
84

Understanding program behavior is
at the foundation of computer architecture
and program optimization. Many programs
have wildly different behavior on even the
largest of scales (that is, over the program’s
complete execution). During one part of the
execution, a program can be completely mem-
ory bound; in another, it can repeatedly stall
on branch mispredicts. Average statistics gath-
ered about a program might not accurately
picture where the real problems lie. This real-
ization has ramifications for many architec-
ture and compiler techniques, from how to
best schedule threads on a multithreaded
machine, to feedback-directed optimizations,
power management, and the simulation and
test of architectures. Taking advantage of
time-varying behavior requires a set of auto-
mated analytic tools and hardware techniques
that can discover similarities and changes in
program behavior on the largest of time scales.

The challenge in building such tools is that
during a program’s lifetime it can execute bil-
lions or trillions of instructions. How can
high-level behavior be extracted from this sea
of instructions?

The reality is this: The way a program’s exe-

cution changes over time is not totally ran-
dom; in fact, it often falls into repeating
behaviors, called phases. Automatically iden-
tifying this phase behavior is the goal of our
research and key to unlocking many new opti-
mizations. We define a phase as a set of inter-
vals (or slices in time) within a program’s
execution that have similar behavior, regard-
less of temporal adjacency. Recent research has
shown that it is indeed possible to accurately
identify and predict these phases in program
behavior to capture meaningful phase behav-
ior.1-8

The key observation for phase recognition
is that any program metric is a direct function
of the way a program traverses the code dur-
ing execution. We can find this phase behav-
ior and classify it by examining only the ratios
in which different regions of code are being
executed over time. We can simply and quick-
ly collect this information using basic block
vector profiles for off-line classification4,6 or
through dynamic branch profiling for online
classification.7 In addition, accurately captur-
ing phase behavior through the computation
of a single metric, independent of the under-
lying architectural details, means that it is pos-

Timothy Sherwood
University of California at

Santa Barbara

Erez Perelman
Greg Hamerly

University of California at

San Diego

Suleyman Sair
North Carolina State

University

Brad Calder
University of California at

San Diego

IN A SINGLE SECOND, A MODERN PROCESSOR CAN EXECUTE BILLIONS OF

INSTRUCTIONS AND A PROGRAM’S BEHAVIOR CAN CHANGE MANY TIMES.

SOME PROGRAMS CHANGE BEHAVIOR DRASTICALLY, SWITCHING BETWEEN

PERIODS OF HIGH AND LOW PERFORMANCE, YET SYSTEM DESIGN AND

OPTIMIZATION TYPICALLY FOCUS ON AVERAGE SYSTEM BEHAVIOR. INSTEAD

OF ASSUMING AVERAGE BEHAVIOR, IT IS NOW TIME TO MODEL AND OPTIMIZE

PHASE-BASED PROGRAM BEHAVIOR.

DISCOVERING AND EXPLOITING
PROGRAM PHASES

Published by the IEEE Computer Society 0272-1732/03/$17.00  2003 IEEE

sible to use phase information to guide many
optimization and policy decisions without
duplicating phase detection mechanisms for
each optimization.7

Phase behavior
We begin the analysis of phases with a

demonstration of the time-varying behavior
of two different programs from SPEC 2000,
gcc and gzip.9 To characterize the behavior of
these programs, we have simulated their exe-
cution all the way from start to finish. Each
program executes many billions of instruc-
tions and gathering these results took several
machine-years of simulation time. Figure 1
shows the behavior of each program, mea-
sured in terms of various statistics relating to
how the program interacts with the underly-
ing architecture over its execution.

Each point on the graph represents the aver-
age value for that metric (for example cache
misses) taken over 10 million instructions of
execution (an interval). We draw two impor-
tant points from these graphs. First, average
behavior does not sufficiently characterize a
program’s behavior. For example, in gzip the
instructions per cycle (IPC) varies from 1.2
to 1.7, and the number data cache misses
varies by almost an order of magnitude. In this
way, gzip’s behavior alternates between two
phases. Second, not only does the program’s
behavior change wildly over time, it changes
on the largest of time scales. The program can
exhibit stable behavior for billions of instruc-
tions and then suddenly change. Together,
these two points imply that an accurate model
of program behavior must account for these
long-term changes in the way a program exe-
cutes.

Although program behavior changes sig-
nificantly over time, the behavior of all of the
metrics tends to change in unison, although
not necessarily in the same direction. This
implies that the changes are due to something
more fundamental. If an automated approach
were capable of quantifying these fundamen-
tal changes, it would make it possible to
extract information about how a program is
changing in a way that you could generalize
to all hardware metrics.

In addition, such a method should enable
the automatic partitioning of a program’s exe-
cution into a set of phases that will quantify

85NOVEMBER–DECEMBER 2003

0
0.5

1
1.5

IP
C

0
20
40
60

bp
re

d

0
0.5

1
1.5

dl
1

0
0.2
0.4
0.6

il1

0

0.5

1

en
er

gy

0
0.2
0.4
0.6
0.8

ul
2

0 50 100

No. of instructions (billions)(a)

No. of instructions (billions)(b)
10 20 30 40

0
0.5

1
1.5

2
0

50
100
150

0
1
2
3
4
0

100
200
300
400
500

il1

0
2
4
6

en
er

gy

0
1
2
3

IP
C

bp
re

d
dl

1
ul

2

x
10

6
x

10
9

x
10

3
x

10
6

x
10

3
x

10
6

x
10

9
x

10
3

x
10

6
x

10
3

Figure 1.Plot of metrics over billions of instructions executed by the programs
gzip with input graphic (a) and gcc with input 166 (b). Each point on the graph
is an average over 10 million instructions. These graphs plot the number of uni-
fied L2 cache misses (ul2), energy consumed by the execution of the instruc-
tions, number of instruction cache misses (il1), number of data cache misses
(dl1), number of branch mispredicts (bpred), and the average IPC.

the changing behavior over time. The goal is
that after classification, each phase would con-
tain only intervals that have similar behavior.
Optimizations can then target individual
phases or use phase information to aid in con-
trol. To solidify our discussions on classifying
phase behavior, the following list contains def-
initions for both phases and the components
of a phase used for analysis and optimization:

• An interval is a section of continuous exe-
cution (a slice in time) within a program.
For the results presented here, we chose
intervals of the same size, as measured by
the number of instructions executed
within an interval (either 1, 10, or 100
million instructions4). We are currently
exploring the use of variable-sized inter-
vals.

• A phase is a set of intervals within a pro-
gram’s execution that have similar behav-
ior, regardless of temporal adjacency. In
this way, a phase can reoccur multiple
times through the program’s execution.

• Phase classification breaks a program’s
intervals of execution on a given input
into phases with similar behavior. This
phase behavior is for a specific program
binary running a specific input (a binary-
input pair).

• Similarity defines how close the behavior
of two intervals are as measured across
some set of metrics. Well-formed phases
should have intervals with similar behav-
ior across architecture metrics (such as
IPC, cache misses, and branch mispre-
dicts) and have similar working sets.

• The similarity metric is independent of
hardware metrics; we use it to judge the
similarity of intervals when performing
phase classification.

• A phase change is a noticeable and sud-
den change in program behavior (simi-
larity) over time (as if going from one
phase to another phase).

Single metric for identifying phases
As discussed earlier, any effective technique

for finding phase information requires a notion
of how similar two parts of a program’s execu-
tion are to one another. In creating this simi-
larity metric, it is advantageous not to rely on
statistics such as cache miss rates or perfor-

mance. Doing so would tie the phases to those
statistics and then you would need to reana-
lyze the phases every time some architecture
parameter changed, either statically (for exam-
ple, if the cache size changed) or dynamically
(if some policy changed adaptively). Tackling
these problems requires a metric that is inde-
pendent of any particular hardware-based sta-
tistic, yet still related to the fundamental
changes in behavior illustrated in Figure 1.

This led us to analyze the behavior of pro-
grams in terms of the code executed over time.
There is a strong correlation between the exe-
cuted set of paths in a program and the
observed time-varying behavior. The intuition
behind this is simple: What the code is doing
at a particular time determines program
behavior. With this idea in hand, it is possible
to find the phases in programs using only a
metric related to how the code is being exer-
cised—that is, what code was the processor
running and how often. It is important to
understand that using this approach finds the
phase behavior in Figure 1 by examining only
the frequency in which the code (really the
basic blocks) execute over time.

Basic block vector
To provide this metric, we developed the

basic block vector (BBV)5 to concisely capture
information about how a program changes its
behavior over time. A basic block is a section
of code executed from start to finish with one
entry and one exit. We use the frequencies with
which basic blocks execute as the metric for
comparing sections of the application’s execu-
tion. The intuition behind this is that program
behavior at a given time directly relates to the
code executing during that interval, and basic
block distributions provide us with this infor-
mation. A-program, when run for any inter-
val of time, will execute each basic block a
certain number of times. Knowing this infor-
mation provides a fingerprint for that interval
of execution and shows where the application
is spending its time in the code. The basic idea
is that the basic block distributions for two
intervals are fingerprints that indicate the sim-
ilarity between the intervals. If the fingerprints
are similar, then the two intervals spend about
the same amount of time in the same code,
and the performance of those two intervals
should be similar.

86

MICRO TOP PICKS

IEEE MICRO

More formally, a BBV is a one-dimension-
al array with one element in the array for each
static basic block in the program. During each
interval, the number of times program exe-
cution enters each basic block is counted and
recorded in the BBV (weighed by the num-
ber of instructions in the basic block). There-
fore, each element in the array is this count of
entry into a basic block multiplied by the
number of instructions in that basic block.
The BBV is then normalized by dividing each
element by the sum of all the elements in the
vector that occurred during that interval.

BBV difference
To find patterns in the program, we must

first have some way of comparing the simi-
larity of two BBVs. The operation for this
comparison takes as input two BBVs and out-
puts a single number showing how close these
BBVs are. There are several ways of compar-
ing two vectors, such as taking the dot prod-
uct or finding the Euclidean distance (straight
line between two points) or Manhattan dis-
tance (distance if movement can only be par-
allel to the axes). The tradeoffs between these
are explained more fully elsewhere,6 and we
use a mix of the both techniques depending
on the situation.

Besides BBVs, other methods are also
acceptably accurate means of gathering phase
information. These methods include creating
conditional branch working set bit vectors,10

sampling instruction PCs using VTune ,11 and
tracking the frequencies of loop (backwards
conditional) branches as well as other archi-
tecture-independent constructs.12 Only pro-
filing the number of times each loop branch
executes in a given interval yields phase clas-
sifications with accuracies similar to those
obtained with BBVs.12

Basic block similarity matrix
We use a basic block similarity matrix to

visually inspect the effectiveness of using
BBVs in determining the similarities among
intervals. The similarity matrix is the upper
triangular of an N × N matrix, where N is the
number of intervals in the program’s execu-
tion. An entry at (x, y) in the matrix represents
the Manhattan distance (similarity) between
the BBVs at intervals x and y. Figure 2 shows
the similarity matrices for the two example

programs, gzip and gcc. The matrix’s diago-
nal represents the program’s execution over
time from start to completion.

To interpret the graph, consider points along
the diagonal axis. Each point is perfectly sim-
ilar to itself, so all the points on the diagonal
are dark. Starting from a given point on the
diagonal, you can compare how that point
relates to its neighbors forward and backward
in execution by tracing horizontally or verti-
cally. To compare given interval x with inter-
val x + n, simply start at point (x, x) on the
graph and trace horizontally to the right to (x,
x + n). In the similarity matrices for gcc and
gzip, you can see large dark blocks, which indi-
cate repeating behaviors in the program. Large
triangular blocks that run along the diagonal
indicate stable regions where program behav-
ior is not changing over time. Rectangular dark
blocks that occur off the diagonal axis indicate
reoccurring behaviors, where a behavior that
occurs later in execution has also occurred
sometime in the past. When compared with
the metrics shown in Figure 1, it’s possible to
see that examining just the executed code suf-
fices to capture the program’s repeating nature.
This motivates the development of a technique
to capture these patterns automatically.

Offline phase classification
BBVs provide a compact and representative

summary of the program’s behavior for each
interval of execution. By examining the sim-
ilarity between them, it is clear that there exists
a high-level pattern within each program’s exe-
cution. To use this behavior, it is necessary to
have an automated way of extracting the phase
information from programs. Clustering algo-
rithms have proven useful in breaking the
complete program execution into smaller
groups (phases) that have similar BBVs.6

Because BBVs relate to the program’s overall
performance, BBV-based grouping results in
phases that are similar not only in their basic
block distributions but also in every other
metric measured, including overall perfor-
mance. In addition, you can gather BBVs
quickly because they require only the count-
ing of basic block execution frequencies.

Using clustering for phase classification
The goal of clustering is to divide a set of

points into groups such that points within

87NOVEMBER–DECEMBER 2003

each group are similar (by some metric, often
distance) and the points in different groups
are dissimilar. A well-known clustering algo-

rithm, k-means,13 can accurately break pro-
gram behavior into phases. Random linear
projection14 reduces the dimensionality of the
input data without disturbing the underly-
ing similarity information; it is a useful tech-
nique for speeding up the execution of
k-means. One serious drawback of the k-
means algorithm is that it requires the value
k—the number of clusters—as input. To
address this problem, we run the algorithm
for several k values and use a score to guide
our final choice for k. The following steps
summarize our algorithm at a high level; our
earlier work gives a detailed description of
each step:6

1. Profile the basic blocks executed in each
program, breaking the program up into
contiguous intervals of size N (for exam-
ple, 1 million, 10 million, or 100 million
instructions). Generate and normalize a
BBV for every interval.

2. Reduce the dimensionality of the BBV
data to P dimensions (for example, 15)
using random linear projection. The
advantage of performing clustering on
projected data is that it significantly
accelerates the k-means algorithm and
reduces the memory requirements by sev-
eral orders of magnitude.

3. Run the k-means algorithm on the
reduced-dimension data with values of k
from 1 to M, where M is the maximum
number of phases to use. Each run of k
means produces a clustering, which is a
partition of the data into k phases/clus-
ters. During this clustering k means com-
pares the similarity of intervals, grouping
them together into phases. Each run of
k means begins with a random initializa-
tion step, which requires a random seed.

4. To compare and evaluate the clusters
formed for different k, we use the
Bayesian information criterion (BIC)15

as a measure of the goodness of fit of a
clustering within a dataset. More for-
mally, BIC is an approximation to the
probability of the clustering given the
data that has been clustered. Thus, the
larger the BIC score, the higher the prob-
ability that the clustering is a good fit to
the data. For each clustering (k from 1 to
M), score the clustering’s fitness using the

88

MICRO TOP PICKS

IEEE MICRO

0B

20B

40B

60B

80B

100B
(a)

(b)

0B

10B

20B

30B

40B

Figure 2. Basic block similarity matrices for gzip-graphic (a) and
gcc-166 (b). The matrix diagonal represents a program’s execu-
tion to completion with units in billions of instructions. The
darker the points, the more similar the intervals (the Manhat-
tan distance is closer to 0); the lighter the points, the more dif-
ferent the intervals (the Manhattan distance is closer to 2).

formulation given by Pelleg and Moore.15

5. Choose the clustering with the smallest k,
such that its BIC score is at least X per-
cent of the best score. The clustering k
chosen is the final grouping of intervals
into phases. For the results presented
later, we used an 80 percent threshold
and M = 10.

These steps provide a grouping of intervals
into phases. The k-means algorithm groups
similar intervals together based on the BBV
similarity metric using the Euclidean distance.
We then choose a final grouping of phases
from the different options based on how well
formed the phases are, as measured by the BIC
metric.

Clusters and phase behavior
Figure 3 shows the result of running the

clustering algorithm on gzip and gcc, using
an interval size of 100 million instructions and
setting maximum number of phases M to 10.
The x axis corresponds to the program’s exe-
cution in billions of instructions, and the
graph indicates to which phase (labeled on the
y axis) each interval belongs.

This algorithm partitions gzip’s execution

into four clusters. Comparing these results
with Figure 2a, the cluster behavior captured
by the offline algorithm aligns closely with the
program’s behavior. Clusters 2 and 4 repre-
sent the larger sections of similar execution.
Cluster 3 captures the smaller phase that lies
in between these larger phases. Cluster 1 rep-
resents the phase transitions between the three
dominant phases. The cluster 1 intervals fall
into the same phase because they execute a
similar combination of code, which happens
to be part of the code behavior in either clus-
ter 2 or 4, and part of the code executed in
cluster 3. These transition points in cluster 1
also correspond to the same intervals that have
large cache-miss spikes, as shown in the time-
varying graphs of Figure 1.

Figure 3b shows how this algorithm parti-
tions gcc into eight clusters. Comparing these
results to Figure 2b, we see that it correctly cap-
tures even gcc’s more complicated behavior.
We see that this algorithm accurately groups
the intervals corresponding to the dark boxes
on the diagonal of the similarity matrix (Fig-
ure 2b) into dominant clusters 1, 4, and 7.

SimPoint
Understanding the cycle-level behavior of

89NOVEMBER–DECEMBER 2003

20 40 60 80 100

1

2

3

4

C
lu

st
er

 ID

10 20 30 40

No. of instructions executed (billions)

No. of instructions executed (billions)

1
2
3
4
5
6
7
8

C
lu

st
er

 ID

(a)

(b)

Figure 3. Graphs showing the phase clustering of the execution intervals for gzip-graphic (a)
and gcc-166 (b), based on our algorithm. The x-axis units are number of executed instruc-
tions; the graph shows for each interval of execution (every 100 million instructions) which
cluster the interval fell into. Using k-means clustering with the Euclidean distance we parti-
tion gzip’s full run of the execution into four phases; for gcc, we have eight phases.

a processor running an application is crucial
to modern computer architecture research. To
gain this understanding, architects typically
employ detailed cycle-level simulators. Unfor-
tunately, this level of detail comes at the cost
of simulation speed, and simulating the full
execution of an industry standard benchmark
on even the fastest simulator can take weeks or
months to complete. Offline phase analysis
provides an accurate and efficient work
around for this problem.

To address this problem we created the Sim-
Point4,6 tool to choose simulation points intel-
ligently using offline phase classification
algorithms. SimPoint calculates phases for a
program/input pair, and then chooses a sin-
gle representative from each phase and esti-
mates the remaining intervals’ behaviors by
performing a detailed simulation only on that
chosen representative. We choose this repre-
sentative for each phase (which is a cluster of
intervals) by finding the interval closest to the
cluster’s center (centroid). This selected inter-
val for a phase is called a simulation point for
that phase. We then perform detailed simula-
tion at the simulation points and weight the
performance by the size (number of intervals)
in its cluster. SimPoint can significantly reduc-

ing simulation time and provides an accurate
characterization of the full program. Figure 4
shows simulation accuracy results using Sim-
Point for the SPEC 2000 programs, compar-
ing them to the complete execution of these
programs. As described earlier, we choose one
simulation point for each cluster, so for gzip,
which has 4 clusters, we simulated 400 mil-
lion instructions. Despite simulating this lim-
ited number of instructions, our method had
only a 4 percent error for gzip.
For the non-SimPoint results, we ran a simu-
lation for the same number of instructions as
the SimPoint data to provide a fair compari-
son. Figure 4 shows that starting simulation
at the program’s beginning results in a medi-
an error of 58 percent when compared to the
full simulation, whereas blindly fast forward-
ing for 1 billion instructions results in a medi-
an 23 percent IPC error. When using the
clustering algorithm to create multiple simu-
lation points, we saw a median IPC error of 2
percent, and an average IPC error of 3 per-
cent. In comparison to random-sampling
approaches, SimPoint achieves similar error
rates but requires significantly less—five times
less—fast-forwarding time.4 In addition, sta-
tistical sampling can be combined with Sim-
Point to create a phase clustering that has a
low per-phase variance.4

Several researchers in academia and at Intel
are using SimPoint to accurately guide their
architecture simulation research. We distrib-
ute the code to track the basic blocks, perform
the analysis and the clustering, and pick the
simulation points as part of the SimPoint tool
(http://www.cs.ucsd.edu/users/calder/sim-
point/).

Online phase classification
Although the offline model provides a pow-

erful way to study and summarize program
phases, a way of exploiting phase behavior in
programs at runtime requires a slightly dif-
ferent approach. The results of offline analy-
sis show that many programs drastically
change behavior over time and often in a very
structured way. The offline analysis is useful
for discovering and exploiting these phases,
but there are potentially more opportunities
for phase-specific optimizations if we can
detect phases in a program as it runs.

With phase information about a running

90

MICRO TOP PICKS

IEEE MICRO

68

51
58

13

33

23

4
8

2
8

3,736 1,986

10

0

20

30

40

50

60

70

80

90

100

E
rr

or
 in

 p
er

fo
rm

an
ce

 e
st

im
at

io
n

of
 IP

C
 (

pe
rc

en
ta

ge
)

gzip gcc Median Maximum

Fast forward 1 billion instructionsFrom start Sample per phase

Figure 4. Simulation accuracy for the SPEC 2000 benchmark suite when
performing detailed simulation for a few hundred million instructions com-
pared to simulating the entire program. These results cover simulation from
the start of the program’s execution, for fast-forwarding through 1 billion
instructions before simulation, and using SimPoint to choose less than 10
hundred-million-instruction intervals to simulate. The median and the maxi-
mum results are for the complete SPEC 2000 benchmark suite.

program, architects can use this additional
information to make intelligent decisions
about power management, resource alloca-
tion, or thread scheduling. In fact, a runtime
system or processor can use phase informa-
tion to not only adapt its operations to pro-
gram phase behavior, it could also use it to
predict future behavior.7 An effective online
phase detection scheme enables all these pos-
sibilities.

Phase classification architecture
An online approach’s goal is to create a

small, easily implementable (in hardware or
software), runtime phase detection scheme.7

The challenge of designing an online scheme
to capture phases are:

• only a small, fixed amount of storage
is available for all of the information
collected;

• the online scheme learns the program’s
behavior as it executes, so there can only
be one pass through the data; and

• the computation involved should be
small enough to not interfere with the
system.

These challenges will have some cost, name-
ly that any dynamic technique will be less dis-
criminating in its choice of how to group
phases when compared to an offline tech-
nique. Figure 5 gives an overview of an archi-
tecture for phase classification. Each stage of
the hardware implementation is an approxi-
mation of one stage of the offline algorithm.
There are essentially four stages of the design,
our earlier work gives a detailed description.7

1. To approximate the tracking of basic
blocks in the offline approach, we track
the program counter (PC) of every com-
mitted branch and the number of
instructions (I) committed between the
current branch and the last branch. This
tuple provides almost exactly the same
information as the more careful tracking
of basic blocks.

2. To approximate random linear projec-
tion, we apply the projection beforehand
and store only the projected data, rather
than wait to apply this reduction after
generating a profile. We approximate the

projection by using a hashing function
on the branch PCs before we insert them
into the accumulators.

3. To build up a set of vectors, we use N
accumulators. The hashing function in
step 2 generates a hash of the PC that
maps it into one of the N accumulator
buckets. To approximate the offline algo-
rithm’s use of the basic block sizes, we use
I instead, adding I to the bucket that
maps to the branch PC. Stages 1 through
3 must occur at processor speed, but it
only involves a counter, a hash, and an
accumulator update, all of which we can
pipeline.

4. After updating the accumulator table for
some fixed amount of time, we must
approximate the clustering algorithm.
For classification, we must evaluate the
fingerprint with the following two ques-

91NOVEMBER–DECEMBER 2003

H

Accumulator Past-history table

Phase IDs

BufferBranch

No. of
instructions

Track
basic
blocks

Random
projection ClusteringAssemble

BBVs

A
pp

ro
xi

m
at

e

A
pp

ro
xi

m
at

e Approximate Approximate

Software approach

Hardware approach

C
la

ss
ify

Figure 5. Phase classification architecture. The architecture captures each
branch program counter along with the number of instructions from the last
branch. It increments the bucket entry, corresponding to a hash of the
branch program counter, by the number of instructions. After each profiling
interval has completed, the buckets represent a fingerprint that is com-
pared to the fingerprints in the past-history to classify the interval into a
phase.

tions in mind: Have we seen this behav-
ior before? And if so, when did we see it?
We answer these questions by compar-
ing values in the accumulator table with
the set of past behaviors (the past-histo-
ry table). If an entry in the past-history
table is within a certain threshold dis-
tance of the accumulator table’s entry,
then this interval is similar to other inter-
vals previously classified into that phase.

The online algorithm can perform phase clas-
sification on programs at runtime with little to
no impact on the processor core’s design. One
goal of phase classification is to divide the pro-
gram into a fairly homogeneous set of phases.
This means that an optimization adapted and
applied to a single segment of execution from
one phase will apply equally well to the other
parts of the phase. To quantify the extent to
which the online algorithm achieves this goal,
we measured the homogeneity of a variety of
architectural statistics on a per-phase basis.

Table 1 shows the results of performing this
analysis on the phases determined at runtime
for gcc and gzip, using an interval of 10 mil-
lion instructions. For both programs, this
table shows a set of statistics. The first phase
(listed as “full”) is the result of treating the
entire program as a single phase. In addition
to the average value, Table 1 also shows the
standard deviation for each statistic. If the
phase-tracking hardware is successful in clas-
sifying the phases, the standard deviations for
the various metrics should be low for a given

phase identification.
Looking at gcc’s energy consumption, we

observe that it swings radically (a standard
deviation of 90 percent) over the program’s
complete execution. Figure 1 shows this
graphically, plotting the energy usage versus
instructions executed. However, after divid-
ing the program into phases, we see that each
phase has very little variation within itself; all
have less than a 5 percent standard deviation.
By analyzing gcc, we also see that the phase
partitioning does a very good job across all of
the measured statistics, even though parti-
tioning used only one metric (tracking the
executed branches).

Dynamically using the phase information can
lead to new compiler optimizations with code
tailored to different phases of execution, phase
prediction, multithreaded architecture sched-
uling, power management, and other resource
distribution problems controlled by software,
hardware, or the operating system. We have
evaluated our phase classification architecture
through simulation by examining the effective-
ness of phase tracking and prediction for per-
phase value profiling, and for reconfigurable
data caches and processor widths.7

Phase classification research will open the
door for a new class of program analysis tech-
niques, and runtime and hardware optimiza-
tions targeted toward fine-tuning the behavior
of a program or system. Significant research lies
ahead to better understand phase behavior and
to tune phase classification algorithms, thresh-
olds, and interval sizes to many different uses.

92

MICRO TOP PICKS

IEEE MICRO

Table 1. Examination of per-phase homogeneity compared to the program as a whole (denoted by full). For

the two programs and each of the top five phases in each program, we show the average value of each metric

and the standard deviation.

phase IPC (stddev) bpred (stddev) dl1 (stddev) il1 (stddev) energy (stddev) ul2 (stddev)
full 1.32 (43.4%) 27741 (135.5%) 445083 (110.7%) 50763 (203.2%) 6.44E+08 (90.0%) 227912 (139.7%)

18.5% 0.61 (1.6%) 34665 (22.0%) 753382 (5.4%) 125091 (23.2%) 1.03E+09 (1.8%) 395997 (5.3%)
18.1% 1.95 (0.3%) 13048 (3.9%) 28112 (15.1%) 43 (73.9%) 3.22E+08 (0.2%) 1006 (5.6%)
7.2% 0.64 (0.2%) 843 (15.1%) 885081 (0.1%) 75 (215.5%) 9.78E+08 (0.3%) 443655 (0.1%)
4.0% 1.49 (1.2%) 10145 (7.6%) 703554 (6.8%) 15591 (5.2%) 4.20E+08 (1.1%) 354084 (7.0%)
3.9% 1.76 (1.6%) 2015 (13.6%) 98947 (5.9%) 102 (45.1%) 3.57E+08 (1.6%) 15595 (12.6%)

phase IPC (stddev) bpred (stddev) dl1 (stddev) il1 (stddev) energy (stddev) ul2 (stddev)
full 1.33 (16.3%) 56045 (11.1%) 90446 (58.2%) 60 (138.1%) 4.82E+08 (13.5%) 22880 (112.0%)

17.1% 1.24 (3.4%) 53300 (10.8%) 96960 (10.1%) 12 (44.2%) 5.05E+08 (3.5%) 24218 (8.6%)
9.4% 1.23 (3.8%) 54973 (11.5%) 99523 (11.3%) 11 (45.5%) 5.09E+08 (3.8%) 24518 (9.3%)
8.8% 1.76 (0.6%) 56449 (4.8%) 37331 (5.6%) 241 (8.4%) 3.55E+08 (0.6%) 5617 (15.6%)
8.0% 1.22 (4.3%) 54791 (6.8%) 99671 (11.9%) 40 (25.7%) 5.14E+08 (4.4%) 28153 (11.0%)
7.4% 1.24 (3.1%) 55215 (11.1%) 96701 (9.6%) 12 (35.4%) 5.04E+08 (3.2%) 23701 (8.4%)

g
cc

g
zi

p

References
1. R. Balasubramonian et al., “Memory

Hierarchy Reconfiguration for Energy and
Performance in General-Purpose Processor
Architectures,” Proc. 33th Annual Int’l Symp.
Microarchitecture, IEEE CS Press, 2000, pp.
245-257.

2. A. Dhodapkar and J.E. Smith, “Dynamic
Microarchitecture Adaptation Via Co-
Designed Virtual Machines,” Proc. Int’l Solid
State Circuits Conf., IEEE Press, 2002, pp.
154-155, 444.

3. A. Dhodapkar and J.E. Smith, “Managing
Multi-Configuration Hardware Via Dynamic
Working Set Analysis,” Proc. 29th Ann. Int’l
Symp. Computer Architecture, IEEE CS Press,
2002, pp. 233-246.

4. E. Perelman, G. Hamerly, and B. Calder,
“Picking Statistically Valid and Early Simulation
Points,” Proc. 12th Int’l Conf. Parallel
Architectures and Compilation Techniques,
IEEE CS Press, 2003, pp. 244-255.

5. T. Sherwood, E. Perelman, and B. Calder,
“Basic Block Distribution Analysis to Find
Periodic Behavior and Simulation Points in
Applications,” Proc. Int’l Conf. Parallel
Architectures and Compilation Techniques,
IEEE CS Press, 2001, pp 3-14.

6. T. Sherwood et al., “Automatically
Characterizing Large Scale Program
Behavior,” Proc. 10th Int’l Conf. Architectural
Support for Programming Languages and
Operating Systems, ACM Press, 2002, pp. 45-
57.

7. T. Sherwood, S. Sair, and B. Calder, “Phase
Tracking and Prediction,” Proc. 30th Ann. Int’l
Symp. Computer Architecture, IEEE CS Press,
2003, pp. 336-349.

8. M. Van Biesbrouck, T. Sherwood, and B.
Calder, “A Co-Phase Matrix to Guide
Simultaneous Multithreading Simulation,” to
be published in Proc. Int’l Symp. Performance
Analysis of Systems and Software, 2004.

9. T. Sherwood and B. Calder, Time Varying
Behavior of Programs, tech. report UCSD-
CS99-630, Univ. of Calif., San Diego, Aug.
1999.

10. A. Dhodapkar and J.E. Smith, “Comparing
Program Phase Detection Techniques,” Proc.
36th Ann. Int’l Symp. Microarchitecture, IEEE
CS Press, 2003, pp. 217-227.

11. B. Davies et al., Ipart: An Automated Phase
Analysis and Recognition Tool, tech. report,

Microprocessor Research Labs, Intel Corp.,
Nov. 2003.

12. J. Lau, S. Schoenmackers, and B. Calder,
Structures for Phase Classification, tech.
report UCSD-CS2003-0772, Univ. of Calif.,
San Diego, Oct. 2003.

13. J. MacQueen, “Some Methods for
Classification and Analysis of Multivariate
Observations,” L.M. LeCam and J. Neyman,
eds., Proc. Fifth Berkeley Symp. on
Mathematical Statistics and Probability, vol. 1,
Univ. of Calif. Press, 1967, pp. 281-297.

14. S. Dasgupta, “Experiments with Random
Projection,” Uncertainty in Artificial
Intelligence: Proc. Sixteenth Conf., Morgan
Kaufmann Publishers, 2000, pp. 143-151.

15. D. Pelleg and A. Moore, “X-Means: Extending
K-Means with Efficient Estimation of the
Number of Clusters,” Proc. 17th Int’l Conf. on
Machine Learning, Morgan Kaufmann
Publishers, 2000, pp. 727-734.

Timothy Sherwood is an assistant professor
in the Computer Science Department at the
University of California at Santa Barbara. He
has a PhD in computer science from the Uni-
versity of California at San Diego. Erez Perel-
man is a PhD candidate in the Computer
Science Department at UCSD. He has a BS
in computer science from UCSD. Greg
Hamerly is a post-doctoral student at the
Katholieke Universiteit Leuven. He has a PhD
in computer science from the University of
California at San Diego. Suleyman Sair is an
assistant professor of electrical and computer
engineering at North Carolina State Univer-
sity, and a member of the Center for Embed-
ded Systems He has a PhD in computer
science from the University of California at
San Diego. Brad Calder is an associate pro-
fessor of computer science and engineering at
UCSD. He has a PhD in computer science
from the University of Colorado, Boulder.

Direct questions or comments about this arti-
cle to Brad Calder, University of California at
San Diego; Department of Computer Science
and Engineering; 9500 Gilman Drive, Dept
0114; La Jolla, CA 92093-0114; calder@
cs.ucsd.edu.

93NOVEMBER–DECEMBER 2003

