLiability = S1, PotentialFraudCheck = S2, ClaimInvestigation = S3, Liabil-
ity+FraudChecks = S4. The service definitions for our running example are listed
here below.

S0 = {Din = Dout = {CustInfo, ClaimInfo}}

S1 = {Din = {CustInfo, ClaimInfo}, Dout = {LiabilityInfo}}

S2 = {Din = {CustInfo, ClaimInfo}, Dout = {Result}}

S3 = {Din = {LiabilityInfo, Result}, Dout = {LiabilityInfo, Result}}

Let us consider Figure 4 (for original process) and Figure 5 (for variant process) and
only those services highlighted in those two diagrams for illustration. Let us refer to
the processes, respectively, as Pold and Pnew. Hence the process in Figure 4 can be
formally modeled as:

 Discovering and Deriving Service Variants from Business Process Specifications 699

Pold = {S, E, D, C}

Where S = {S0, S1, S2, S3) //used to derive new services or contains variants

E = {e13,e23}, where e13= e23 = true

D = {d01,d02, }, where d01=d02 = {Custinfo, Claiminfo}

C = {c01,c02,c13,c23}

c01 = c02 = c13 = c13 = true

With respect to D in the original process (i.e., received data dependencies), Ser-
vices S1 and S2 are dependent on S0 via received data and control dependencies
(i.e., S1 and S2 can execute only upon successful execution of S0). Similarly Ser-
vice S3 is dependent on both S1 and S2 via received data, produced data and con-
trol dependencies.

Now let us look at the process depicted in Figure 5, i.e., the variant process. It can
be represented as below.

Pnew = {S, E, D, C}

Here, S = {S0, S1, S2, S3, S4} // we need to derive or discover these

E = { e12, e24,} Where e12, e24= true

D = {d04, d41,d12,d24,d43}

d04 = d41 ={custinfo, claiminfo}

d12 = {custinfo,Claiminfo,liabilityinfo}

d24 = d43 = {liabilityinfo, result}

Similarly C = { c04,c41,c12,c24,c43}

Where c04,c41,c12,c24,c43 = true

4.2 Algorithm Description

We assume the following inputs to our VOSD algorithm: New Process Model = NP,
Functionally closer, existing process Model from portfolio = OP, Associated set of
services for OP from the portfolio = S, set of process tasks mapped from NP to ser-
vices in S = Smod, set of process tasks not mapped from NP = Snew, and finally, varia-
tion models for all the services in the portfolio (modeled as per VOE principles from
Section 3.2).

Before we present the algorithm, however, we first describe a function called
Matching which implements service variant discovery from existing service variants
in the portfolio. This function will be invoked by the VOSD algorithm as its first step.
The inputs to Matching are: (i) the selected task in NP for which the appropriate
service variant needs to be determined, (ii) a selected service variant S’ in OP (which
belongs to the set Smod) which needs to be matched against (i). The Matching func-
tion returns one of the following outputs: either (a) FALSE, i.e., no match occurs; or
(b) TRUE, along with the appropriate (variation point, variation feature) pair of the
selected service variant.

700 K. Ponnalagu and N.C. Narendra

BEGIN Matching
Variation Model Vm new VariationModel (S’);
//Lists all variation points and variation features applicable to S’
For each Variation Point
{
 For each Variation Feature applicable at that Variation Point
 {
 Vm.getVariant(VariationPoint);
//Choose the variation point corresponding to the service variant.
 If (No such variation point exists)

{
return (“FALSE”);
exit(-1);

 }
 Vm.getVariantFeature(VariationPoint, Variant);
// Check whether there is an actual service variant available in the portfolio of reusable
assets. If so, this function returns the actual variation feature, or exits with failure.
 If (No such variant is available)

{
return (“FALSE”);
exit(-1);

 }
return (ServiceVariant, VariationPoint, VariationFeature);
//Finally returns the service variant along with its variation point and variation feature
END Matching

Algorithm: VOSD

1. Pick a task from NP. Verify and compare the input and outputs for it and its cor-
responding identified Service in Smod

2. If Matching, go to Step 1 for next task. If this is the Last Task then Exit. Other-
wise, go to Step 3.

3. Get the service Variation Model. Find the associated Variation Points and Vari-
ants for that Service based on the conflict.

a. Ensure the service is declared Variant (VP exists)

b. Ensure the associated Operation is declared Variant (VP exists).

c. If neither a nor b occurs, exit with message (“Variation Failed”). If no
Variation model available (this will be the case for new services in
Snew), go to step 5.

4. Select the Variant from the selected list in step 3, that obeys the following prop-
erties.

a. it addresses the change identified from NP

b. it matches on the listed Variation Features

If Variant exists, return (“Variant Available”) ; else go to step 5

5. Invoke DeriveServices //This is the service variant derivation step

 Discovering and Deriving Service Variants from Business Process Specifications 701

At the end of execution of this algorithm, either we will get an implemented service
variant from the portfolio or a skeleton variant related to an existing implementation
through the algorithm DeriveServices.

Algorithm: DeriveServices
(i) Get Pnew,Pold,
Service S1[] = Pnew.getS();

// Abstract Services , links to S2.
Service S2[] = Pold.getS();
 // Returns Actual Services

Service Snew[] = S2[] – S1[]
// Services to be created for Pnew

Service Sold[] = S1[] ∩ S2[] // Services to be modified
(ii) createNewServices(Pnew,, Snew)
(iii) deriveServiceVariants(Pnew,Pold)

 (iv) InstantiateServices(Snew[])

We will elaborate steps (ii), (iii) and (iv) of the DeriveServices algorithm here. Cre-
ateNewServices() first creates all the new services that are required in the new proc-
ess. By creation of services, we mean a consolidated list of references with respect to
other service’s inputs and outputs. This approach is required, as at this point of time,
we expect many of the services to go through a variation phase which will impact
their input/output interface models to suit the new process. Hence once all the varia-
tions are identified for all the services, the input/output model can be used for actual
instantiation of the corresponding services, which we will see later in this section. The
CreateNewServices() algorithm is given below.

createNewServices(Process Pnew, Service[] Snew)
 //Get Each Snew[i] for I = 1 .. n.,
 // where n is the total no. of services
 Service S= Snew[]. getNext() //
 S = CreateService(S,Pnew)
 CreateService(S,Pnew) //Creates new services
 Service Ssource[] = Pnew,getE().getAllSource(S);

//returns all services, whose execution, Service S depends on
for all Services Ssource i = 1..n.
 If(Ssource[i] ! in Sold[]) continue;
 AddProducedinputs(Snew[i],Ssource[i])
 Service Ssource[] = Pnew.getD().getAllSource(S)
 for all Services Ssource i = 1..n. {
 If (Ssource[i] ! in Sold[]) continue;

 AddReceivedinputs(Snew[i],Ssource[i])};

Now let us discuss the step DeriveServiceVariants, in which all the existing services
of old process that are required in the new process are first verified for need of varia-
tion and appropriately their input/output model is defined accordingly. For this also,
we consider the values of E and D of the process Pnew. One thing worth mentioning is,
that an iteration on E, will affect only the dependent services, while an iteration on D
can affect both the services corresponding to the variable Dij. This step is elaborated
here.

702 K. Ponnalagu and N.C. Narendra

Int n = Enew.getSize(); Int j = Dnew.getSize();
For (int i = 0; i<n;i++)
{

Service S = Enew[i].getSource();
Service t = Enew[i].getTarget();
// Each value of Enew[i], represents a class that supports methods that returns the source
and target services
If (Snew.contains(t)) continue; //Already created
Else // ModifyService
AddProducedInputs(t,s);
// Add data that are produced by service s to the input list of service t

}
For (int i = 0; i<j;i++)
{

Service S =Dnew[i].getSource();
Service t = Dnew[i].getTarget();
If (Snew.contains(t)) continue; //Already created
Else // ModifyService
AddReceivedInputs(t,s);
// Add data that are received as Inputs by s to the input list of t and output list of d

}

The final step of the algorithm is InstantiateServices(), which actually instantiates
the services of the new process Pnew. This is illustrated below, along with two methods
for adding received and produced inputs as per E and D dependencies, respectively.

addreceivedinputs(t,s)
{

s.addoutputs(s.getinputs());
// This method in the source service Structure s - adds its input data into its Output Model.

t.addinputs(s.getinputs(t));
// This method gets only those inputs that the target service t does not have
// for example S4 just wants liabilityinfo from S2 and not Custinfo,cliaminfo

}
addproducedinputs(t,s)
{

t.addinputs(s.getoutputs(s));
// add only those data that are produced by s; for example liabilityinfo produced by S1 is
added but not custinfo and claiminfo.

}
InstantiateServices(Service Snew[])

{
// Here we actually derive service variants based on input output list consolidated with above steps

 int n = s2.getSize();
for (int k = 0;, k <n; k++)
{

create(S2[k]);
// This method retrieves the Input and Output Model for each of the Service
S2[k] and instantiates the references based on other services

 }
}

 Discovering and Deriving Service Variants from Business Process Specifications 703

5 Illustration on the Running Example

Referring to our running example, this Section describes a prototype implementation
to the illustration of our algorithm. The prototype was implemented as a transforma-
tion plugin in IBM’s Rational Software Architect v7.0.

Recall that we have declared earlier the following for the associated services for
Verify claim: Start Service = S0, DetermineLiability = S1, PotentialFraudCheck =
S2, ClaimInvestigation = S3, Liability+FraudChecks = S4. Let us first start with the
illustration on Service S4. From step 1,3 and 5 in VOSD and from step (i) in Derive-
Services , we know that Snew = {S4}. As we mentioned in Section 4, we can define
S4 in terms of (Din, Dout)

With respect to Step (ii) in DeriveServices algorithm, this needs to be created based
on the execution/data dependencies: E = { e12, e24,} Where e12, e24= true. D = {d04,
d41,d12,d24,d43}. d04 = d41 ={custinfo, claiminfo}. d12 = {custinfo,Claiminfo,liabilityinfo}.
d24 = d43 = {liabilityinfo, result}. Hence for S4 as target, the Set E of Pnew provides S2,
whose execution provides a part of the inputs for S4. The Set D provides two sets of
received inputs from Services S0 and S2, which at this point are just existing services.
Hence Din of S4 = (Received Input of S0, Received Input of S2, Processed data
from S2 }

As can be seen here, we do not actually store the values, but only the references of
the above variables, as S0 and S2 are still to be modified for the new prcess flow Pnew
and the context of S4s creation is for Pnew and not for Pold. But as one completes the
algorithm and instantiates S4, it will contain the following: Din of S4 = {Custinfo,
Claiminfo, Liability Info, Result} that is instantiated from the above equation. Simi-
larly, one can derive the following: Dout of S4 = {Custinfo, Claiminfo, Liability
Info, Result}. The first two data derived from d41 and last two data derived from d43.
With this definition, Pold consists of the following implemented services.

S0 = {Min, Mout, Mproc}, where Min= Mout = {SetCustinfo(), SetClaimInfo()},
and Mproc = null

S1 = {Min,Mout,Mproc}, where Min = {SetCustinfo(). setClaimInfo()}, Mout =
{getLiabilityInfo()}, and Mproc = {processLiabilityInf()}

S2 = {Min, Mout, Mproc}, where Min = {SetCustInfo(),SetClaimInfo()}, Mout =
{getResult()}, and Mproc = {fraudcheck()}

S3 = {Min, Mout, Mproc}, where Min = {setliabilityInfo(),SetResult()}, Mout =
{getLiabilityInfo(), GetResult()}, and Mproc = {investigateClaim()}

The available Variant Model for the LiabilityInfo Service in Pold in the prototype
implementation is depicted in Figure 7. From step 2 of the VOSD algorithm, Service
S2 is declared as a variant. From Step 3 of the algorithm, we can see from Figure 7
that the available variation feature matches with the expected output data model that
supports creation of two new methods, with the names of the operations and their
associated parameter values confirming the matching. Now, in the case of Service S3,
from step 3 of the VOSD algorithm and this variation model, we could see that there
is no variation feature available. (In practical cases, there is possibility that the avail-
able variation features even if any, may not match the expected variant required for

704 K. Ponnalagu and N.C. Narendra

Fig. 7. Variant Model for Pold

Fig. 8. Transformation Plugin

Pnew) Hence from step 4 of the algorithm, we invoke the DerviceServices algorithm
and derive the new variant for S3.

Our transformation plugin is depicted in Figure 8, where the user can invoke the
service derivation transformation, and subsequently provide the process model Pnew as
the input to the transformation.

 Discovering and Deriving Service Variants from Business Process Specifications 705

We summarize the services for Pnew, below, with variations listed in bold-italic font:

S0 = {Min, Mout, Mproc}; where Min = Mout = {SetCustinfo(), SetClaimInfo()} and
Mproc = null

S1 = {Min,Mout,Mproc}, where Min = {SetCustinfo(). setClaimInfo()}, Mout = {get-
LiabilityInfo(),getCustinfo(),GetClaiminfo}, and Mproc = {processLiabilityInf()}

S2={Min,Mout,Mproc}, where Min = {Set-
CustInfo(),SetClaimInfo(),setLiabilityInfo()}, Mout = {getLiability-
Info(),,getResult()}, and Mproc = {fraudcheck()}

S3 = {Min, Mout, Mproc}, where Min = {setliabilityInfo(),SetResult()}, Mout = {get-
LiabilityInfo(), GetResult()}, and Mproc = {investigateClaim()}

Figure 9 depicts the output of our integrated VOSD algorithm, displaying Pold and

Pnew, with Pnew (circled in red) named as a variant of Pold.

Fig. 9. Output of Integrated VOSD Algorithm

6 Related Work

The importance of a systematic approach towards service identification from business
process specifications has been highlighted in [8], which bolsters the need for our
VOSD algorithm. One of the early formalizations of the variation-oriented analysis
and design (VOAD) principle can be found in [1]. Our paper incorporates and extends

706 K. Ponnalagu and N.C. Narendra

these ideas by applying it to the specific case of business process-based solutions and
deriving associated service variations. Another relevant paper is [4], which presents a
design method called Grammar-Oriented Object Design (GOOD), which provides a
means for the business analyst to declaratively specify the requirements of a dynami-
cally reconfigurable software architecture driven by business-process architectures.
Another approach similar to ours is presented in [2]; however, that paper primarily
concentrates on detailing various ServImpl-type variations expressed via the object-
oriented concept of inheritance (i.e., interfaces are considered to be invariant). In
contrast, our approach uses SOA principles to provide a far greater range of variabil-
ity, as already explained earlier in Section 3. In a similar vein, IBM’s Model-driven
Business Transformation (MDBT) approach [6] proposes a model-driven approach,
based on OMG’s MDA (http://www.omg.org/mda/) approach, for transforming busi-
ness requirements into IT solutions. Our approach is similar, but we focus on trans-
forming business processes into their constituent service specifications.

7 Conclusions and Future Work

In this paper, we have addressed the crucial problem of rapidly comparing an ex-
tended template business process (defined for a different context; defined for different
customer requirements) with an existing business process that is already implemented
as a choreography of collection of services; thereby enhancing reuse of these services
by appropriate modification and thereby gaining flexibility with minimal additional
effort. As part of this effort, we have described our integrated algorithm for discover-
ing (from a portfolio of reusable assets) and deriving service variants for stated busi-
ness process specifications, which we have called Variation-Oriented Service Design
(VOSD). Via IBM’s RSA Modeling Tool, we have also demonstrated our algorithm
on a realistic running example in the insurance domain. Our prototype implementa-
tion proves the practical usefulness of our algorithm; hence our primary future work is
to implement our algorithm along with our industry partners on real-life customer
engagements.

References

[1] Arsanjani, A., Zedan, H., Alpigini, J.: Externalizing Component Manners to Achieve
Greater Maintainability through a Highly Reconfigurable Architectural Style. In: Proceed-
ings of International Conference on Software Maintenance (ICSM) 2002. IEEE Computer
Society, Los Alamitos (2002)

[2] Schneiders, Puhlmann, F.: Variability Mechanisms in E-Business Process Families. In:
Proceedings of Business Information Systems, BIS 2006 (2006)

[3] Narendra, N.C., Ponnalagu, K., Srivastava, B., Banavar, G.S.: Variation-Oriented Engi-
neering (VOE): Enhancing Reusability of SOA-based Solutions. In: Proceedings of SCC
2008. IEEE Computer Society, Los Alamitos (to appear, 2008)

[4] Arsanjani, A.: Empowering the Business Analyst for On Demand Computing. IBM Sys-
tems Journal 44(1) (2005)

[5] Singh, M.P., Huhns, M.N.: Service Oriented Computing, 1st edn. Wiley-VCH Publishers,
Chichester (2004)

 Discovering and Deriving Service Variants from Business Process Specifications 707

[6] Kumaran, S.: Model-driven Enterprise. In: Proceedings of the Global EAI (Enterprise Ap-
plication Integration) Summit, pp. 166–180 (2004)

[7] Ponnalagu, K.: Deriving service variants from business process specifications. In: Proceed-
ings of ACM Compute (2008),
http://portal.acm.org/ft_gateway.cfm?id=1341776&type=pdf&col
l=&dl=GUIDE&CFID=25839879&CFTOKEN=86101169

[8] Hubbers, J.-W., Ligthart, A., Terlouw, L.: Ten Ways to Identify Services. SOA Magazine
(accessed May 21, 2008), http://www.soamag.com/I13/1207-1.asp

	Discovering and Deriving Service Variants from Business Process Specifications
	Introduction and Motivation
	Running Example
	Preliminaries
	Meta Model-Based Representation of Variations
	Modeling Business Process and Service Level Variations

	Integrated VOSD Algorithm
	Formal Process and Service Model
	Algorithm Description

	Illustration on the Running Example
	Related Work
	Conclusions and Future Work
	References

