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New drug discovery has been acknowledged as a complicated, expensive, time-
consuming, and challenging project. It has been estimated that around 12 years and
2.7 billion USD, on average, are demanded for a new drug discovery via traditional drug
development pipeline. How to reduce the research cost and speed up the development
process of new drug discovery has become a challenging, urgent question for the
pharmaceutical industry. Computer-aided drug discovery (CADD) has emerged as a
powerful, and promising technology for faster, cheaper, and more effective drug design.
Recently, the rapid growth of computational tools for drug discovery, including anticancer
therapies, has exhibited a significant and outstanding impact on anticancer drug design,
and has also provided fruitful insights into the area of cancer therapy. In this work, we
discussed the different subareas of the computer-aided drug discovery process with a
focus on anticancer drugs.
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INTRODUCTION

Up to now, cancer remains a global and serious public health challenge. It is estimated that there are
more than 200 different types of cancer, generally named according to the tissue where the cancer
was recognized for the first time. Cancer is considered to be one of the significant causes for death in
the 21st century and the most critical obstacle for the increase of global life expectancy. According to
an analysis by the world health organization (WHO) in 2015, cancer is the second leading cause of
death for patients younger than 70 years old in 91 countries and the third or fourth leading cause of
death among 22 other countries (Yan et al., 2019). Moreover, a global increase of 18.1 million new
cancer cases and 9.6 million cancer-related deaths have been reported in a previous study (Bray
et al., 2018), especially 70% of the death caused by cancer occur in low-income and middle-income
countries. The fast growth of the cancer incidence and mortality has turned out to be global health
challenges. How to reduce the cancer-related death rate has attracted significant attention from the
government, society, medical industry, as well as scientific communities, expecting the rapid
development of effective and safe drugs for cancer treatment.

Despite of the impressive progress in biotechnologies and further understandings of the disease
biology, the development of new, practical and innovative small molecule drugs remains an
arduous, time-consuming, and expensive project, which requires collaborations from many
expertise in multidisciplinary fields, including medicinal chemistry, computational chemistry,
biology, drug metabolism, clinical research, etc. Furthermore, it has been illustrated that the
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successful discovery and development of a new drug costs 12
years, and expensive investment (Kapetanovic, 2008). Thus,
novel drug development strategies with a reduced cost of time
and money, as well as an enhanced efficiency are in high
demand, which would contribute to a significant improvement
in global health and life expectancy. Since the successful
development of HIV protease inhibitor Viracept in the USA in
1997, which was the first drug design fully driven by its target
structure (Kaldor et al., 1997), computational methods have
served as an essential tool in drug discovery projects and have
been a cornerstone for new drug development approaches. This
makes the drug developmental process faster and cheaper.
Recently, the fast growth in computational power, including
massively parallel computing on graphical processing units
(GPUs), the continuous advances in artificial intelligence (AI)
tools (Chan et al., 2019; Yang et al., 2019), have translated
fundamental research into practical applications (Zhavoronkov
et al., 2019) in the drug discovery field. This attracted
considerable attention for their outstanding performance on
providing new promising perspectives and solutions to
overcome life-threatening diseases.

In this review, we aim at providing an overview of different
subjects of the computational-method-aided new drug discovery
processes in general, and anti-cancer therapy discovery in
particular. We reviewed some of the most representative
examples and clarified fundamental principles by exploring
studies on anticancer drug designs with the help of
Frontiers in Pharmacology | www.frontiersin.org 2
computational methods. A workflow of computational drug
discovery is explained in Figure 1.
ANTI-CANCER DRUG TARGET
PREDICTION

Human contains approximately 30,000 genes, among which
around 6,000 to 8,000 sites are estimated as potential
pharmacological targets. However, less than 400 encoded
proteins have been proved to be effective for drug development
until now (Drews, 2000; Chen et al., 2016). Cancer, compared to
many other human diseases, now has a plethora of potential
molecular targets for therapeutic development (Lazo and
Sharlow, 2016). Traditional drug discovery mainly follows the
paradigm of “one molecule - one target - one disease”, without
considering the interactions between drugs and proteins.
However, an important fact that many complex diseases are
relevant to a variety of target proteins (Hopkins, 2008;
Yamanishi et al., 2008; Chen et al., 2012) has been overlooked.
Furthermore, unexpected drug functions derived from off-targets
are an accidental and uncontrollable activities because of the
“poly-pharmacological” properties of certain drugs, which might
result in undesirable side effects. Those are particularly
pronounced for cancer drugs. On the other hand, there are
some positive examples that benefit from the different pathways
targeted by one given molecule. For example, sildenafil (viagra)
FIGURE 1 | A workflow for drug discovery: from target identification to drug approval.
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was developed to treat angina, but now it is used for erectile
dysfunction therapy (Ghofrani et al., 2006). There are several
drugs, including anticancer drugs, whose corresponding target
proteins (both primary and non-target) remain yet unidentified
or unknown (Takarabe et al., 2012). Furthermore, some
attractive and potentially effective cancer targets remain
outside of the scope of pharmacological regulation. Some of
these targets such as phosphatases, transcription factors, and
RAS family members have been described as undruggable, as
they lack effective enzymatic active sites (Lazo and Sharlow,
2016). To make the full use of known drugs to treat new
indications, the characterization of all potential new ligand
binding sites has been illustrated as a key point in drug
repositioning and repurposing. Therefore, new and highly
qualitative bioinformatic target prediction methods are
required for the accurate prediction of drug targets.

Up to now, a wide range of drug target interactive web
servers has been established, providing a series of drug-target
databases and prediction tools (see Tables 1 and 2).
Moreover, various computational approaches have been
used to study potential interactions between proteins and
drugs. In particular, network-based models and ML-based
models have emerged as important tools. A review by Chen
et al. summarizes several available computational models for
this application (Chen et al., 2016). Interestingly, a method
proposed by Campillos et al. that uses the similarity of drug
side effects to determine whether multiple drugs could
interact with the same target proteins attracted our
attention (Campillos et al., 2008). Based on this research,
Frontiers in Pharmacology | www.frontiersin.org 3
Takarabe et al. took advantage of the US FDA's adverse event
reporting system (AERS) to define the pharmacological
similarity of all potential medicines and developed a novel
system to predict large-scale interactions between unknown
drug-targets (Takarabe et al., 2012). Notably, AERS was
employed to predict interactions between drugs and targets
for the first time. In 2010, Klipp et al. summarized several
available computational models for network-based drug-
target prediction (Klipp et al., 2010). Moreover, various
biological data settings, including structures of bioactive
compounds, sequences of target proteins, and information
of ligand-target interactions, have been combined. A series
of machine learn ing-based approaches have been
demonstrated as efficient tools in detecting relationships
among drug structures and corresponding target proteins
from a large amount of data, such as supervised learning
method (Srivastava et al., 2014), bipartite graph learning
method (Li and Chen, 2013), bipartite local model (Yildirim
et al., 2007), and so on. A recent review by Mayr et al.
compared the predictive performance of deep learning with
other prediction approaches for multiple drug targets in the
comparative studies of composite target prediction methods.
As a result, feed-forward neural networks were identified
with better performance in drug target prediction than other
methods (Mayr et al., 2018).

As above, since a large number of compounds and vigorous
efforts are abandoned and wasted due to the off-target effects
during the classical drug development procedure, a greatly
enhanced development of target prediction in new drug
exploration exhibited attractive advantages and further
expansion in this area are still highly desirable
STRUCTURE-BASED DRUG DISCOVERY

Structure-based strategy relies on the known structural
information to define the interaction effect between bioactive
compounds and the corresponding receptors. (Wang et al.,
2000). With the development of biomolecular spectroscopic
technologies such as X-ray crystallography and nuclear
magnetic resonance (NMR), remarkable progress has been
made in this field, leading to considerable improvements in
our structural understanding of the drug target. Taking
advantages of the three-dimensional structure of the proteins,
new ligands could be rationally designed to trigger therapeutic
effects. Hence, structure-based design (SBD) could provide
critical insights into new drug design and development via
discovering and optimizing the initial lead compounds (Prada-
Gracia et al., 2016; Lu et al., 2018a). The high affinity ligand
regulates validated drug targets selectively to influence specific
cellular activit ies , ult imately achieving the desired
pharmacological, and therapeutic effects (Urwyler, 2011).
Capoten (captopril), the first ACE (angiotensin-converting
enzyme) inhibitor, was one of the first successful examples of
using structural information to optimize drug designs in the
1980s (Anthony et al., 2012). Since this study, structure-based
TABLE 1 | Drug-target database.

Databases Websites

DrugBank https://www.drugbank.ca/
TTD http://bidd.nus.edu.sg/group/ttd/ttd.asp
MATADOR http://matador.embl.de/
SuperTarget http://insilico.charite.de/supertarget/
TDR targets http://tdrtargets.org/
PDTD http://www.dddc.ac.cn/pdtd/
ChEMBL https://www.ebi.ac.uk/chembldb
STITCH http://stitch.embl.de/
BindingDB http://www.bindingdb.org/
CancerDR http://crdd.osdd.net/raghava/cancerdr/
DCDB http://www.cls.zju.edu.cn/dcdb/
TABLE 2 | Computational tools for target prediction.

Computational tools Websites

SEA https://omictools.com/sea-2-tool
Pharmmapper http://www.lilab-ecust.cn/pharmmapper/
Chemmapper https://omictools.com/chemmapper-tool
Tide http://sysbio.molgen.mpg.de/tide
DINIES http://www.genome.jp/tools/dinies/
SuperPred http://prediction.charite.de/
SwissTarget Prediction http://www.swisstargetprediction.ch/
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drug development started to serve as a novel and powerful
algorithm and technique to promote faster, cheaper, and more
effective drug development. In the past decade, extensive efforts
have been made to promote the strategy of SBD, more and more
successful applications played important roles in new medical
research (Debnath et al., 2019; Hong et al., 2019; Mendoza et al.,
2019; Itoh, 2020; Tondo et al., 2020).

Molecular Docking
Molecular docking is a typical structure-based protocol in
rational drug design by studying and predicting the binding
patterns and interaction affinities among the ligand and receptor
biomolecules (Ferreira et al., 2015). It could be categorized as
rigid docking and flexible docking according to the flexibility of
the ligands involved in the computational process (Halperin
et al., 2002; Dias and De Azevedo, 2008). The rigid docking
method is a binding model which only considers the static
geometrical, physical, and chemical complementarity between
the ligand and the target proteins, while ignores the flexibility
and the induced-fit theory (Salmaso and Moro, 2018). In general,
the rigid docking, which is fast and highly effective, is applied to
the high throughput virtual screening with a large number of
small-molecule databases to be time-efficient. While the flexible
docking method considers more detailed and accurate
information. With the rapid improvement of computing
resources and efficiency, flexible docking methods developed
continuously and became more easily accessible. There are
different types of software available for docking, such as Glide,
FlexX, DOCK, AutoDock, Discovery Studio, Sybyl, etc.

The molecular docking process is mainly composed of three
steps. First, the structures of small molecules and target proteins
should be prepared in advance. In this step, abundant
experimentally solved structures are available in the open access
PDB database (http://www.rcsb.org), which can be used to
understand many physiological processes based on the crystal
structures, and also for homologous template models if docking
structures are of interest. Second, it can act as an engine for
predicting conformations, orientations, and positional spaces in
the ligand binding site (Mathi et al., 2018). Conformational search
algorithms carry out this task to predict the conformations of
binary complexes by applying the methods of systematic and
stochastic search. Systematic search techniques include: (i)
Exhaustive search; (ii) Fragmentation; (iii) Conformational
Ensemble. On the other hand, stochastic methods include: (i)
Monte Carlo (MC) methods; (ii) Tabu search methods; (iii)
Evolutionary Algorithms (EA); (IV) Swarm optimization (SO)
methods (Ferreira et al., 2015). Finally, these programs evaluate
the putative binding-free energy, which associates the scoring
function to determine which compounds are more likely to bind
to targets during the molecular docking (Huang et al., 2010).
There are four essential types of scoring functions, including: (i)
Consensus scoring functions (ii) Empirical scoring functions; (iii)
Knowledge-based scoring functions; (iv) Force-field based scoring
functions (Kortagere and Ekins, 2010). Furthermore, new scoring
capabilities have been developed, for example (i) machine learning
technologies; (ii) interactive fingerprints; (iii) quantum
mechanical scores (Yuriev et al., 2015).
Frontiers in Pharmacology | www.frontiersin.org 4
Structure-Based Pharmacophore Mapping
With the development in the past decades, the pharmacophore
mapping method has been considered as one of the most useful
technology during the process of drug discovery. All kinds of
structure-based approaches have been conducted to improve
pharmacophore modeling, which has been widely used for
virtual screening, de novo design as well as lead optimization
(Yang, 2010; Lu et al. , 2018a). The structure-based
pharmacophore (SBP) is another useful method. Based on the
availability of ligand structures, SBP modeling methods can be
cataloged into two types: target-ligand complex-based methods
and target-binding site-based (without ligand) methods (Pirhadi
et al., 2013). The approach based on the target-ligand complex can
conveniently locate the ligand-binding pocket of the protein and
assess the main ligand-protein interactions. This is exampled by
LigandScout (Wolber et al., 2006), Pocket v.2 (Chen and Lai, 2006),
and GBPM (Ortuso et al., 2006). It is worth noting that they cannot
be used to the situations where ligands are unknown. The
macromolecule (without ligand)-based method implemented in
Discovery Studio (Lu et al., 2018b) is an obvious example which is
not dependent on the ligands and the receptor-ligand interactions.
The LUDI program (Bohm, 1992) defines the interactions within
the binding site as pharmacological characteristics. Although this
purely SBP method has the advantage of describing the entire
interaction capability of a binding pocket, the main limitation of
this method is that the derived interaction maps typically involve
many unprioritized interaction features.
LIGAND-BASED DRUG DISCOVERY

Similarity Searching
The main principle and motivation behind the ligand-based
approaches in drug discovery is a concept known as molecular
similarity; based on this principle, molecules tend to perform
similar biological effects due to the high structural similarity
(Zhavoronkov et al., 2019). In other words, ligand-based drug
discovery methods rely on the structural information of the active
ligand that interacts with the target protein, and such a compound
with interesting biological properties can be used as a query
template in identifying and predicting new chemical entities
with similar properties. Since only the structure of the known
active small molecules are required, this methodology is
considered as an indirective protocol for drug discovery. It offers
an option when the 3D target protein structure is unknown or
cannot be predicted. Hence, this approach is commonly applied to
screen novel ligands with interesting biological activities in silico
and to optimize the biological activities of ligands to improve drug
pharmacokinetics including Adsorption, Distribution,
Metabolism, Excretion, Toxicity (ADMET) properties.

This simple and most widely used technique is based on
molecular descriptors. Physicochemical properties (e.g.,
molecular weight, logP, Energy of high occupied molecular
orbital (EHOMO), Energy of lowest unoccupied orbital
(ELUMO), charges), as well as 2D fingerprint and 3D shape-
similarity searches can be introduced as coordinates to represent
May 2020 | Volume 11 | Article 733
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the reference compounds. The 2D fingerprint (Molprint2D and
Unity 2D) and 3D shape similarity methods (MACCS),
extended-connectivity fingerprints (ECFP), rapid overlay of
chemical structures (ROCS), and Phase Shape, are more often
used for molecular representation in virtual screening (Rush
et al., 2005). For example, Bologa et al. (2006) applied 2D
fingerprint and 3D shape-similarity methods to identify novel
agonists of the estradiol receptor family receptor GPR30 (Bologa
et al.). Furthermore, both methods have been successfully
applied in virtual screenings, and both technology have
exhibited better performance against a number of targets than
docking methods in terms of the scalability and computational
time. However, the main problem of the similar methods is their
preference for input molecules and the difficulty in deciding
which input structures to be used (Hu et al., 2012).

Ligand-Based Pharmacophore Mapping
Another more precise approach in comparison with the molecular
descriptors is the pharmacophore-based approach, in which a
pharmacophore model (PH4) is developed based on a group of
active compounds. The IUPAC (International Union of Pure and
Applied Chemistry) pointed out that a pharmacophore is “a
collection of spatial and electronic characteristics necessary to
ensure optimal supramolecular interactions with specific
biological targets and to trigger (or block) their biological
reactions” (Buckle et al., 2013). Thus, structural overlap of key
molecular features derived from active compounds or a binding site
in space are used as a pattern to represent the most probable
chemical characteristics. The newly identified molecules that match
and show a high complementation to the developed
pharmacophore are likely to be active against the target protein of
interests. Therefore, they can be selected as candidates for more
further investigations. This approach has become a key
computational strategy to promote and guide drug discoveries in
the absence of macromolecular structures (Chao et al., 2007).

The process of pharmacophore modelling can be summarized as
following: (i) Selection of a training set of ligands (active and inactive
compounds). (ii) Molecular preparation (low energy conformations).
(iii) Ligand alignment/superimposition and pharmacophore model
generation. (iv) Validation of pharmacophore models (Chiang et al.,
2009). Ligand-based pharmacophoremodeling highly depends on the
availability of a good training set of compounds manifesting the same
binding mode.

QSAR Modeling
QSAR (Quantitative Structure Activity Relationship) is another
ligand-based approach that relies on analyzing the biological
activities of drugs using various molecular descriptors (MDs) or
fingerprints (FPs). These models mathematically describe how
the activities response to the targets according to the ligand's
structural characteristics. QSAR was obtained by calculating the
correlations between the properties of the ligand binding agent
and the biological activity measured by experiments. Different
ML and deep learning (DL) approaches have also been applied to
develop QSARmodels (Mendenhall and Meiler, 2016): including
Support Vector Machine (SVM), Random Forest (RF),
Frontiers in Pharmacology | www.frontiersin.org 5
Polynomial Regression (PR), Multi Linear Regression (MLR),
Artificial Neural Network (ANN). Unlike the pharmacophore
models, QSAR models can measure biological activities
quantitatively and can even find positive or negative effects
according to certain characteristics of the molecule on its activity.

QSAR has been applied to many other molecular design
purposes, such as predicting the new molecule analog activity,
optimizing lead, and predicting new structural leads in drug
discovery. In the classical 2D-QSAR approaches, the biological
activity is related to physical and chemical features consisting of
steric, electronic, and hydrophobic characters of drugs, and the
relationships are represented as mathematical equations (Hansch
and Fujita, 1964). More advanced 3D-QSAR approaches, such as
comparative molecular field analysis (Cramer et al., 1988) and
molecular similarity indexes in a comparative analysis (Klebe
et al., 1994), are based on the force field calculations. The
structural information of molecules is needed, and developed
models are represented in 3D contour maps facilitating the
visualization and interpretation.
USING MD SIMULATION TO FIND NEW
DRUG BINDING SITES

Many important biological events rely on the information of
protein-ligand complex interactions. The recognition and
characterization of LBP is the key to understand the function of
endogenous ligands and synthetic drug molecules. GPCRs perform
an important role in a variety of physiological processes. GPCRs are
a class of commonly used targets in drug discovery (Conn et al.,
2009). Recent discovery indicated that beside binding to orthosteric
sites, ligands could bind to different allosteric sites that are far away
from the targeted binding pockets (Tautermann, 2014; Flock et al.,
2015; Devree et al., 2016). Unfortunately, the position of such
allosteric pocket is unclear without the information of
experimental structures, and predicting the existence of such sites
could facilitate the discovery of new drugs (Tautermann, 2014). A
recent overview described the progresses in important
computational tools for the prediction of functional sites, such as
3DLigandStie (http://www.sbg.bio.ic.ac.uk/~3dligandsite/),
COACH-D (http://yanglab.nankai.edu.cn/COACH-D/), or
SiteMap (https://www.schrodinger.com/sitemap), and many
others. However, these reported tools often create multiple
possible ligand binding sites, and sometimes it is not easy for the
user to confirm which active pocket is real one for the compound
binding. To overcome this limitation, methods based on molecular
dynamics (MD) have been developed in recent years. For example,
the supervised MD is an efficient approach for precise sampling and
the identification of ligand-binding sites (Sabbadin andMoro, 2014;
Deganutti et al., 2015; Cuzzolin et al., 2016). The conventional long-
timescale MD has also been successfully applied for new drug
binding sites (Chan et al., 2018). Similarly, a study by Chan et al.
(2020) reported that an additional sodium ion, which located in the
vicinity of the orthosteric binding site, by MD simulations (Chan
et al., 2020). MD could also be applied for the recognition of the
allosteric sites involved in protein kinases (Tong and Seeliger, 2015),
May 2020 | Volume 11 | Article 733
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Ras proteins (Hancock, 2003), and Staphylococcus aureus Sortase A
(Mazmanian et al., 1999). As above, information obtained fromMD
predictions provides new opportunities of drug discovery.
ARTIFICIAL INTELLIGENCE IN ANTI-
CANCER DRUG DISCOVERY

Computational drug design has successfully promoted the discovery
of several new anticancer drugs, which has become a milestone in
this area. Gefitinib (Muhsin et al., 2003), Erlotinib (Grunwald and
Hidalgo, 2003), Sorafenib (Wilhelm et al., 2006), Lapatinib (Wood
et al., 2004), Abiraterone (Jarman et al., 1998), Crizotinib (Butrynski
et al., 2010) are all approved drugs that have been discovered based
on computational drug methods. Until now, the anticancer drug
research is rapidly progressing: computational, and AI methods are
generating new promising results. As an example, SR13668 is
optimized from indole-3-carbinol (I3C) using PH4 design.
SR13668 has shown a strong effect on different cancers in phase I
(Chao et al., 2007). Recently, Rodrigues et al. have successfully
identified a potent inhibitor for 5-lipoxygenase by using machine
learning (ML)-based method which was developed from
physicochemical and pharmacophore characteristics (Reker et al.,
2014; Rodrigues et al., 2018). With the arrival of AI, the design of
anticancer drugs in silico has undergone unprecedented changes,
and state-of-the-art deep learning approaches have the potential to
produce the excellent chemical properties needed for newmolecules
(Gomez-Bombarelli et al., 2018). Similarly, Jann et al. have
developed the first ML-based anti-cancer compound generator
using variational autoencoders (VAEs) and have demonstrated
Frontiers in Pharmacology | www.frontiersin.org 6
that the compound production may be selective toward molecules
with high predicted inhibition to a specific cancer (Born et al., 2019).
This implied that models could be developed to yield drug
candidates with highly desired efficacy (IC50) against a target of
interest. This breakthrough could transform the design of anticancer
drugs in silico by taking advantage of the bimolecular features of the
disease to improve the success rate of lead compound discovery.
SUCCESSFUL STORIES OF
COMPUTATIONAL DRUG DISCOVERY

Computational methods have proved to play an essential role in
modern drug discovery. Since computational methods could cover
almost all stages of the drug discovery pipeline, the applications of
computational methods in anticancer drug discoveries have shown
great advantages in terms of the required investment, resources, and
time. More recently, computational methods have become a potent
and powerful tool in several successful cases of anticancer drug
development. Herein, we list several successful applications of
computational methods for small molecule drugs, which have been
applied to cancer treatment or are at later stages in the clinical trial.

The development of Crizotinib is a successful example of applying
structure-based design techniques (Cui et al., 2011; Kung et al., 2015).
Crizotinib has been considered as a selective and potent cMet/ALK
dual inhibitor, which was approved by FDA in 2011 (Cui et al., 2013).
c-Met, also known as HGFR (hepatocyte growth factor receptor), and
its corresponding natural ligandHGF (hepatocyte growth factor) play
a critical role in different cell activities (Christensen et al., 2005). The
over-expression of c-Met protein has been often detected in human
A

B

C

SCHEME 1 | Successful applications of computational methods in anti-cancer drug discovery.
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cancers (including SCLC and NSCLC) (Bottaro et al., 1991; Liu et al.,
2008), and abnormal function of c-Met signaling was observed in
various solid and blood tumor cancers. Thus, c-MET is an attractive
and promising oncology target.

The investigation started with evaluating a series of 3-substituted
indolin-2-ones, a potent class of kinase inhibitors, indolin-2-one
derivatives for c-MET inhibition. Among the derivatives,
compound 1 (PHA-665752, Scheme 1) showed strong activity
against the c-MET autophosphorylation process and the
corresponding biological activations both in vitro and in vivo.
However, the bad drug-like characteristics of compound 1 (PHA-
665752) limited its further study. The co-crystal structure analysis of
compound 1 with the kinase domain of c-MET elucidated the key
inhibitor binding site, presenting opportunities for more efficient
drug designs. In combination with re-designing the central rings of
compound 1 (PHA-665752), a new set of 5-substituted 3-
benzyloxy-2-aminopyridine series has been developed. Among
these newly designed derivatives, compound 2 displayed
promising inhibition against c-MET. It is noted that lipophilic
efficiency (LipE) was employed as the parameter for the binding
effectiveness to monitor the progress of optimization. To further
improve the c-Met inhibitory potency, a docked structure of
compound 2 with the c-Met kinase domain was carried out to
guide the application of structure-based design techniques.
Followed by optimization of 3-benzyloxy group, the functional
group at 5-position of the 2-aminopyridine, and examination of
the chiral center, crizotinib (PF-02341066) with effective tumor
growth inhibition and good drug performance has been achieved
(see Scheme 1A). Moreover, Crizotinib has demonstrated
remarkable clinical efficacy on c-MET gene amplification against
lung cancer, lymphoma, and esophageal cancers (Cui et al., 2011;
Lennerz et al., 2011; Schwab et al., 2014).

In 2012, Axitinib (AG-013736) was approved by the FDA as as a
new therapy for advanced renal cell carcinoma (Meadows and
Hurwitz, 2012) to treat VEHG. Axitinib was developed with a
structure-based drug design strategy and served as an inhibitor by
binding to the VEGF kinase domain in the DFG-out conformation
(Kania, 2009; Kania et al., 2016). The VEGF (vascular endothelial
growth factor) family functions as important regulators of many
signaling networks which involves in angiogenesis. VEGF signaling
was identified in tumor cells, and the VEGF signaling plays a crucial
role in the development of malignant diseases. As the key receptors
of VEGF, VEGFRs serve as ligands in the VEGF signaling network.
The VEGF receptors are known as a class of the tyrosine kinases
(RTKs), including VEGFR-1 (also called FLT1), VEGFR-2 (also
called FLK1 and KDR) and VEGFR-3 (also called FLT4). Blocking
the action of VEGFRs with a pan kinase inhibitor against VEGFR-1,
VEGFR-2, and VEGFR-3 has been proved to be an efficient way of
anti-angiogenic drug development.

During the developmental process, the crystal structure of
phosphorylated construct (p-VEGFR2D50), the resolved
structures of inhibitor–VEGFR2D50 (unphosphorylated kinase)
complexes, and robust SAR provided important guidance to the
rational drug design (Kania, 2009). Combining with the complex
structure information, a collection of compounds has been
evaluated, generating pyrazoles 3 and benzamide 4 as the starting
Frontiers in Pharmacology | www.frontiersin.org 7
point for the drug design. Further efforts have been made by the
modeling of pyrazole 3 into the ligand-free p-VEGFR2D50
structure to modify the conformation of pyrazole 3 further,
leading to the generation of indazole compounds as novel kinase
inhibitors. Among these derivatives, compound 5 with a styryl
functional group at the 3-position of the indazole ring was
identified to exhibit potent inhibitory effect (Ki of 0.3 nM), with
a high level of LipE and LE. The crystal structure of VEGFR2D50
with compound 5 revealed the detailed enzyme-ligand mode,
showing the indazole core binding to the “open” DFG-in
conformation of VEGFR2D50. Superimposing the other two
VEGFR2D50– inhibitor co-crystal complex structures
demonstrated a more precise 3D structure of the key binding
sites for the induction of the DFG-out conformation. Inspired by
the superposition result, a chimera design protocol was applied for
the subsequent design to capture the above described inhibitor
interactions, giving access to 6–sulfur linked indazole compound 6
and the corresponding amide analogs. Further studies on the
overlay of VEGFR2D50 bound co-crystal structures of benzamide
4 and indazole 6 demonstrated that an additional amide group on
the orthosteric site of S-phenyl group would help to make the two
important hydrogen bonds with the hydrogen bonding groups
from Glu885 and Asp1046 of VEGFR2D50 and provide highly
potent inhibitors. Further applying the truncation strategy
generated axitinib (AG-013736) (see Scheme 1B), which
exhibited a remarkable improvement on cellular potency,
desirable physiochemical, and PK properties. Very recently,
axitinib (Inlyta®), in combination with pembrolizumab
(KEYTRUDA®), was approved as the first-line anticancer drug
against renal cell carcinoma (RCC)(Atkins et al., 2018).

Heat shock protein 90 (HSP90) has direct and essential effects
on the correct performance of different proteins with their
activation, conformation, stabilization, and localization
functions, whose alterations are associated with cancer
development. Thus, HSP90 has become a promising target for
cancer treatment (Whitesell and Lindquist, 2005; Pearl and
Prodromou, 2006; Sharp and Workman, 2006; Workman et al.,
2007). The biological functions of HSP90 have been identified.
Its crystal structures indicated that HSP90 has four functional
domains: a middle domain, an N-term domain, ATP/ADP-
binding domain, and a C-term dimerization domain (Pearl and
Prodromou, 2006). Based on the structural information of
HSP90, a high-throughput screening was conducted which
generated the active drug inhibitor: compound 7 (CCT018159)
(Cheung et al., 2005; Smith et al., 2006; Sharp et al., 2007). The
subsequently obtained co-crystal structure of HSP90-compound
7 (CCT018159) complex revealed that further modification of
compound 7 (CCT018159) by replacing or adding certain
functional groups could improve the pharmacokinetic
properties. Moreover, replacing the methyl group to an amide
group (VER-49009), changing pyrazolyl ring to isoxazole
aromatic ring (VER-50589), and modifying some other
chemical groups (see Scheme 1C) led to a potent effect in
animal cancer models. Followed by toxicology and safety
evaluation, Luminespib (NVP-AUY922) has been proved to be
a strong HSP90 inhibitor which is now in clinical trials. More
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TABLE 3 | The list of FDA-approved anticancer drugs in recent 3 years from the National Cancer Institute database.

Name Chemical Structure Therapeutic area Target and functiuon Year of Approval

Alpelisib Breast cancer PI3K inhibitor 2019
(Markham, 2019a)

Cladribine Hairy cell leukemia Adenosine deaminase inhibitor 2019
(Bryson and Sorkin,
1993)

Darolutamide Prostate cancer Androgen receptor inhibitor 2019
(Markham and
Duggan, 2019)

Entrectinib Non-small cell lung cancer
and Solid tumors

Tyrosine kinase inhibitor 2019
(Al-Salama and
Keam, 2019)

Erdafitinib Urothelial carcinoma FGFR tyrosine inhibitor 2019
(Markham, 2019b)

Fedratinib
Hydrochloride

Myelofibrosis Tyrosine kinase inhibitor 2019
(Zhang et al., 2014)

Selinexor Multiple myeloma Nuclear export inhibitor 2019
(Syed, 2019)

Zanubrutinib Mantle cell lymphoma Bruton's tyrosine kinase inhibitor 2019
(Syed, 2020)

Abemaciclib Breast cancer Cyclin-dependent kinase inhibitor 2018
(Kim, 2017b)

Apalutamide Prostate cancer Androgen receptor inhibitor 2018
(Al-Salama, 2019)

Binimetinib Melanoma MEk1 and MEK2 inhibitor 2018
(Shirley, 2018)

Dacomitinib Non-small cell lung cancer Oral kinase inhibitor 2018
(Sidaway, 2018)

(Continued)
Frontiers in Pha
rmacology | www.frontiersin.org
 8
 May 2020 | Volu
me 11 | Article 733

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Cui et al. Computational Drug Discovery
TABLE 3 | Continued

Name Chemical Structure Therapeutic area Target and functiuon Year of Approval

Duvelisib Chronic lymphocytic
leukemia (CLL) and follicular
lymphoma (FL)

PI3K Kinase inhibitor 2018
(Blair, 2018)

Encorafenib Colorectal cancer and
Melanoma

BRAF Kinase inhibitor 2018
(Shirley, 2018)

Gilteritinib
Fumarate

Acute myeloid leukemia Tyrosine kinase inhibitor 2018
(Dhillon, 2019)

Glasdegib
Maleate

Acute myeloid leukemia Hedgehog pathway inhibitor 2018
(Shaik et al., 2019)

Iobenguane I
131

Pheochromocytoma Radioactive therapeutic agent 2018
(Giammarile et al.,
2008)

Ivosidenib Acute myeloid leukemia Isocitrate dehydrogenase-1 (IDH1) inhibitor 2018
(Dhillon, 2018)

Larotrectinib
Sulfate

Solid tumors Tropomyosin-related kinase (Trk) inhibitor 2018
(Gajdosik, 2017)

Lorlatinib Non-small cell lung cancer Tyrosine kinase inhibitor 2018
(Su et al., 2019)

Talazoparib
Tosylate

Breast cancer Poly (ADP-ribose) polymerase (PARP) inhibitor 2018 (Eskiler, 2019)

Acalabrutinib Chronic lymphocytic
leukemia, small lymphocytic
lymphoma, and mantle cell
lymphoma

Bruton's tyrosine kinase inhibitor 2017
(Markham and
Dhillon, 2018)

(Continued)
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recently, Luminespib, a drug in phase one clinical trials,
exhibited positive results for patients with ALK rearrangements
(Felip et al., 2018). Luminespib (NVP-AUY922) also exhibited
potent anti-tumor activity in lung adenocarcinomas targeting
EGFR exon 20 insertion mutations and cellular models in a
confirmatory clinical trial (Jorge et al., 2018; Piotrowska et al.,
2018). Moreover, Luminespib (NVP-AUY922) serves as one of
Frontiers in Pharmacology | www.frontiersin.org 10
the components in anticancer combination therapies, which are
now at different stages of clinical trials (Garcia-Carbonero et al.,
2013; Rong and Yang, 2018). To depict how computational drug
discovery facilitates to the development of anticancer drugs, we
listed the FDA-approved anticancer drug in recent 3 years which
was obtained from National Cancer Institute database (Heller,
1951) in Table 3.
TABLE 3 | Continued

Name Chemical Structure Therapeutic area Target and functiuon Year of Approval

Brigatinib Non-small cell lung cancer Anaplastic lymphoma kinase (ALK) and epidermal
growth factor receptor (EGFR) kinase inhibitor

2017
(Markham, 2017a)

Copanlisib
Hydrochloride

Follicular lymphoma Phosphoinositide 3-kinase (PI3K) inhibitor 2017
(Markham, 2017b)

Enasidenib
Mesylate

Acute myeloid leukemia Isocitrate dehydrogenase-2 inhibitor 2017
(Gras, 2017)

Midostaurin Acute myeloid leukemia Synthetic indolocarbazole multikinase inhibitor 2017
(Kim, 2017a)

Neratinib
Maleate

Breast cancer Receptor tyrosine kinases (RTKs), Human
epidermal growth factor receptor 2 (HER2; ERBB2),
and Human epidermal growth factor receptor
(EGFR) inhibitor

2017
(Kotecki et al.,
2019)

Niraparib
Tosylate
Monohydrate

Recurrent epithelial ovarian,
fallopian tube and primary
peritoneal cancer

Poly (ADP-ribose) polymerase (PARP) inhibitor 2017
(Mittica et al., 2018)

Ribociclib Breast cancer Cyclin-dependent kinase (CDK) inhibitor 2017
(Syed, 2017)
May 2020 | Volu
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are not listed in this short list. We then identified the FDA label of the drugs in the shortlist by searching in the U.S. National Library of Medicine database “DailyMed”. The FDA approval date,
drug function, and therapeutic area are retrieved from DailyMed database.
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CONCLUSION AND PERSPECTIVE

Cancer has become a tangible threat to human health. About 9.6
million people are estimated to die from the various forms of
cancer each year, according to a statistic report (Collaborators,
2019). Cancer has become the second-largest disease that causes
human death (Reimann et al., 2020). However, developing a new
drug molecule costs 12 years and 2.7 billion USD on average
(Hauser et al., 2017). The drug development for cancer even
becomes more complicated, especially considering the molecular
pharmacology is still not well understood. Hence, the discovery
and development of new drugs is considered very expensive and
time-consuming. In this respect, computational methods could be
constructive for performing different tasks including protein-
interaction network analysis, drug-target prediction, binding site
prediction, virtual screening, and many others. All these
innovative methods could considerably facilitate the anti-cancer
drug discovery. In recent years, with the advance of AI, more
Frontiers in Pharmacology | www.frontiersin.org 11
sophisticated methods, such as retro-synthetic routine plan, drug
scaffold generation, drug binding affinity predictions, were
developed. The useful predictions generated by computational
models combined with experimental validations could further
speed up the anti-cancer drug development.
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