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Abstract Given an event log describing observed behaviour, process discovery

aims to find a process model that ‘best’ describes this behaviour. A large variety of

process discovery algorithms has been proposed. However, no existing algorithm

returns a sound model in all cases (free of deadlocks and other anomalies), han-

dles infrequent behaviour well and finishes quickly. We present a technique able

to cope with infrequent behaviour and large event logs, while ensuring soundness.

The technique has been implemented in ProM and we compare the technique with

existing approaches in terms of quality and performance.

Keywords: process mining, process discovery, block-structured process models, sound-

ness, fitness, precision, generalisation

1 Introduction

Process mining techniques aim to support organisations in improving their business

processes. Event logs of historical behaviour can be used to discover process models of

the real processes as present in the organisation, as opposed to manually created models

that reflect wishful thinking, should-be or as-it-was-two-years-ago behaviour. Auditing

of discovered models can prove compliance with organisational and governmental regu-

lations [3], and replay of historical behaviour on the discovered model can reveal social

networks and bottlenecks [17,15,4].
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Figure 1: Unsound process model.

The challenge in process discovery is to find

the ‘best’ process model given recorded histori-

cal behaviour. Which process model is ‘best’ is

typically evaluated using several quality criteria.

Four important quality criteria are fitness, preci-

sion, generalisation and simplicity. An unfitting

model cannot reproduce all behaviour recorded in

the log. An imprecise model allows for too much

additional behaviour that is not described in the log. A non-general model only de-

scribes the behaviour in the log and therefore might disallow future behaviour absent

in the log. A non-simple model needs a lot of places, transitions and arcs to express its

behaviour and might be hard to read.

Another important quality criterion is soundness: all process steps can be executed

and some satisfactory end state, the final marking, is always reachable. For instance, the
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Petri net in Figure 1 is not sound as it contains a deadlock from which the final marking

with only a single token in the final place can never be reached. An unsound process

model can still be useful, but applying tasks such as evaluation, auditing, finding social

networks and bottlenecks can be difficult if not impossible. Therefore, for most use

cases an unsound process model can be discarded without even considering the event

log it is supposed to represent.

Traces in a log might follow many different paths through the process. In most real-

life event logs, some paths are taken infrequently, or traces only differ by occurrence of

infrequent activities. Such logs contain infrequent behaviour and challenge discovery

algorithms, as a process model scoring well on all quality criteria might not exist. If

infrequent behaviour is included in the model, simplicity might be sacrificed, if infre-

quent behaviour is excluded from the model, fitness might be sacrificed. Fortunately,

the Pareto principle (also known as the 8020 rule) often applies to event logs. Typically,

80% of the observed behaviour can be explained by a model that is only 20% of the

model required to describe all behaviour. The 80% model shows the “highways” in the

process. Hence, it is more intuitive, but can also be used as a starting point for outlier

detection. [2].

To obtain an 80% model, a classical approach is to globally filter the log before

discovering a model. This has numerous disadvantages, as it is difficult to identify in-

frequent behaviour, and even when infrequent behaviour is filtered out, discovery al-

gorithms (α [6], B’ [16], ILP [21]) might still produce undesirable models. Other ap-

proaches were designed to ignore infrequent behaviour and can produce an 80% model

but may perform less on other quality criteria: genetic approaches [5,9] have long run

times and a heuristic approach [20] produces unsound models.

As of today, no technique has been proposed that discovers a sound 80% model,

does that fast and is able to filter infrequent behaviour. Several existing approaches

apply divide-and-conquer techniques [10,22,16], in which the event log is split and

a model is constructed recursively. In this paper we present an extension of such an

approach, IM, called Inductive Miner - infrequent (IMi), that aims to discover a sound

80% model fast. We introduce infrequent behaviour filters in all steps of IM, such that

infrequent behaviour is filtered locally.

IMi is implemented in the InductiveMiner package of the ProM framework [14]. To

evaluate IMi, we compare its performance and its discovered models to other discovery

algorithms by means of the quality criteria using real-life logs.

The remainder of this paper starts with a description of logs, process trees and IM.

In Section 3, IMi is introduced. In Section 4 IMi is compared to existing mining algo-

rithms. Section 5 concludes the paper.

2 Preliminaries

Event Logs. An event log is a collection of traces. Each trace is a sequence of events

that represent occurrences of activities of a process execution in the respective order.

Note that a trace might appear multiple times in an event log. The trace without events

is denoted with ǫ.
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Process trees. The block-structured process models discovered by IM, ETM and IMi

are process trees. A process tree is an abstract representation of a sound block-structured

workflow net [6]. A tree represents a language, a leaf describes the singleton language

of an activity, and a non-leaf node is an operator that describes how the languages of

its children are combined. In this paper, we will consider four operators: ×, →, ∧ and

	. The × operator denotes the exclusive choice between its children, → the sequential

composition and ∧ the interleaved parallel composition. The 	(m1,m2 . . .mn) has

two groups of children: m1 is the loop body and m2 . . .mn is the loop redo part. A

trace in the language of 	(m1,m2 . . .mn) starts with a trace from m1, followed by a

repetition of a trace from any m2 . . .mn and a trace from m1 again. For instance, the

language of 	(a, b, c) is {〈a〉, 〈a, b, a〉, 〈a, c, a〉, 〈a, b, a, c, a〉 . . .}.

Another example of a process tree is ×(→(a, b),∧(c, d),	(e, f)), denoting the lan-

guage (ab)|(cd)|(dc)|(e(fe)∗). For a formal definition, please refer to [16].

Inductive Miner In this paper, we extend an existing divide-and-conquer approach to

process discovery. Divide-and-conquer has been used in process discovery before. For

instance, [?] combines it with transition systems and regions; [22] combines it with

trace alignments. In this paper we extend the Inductive Miner (IM) [16], of which we

first give its basic algorithmic idea and illustrate it with a running example.

IM works by recursively a) selecting the root operator that best fits L, b) dividing

the activities in log L into disjoint sets and c) splitting L using these sets into sublogs.

These sublogs are then mined recursively, until a sublog contains just a single activity.

We first introduce how IM selects an operator and an activity division, and illustrate it

with a running example.

Consider log L: [〈a, b, c, a, b, e, f〉50, 〈a, b, f, e〉100, 〈d, e, f〉100, 〈d, f, e〉100]. In a

directly-follows graph, each node represents an activity and an edge from node a to node

b is present if and only if a is directly followed by b somewhere in L. The frequency

of edge (a, b) is how often this happens. Figure 2a shows the directly-follows graph of

L. IM searches for a characteristic division of activities into disjoint sets, a cut, of the

directly-follows graph. Each operator (×, →, ∧ or 	) has a characteristic cut of the

directly-follows graph. If such a characteristic matches, IM selects the corresponding

operator. Otherwise, a flower model, allowing for all sequences of activities, is returned.

The dashed line in Figure 2a is a → cut: all edges crossing it go from left to

right. Using the cut {a, b, c, d}, {e, f}, IM splits the log by splitting each trace cor-

responding to the cut: L1 = [〈a, b, c, a, b〉50, 〈a, b〉100, 〈d〉200] for the left branch, L2 =
[〈e, f〉150, 〈f, e〉200] for the right branch. Then, IM recurses. We first consider L1. Fig-

ure 2b shows its directly-follows graph, the dashed line denotes an × cut, as no edge

crosses the cut. The log L1 is split in L3 = [〈a, b, c, a, b〉50, 〈a, b〉100] and L4 = [〈d〉200].
L4 consists of only a single activity, so for L4 IM discovers the leaf d. The discovered

process tree up till now is →(×(. . . , d), . . .).

IM recurses further. Figure 2c shows the directly-follows graph of L2 with its ∧ cut,

which splits L2 into L5 = [〈e〉350] and L6 = 〈f〉350]. Figure 2d shows the directly-

follows graph of L3 with its 	 cut. IM splits L3 into L7 = [〈a, b〉200] and L8 = [〈c〉50].
The complete process tree discovered by IM is →(×(	(→(a, b), c), d),∧(e, f)). Fig-

ure 2e shows the corresponding Petri net. For more details, see [16].
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Figure 2: Directly-follows graphs. Dashed lines denote cuts. Edges have their frequen-

cies denoted. (e) is the mined Petri net.

3 Extending IM

In this section, we introduce Inductive Miner - infrequent (IMi) by adding infrequent

behaviour filters to all steps of IM. For each of the operational steps of IM it is de-

scribed how infrequent behaviour affects the step and how distinguishing frequent and

infrequent behaviour can be used to improve discovery of the 80% model. In each re-

cursion step, IMi first applies the steps of IM unaltered. Only if this fails and IM would

return a flower model, the filters are applied.

Frequencies of traces and events are ignored by IM but are taken into account by

IMi in order to distinguish frequent and infrequent behaviour. In the operator and cut

selection steps, two techniques are applied: filtering the directly-follows graph for in-

frequent edges and using a variant of the directly-follows graph for selection of →.

Filters are added to base case detection to filter accumulated artifacts of filtering over

recursions. In the following, k denotes a user-defined threshold value between 0 and 1
to separate frequent and infrequent behaviour. Filters on the operator and cut selection

steps are described first, followed by filters on base cases, and filters on log splitting.

3.1 Filters on Operator & Cut Selection

In the operator and cut selection steps, a heuristics-style filter is applied by IMi. In case

of →, a variation of the directly-follows graph can be used.

Heuristics-style Filtering. Consider log L1: [〈a, b, c, a, b, e, f〉50, 〈a, b, f, e〉100,
〈d, e, f〉100, 〈d, f, e〉100, 〈d, e, d, f〉1], which is the log used in Section 2 extended with

an infrequent trace 〈d, e, d, f〉. Figure 3a shows its directly-follows graph. Compared to

Figure 2a, the infrequent trace introduces the edge (e, d), and therefore the dashed line

is not a → cut.

Similar to the technique used in HM, IMi filters the directly-follows graph to only

contain the most frequent edges. The edge (e, d) is relatively infrequent compared to

the other outgoing edges of e. An outgoing edge of a node is too infrequent if it has

a frequency of less than k times the frequency of the strongest outgoing edge of that

node. All too infrequent edges are filtered out in IMi before cuts of ×, → and 	 are

detected.
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Eventually-follows Graph. Despite heuristics-style filtering, infrequent edges might

remain in the directly-follows graph. Consider log L2 = [〈a, c, d, e, b〉, 〈a, b, a, e, d, c〉,
〈a, e, c, b, d〉, 〈a, d, b, c, e〉]. The second trace is the only trace containing two as: the

second a is infrequent. Figure 3b shows the directly-follows graph of L2. The dashed

line in Figure 3b is not a sequence cut as edge (b, a), introduced by the infrequent a,

crosses it in the wrong direction. As all outgoing edges of b have frequency 1, no value

of k could filter edge (b, a).
Similar to a technique used in [19] (”weak order relation”), IMi uses the eventually-

follows graph, which is the transitive closure of the directly-follows relation: an edge

(a, b) is present if and only if a is followed by b somewhere in the log.

The eventually-follows graph of L2 is shown in Figure 3c. In this graph, all outgoing

edges of b are amplified, except the infrequent edge (b, a), which can then be filtered

out.

In this example, using the eventually-follows graph allows IMi to deal with infre-

quent behaviour.

An infrequent occurrence of an activity still increases frequency of infrequent edges,

but adds at most 1 to each of them. The eventually-follows graph amplifies all other be-

haviour, so using the eventually-follows graph for → cut detection increases robustness

against infrequent behaviour. IMi uses a filtered eventually-follows graph to detect →
cuts and if it finds one, selects → as operator.
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Figure 3: Directly and eventually follows graphs.

3.2 Filters on Base Cases

In addition to the single-activity base case in IM, as an artifact of filtering it is possible

that traces without events, ǫ, remain. On both base cases filters are introduced.

Single Activities. Assume the following two logs:

L1 = [ǫ100 , 〈a〉100 , 〈a, a〉100 , 〈a, a, a〉100 ]
L2 = [ǫ1 , 〈a〉100 , 〈a, a〉1 , 〈a, a, a〉1 ]

Both L1 and L2 consist of a single activity, cannot be split further and are base cases.

Given the representational bias of IMi, for both logs either a flower model or a single
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activity a can be discovered. In L1, all traces are frequent and a flower model is ob-

viously the best choice. In L2 however, only 〈a〉 is frequent and a best represents the

frequent behaviour.

Choosing either option influences quality dimensions: discovering a for L1 sacri-

fices fitness, while discovering a flower model for L2 sacrifices precision. a is only

discovered by IMi if the average number of occurrences per trace of a in the log is close

enough to 1, dependent on the relative threshold k.

Empty Traces. Assume the following log: L = [〈a, b, d〉100, 〈a, c, d〉100, 〈a, d〉]. In the

first recursion, IMi selects the → operator and splits L into L1 = [〈a〉201], L2 =
[ǫ1, 〈b〉100, 〈c〉100] and L3 = [〈d〉201].

Consider L2. A fitting solution for the empty trace in L2 would be to mine ×(τ, . . .)
and recurse on L2\{ǫ}. For L2, ǫ is infrequent and discovering ×(τ, . . .) would sacrifice

simplicity. This is a tradeoff, but for L2 clearly ×(τ, . . .) is preferred. To overcome this

problem, IMi only discovers ×(τ, . . .) if ǫ is frequent enough compared to the number

of traces in the log and with respect to k. If ǫ is not frequent enough, IMi filters ǫ from

L2 and recurses on L2 \ {ǫ}.

3.3 Filters on Log Splitting

Assuming the operator and cut have been selected, some infrequent behaviour in the

log might not fit the chosen operator and cut. If not filtered out, this unfitting behaviour

might accumulate over recursions and obscure frequent behaviour.

This section describes how infrequent behaviour can be filtered during log splitting.

It is assumed that the operator and cut are correctly selected and that any behaviour that

violates this selection is infrequent. For each operator, we describe the types of viola-

tions that can be detected and how they are filtered by IMi, illustrated by an example.

In these examples, Σ1 = {a}, Σ2 = {b} is the chosen cut and L1, L2 are the sublogs

to-be-created.

× Behaviour that violates the × operator is the presence of activities from more than

one subtree in a single trace. For instance, the trace t1 = 〈a, a, a, a, b, a, a, a, a〉
contains activities from both Σ1 and Σ2. Σ1 explains the most activities, is most

frequent. All activities not from Σ1 are considered infrequent and are discarded:

〈a, a, a, a, a, a, a, a〉 ∈ L1.

→ Behaviour that violates the → operator is the presence of events out of order ac-

cording to the subtrees. For instance, in the trace t2 = 〈a, a, a, a, b, b, b, b, a, b〉, the

last a occurs after a b, which violates the →. Filtering infrequent behaviour is an

optimisation problem: the trace is to be split in the least-events-removing way.

In t2, the split 〈a, a, a, a〉 ∈ L1, 〈b, b, b, b, b〉 ∈ L2 discards the least events.

∧ A parallel operator allows for any sequence of behaviour of its subtrees. There-

fore, no behaviour violates ∧ and infrequent behaviour can be neither detected nor

filtered while splitting the log.

	 Behaviour that violates the 	 operator is when a trace does not start or end with the

loop body: For instance, 	(a, b), is violated by all traces that do not start and end

with an a. For each such invalid start or end of a trace, an empty trace is added to
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L1 to increase fitness of the resulting model. Considering the trace t3 = 〈b, a, b〉,
then [ǫ2, 〈a〉1] ⊆ L1 and [〈b〉2] ⊆ L2.

In each recursion step, first the operator and cut selection steps of IM are performed

by IMi. If that would result in the flower model, the procedure is applied again, with

the infrequent behaviour filters in operator and cut selection, base cases and log split-

ting, such that in all steps of IM filters are applied by IMi. In the next section, IMi is

compared to existing process discovery mining techniques.

4 Comparison to Other Discovery Algorithms

In this section, we compare IMi to existing mining algorithms on performance and

quality criteria of discovered models, using ideas from [18,11]. We first describe the

experimental setup and the used logs, and finish with a discussion of the results.

4.1 Experimental setup

We compare the mining algorithms IM, IMi, HM, ILP and ETM using the following

quality criteria: we compare performance and measure soundness, fitness, precision,

generalisation and simplicity. To provide a baseline, we include a flower model (FM),

allowing for all sequences of activities. and a trace model (TM)1. Figure 4 gives an

overview of the experimental setup.

preprocess 

log apply miner

convert to 

Petri net

measure fitness, 

precision, 

generalisation

determine 

soundness

determine 

simplicity

mining time

Figure 4: Experimental setup

Preprocessing. As a preprocessing step, we add artificial start and end events to the

logs. Mining algorithms might require single start and end events, and these events help

to determine soundness.

Mining. Secondly, the miners are applied: IM IMi, ILP, HM, ETM, FM and TM. We

compare all mining algorithms using their default settings. Like in [11], parameter op-

timisation is outside the scope of this paper. HM and ETM do not produce a Petri net.

Therefore the output of each of these miners is converted to a Petri net, measured min-

ing time includes this conversion. We report an indicative mining time on a dual Intel

Xeon E5-2630 hexacore, having 64GB of RAM, running 64-bit Windows 7. As we

want to mine models fast, we set a maximum mining time of two hours. ILP is stopped

abruptly after this bound, ETM is allowed to finish its round of genetic steps.

1 A trace model allows for all traces in the event log, but no other behaviour.
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Measuring. We are permissive in the soundness check: we add obvious final markings

to the discovered models if the mining algorithm does not provide it, and each reason-

able final marking in the discovered models is considered to be a valid final marking to

be reached by the process.

To measure fitness [7], precision [8] and generalisation [1] of the mined models we

use the PNetReplayer package in the ProM framework [14]. For these measures, first a

projection of the log on the discovered model is computed, an alignment. The technique

described in [7] provides an alignment that shows the least deviation between log and

model.

For computation of the alignment, the final marking to be reached is relevant. On

the models discovered by miners that do not provide a final marking, we compute the

alignment assuming that every marking is a final marking. For fitness, this yields an

upper bound2. Experiments show that the upper bound is not necessarily tight: we found

differences of 0.3 in fitness between measured with and without final marking. In the

results, we denote these upper bound fitness values using italics.

From the alignment, a graph of reached and reachable markings, and edges between

them is computed. On the markings in this graph, the number of edges that is never used

in the alignment is a measure for precision [8], while the frequency of the edges used in

the alignment is a measure for generalisation. The values of precision and generalisation

highly depend on the chosen optimal alignment. Therefore, the results with and without

final marking should not be compared for precision and generalisation. Experiments

show that the values are quite close: we found differences with a maximum of about

0.1 in precision when there is no final marking, and 0.005 for generalisation. We denote

values obtained without final marking in italics.

We assess simplicity by measuring the number of arcs, places and transitions in the

Petri nets.

4.2 Logs

To compare the mining algorithms, we use 12 real-life event logs. Table 1 characterises

the different logs. A process from the gynaecology department of an academic hospital

is logged in the BPIC’11 log [12]. The BPIC’12 log [13] originates from an appli-

cation process for a personal loan or overdraft within a global financial organisation.

Furthermore, we use non-public logs of a building permit approval process in five mu-

nicipalities, resulting from the CoSeLog project3. We include these five both untouched,

WABO 1 through 5, and filtered to contain only activities common to all five, WABO

1 c through 5 c.

4.3 Results

Table 1 shows the results. ✗ indicates an unsound model, ✓ a sound. A dash (-) indicates

that the miner did not produce a result, an empty space indicates that measurement could

not be obtained on our machine due to memory restrictions. For some experiments,

2 We adapted the fitness computation in the PNetReplayer package to achieve this.
3 See http://www.win.tue.nl/coselog/wiki/start.
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mining took longer than two hours. This is denoted with (1). The experiments for which

a final marking had to be guessed are denoted with (2).

A model with a deadlock is denoted with (10). (11) denotes that the model contains

a dead transition, (12) that the model contains either an unbounded or an unreachable

transition.

Table 1: Log sizes and results.
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traces 1143 13087 434 434 286 286 481 481 324 324 432 432
events 150291 262200 13571 9287 10439 6898 16566 11846 9743 6650 13370 8752
activities 624 36 173 44 160 44 170 44 133 44 176 44

re
m

a
rk

s

IM
IMi
HM (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
ILP (1) (1) (1) (1) (1)

ETM
FM
TM (1) (1)

s
o

u
n

d
n

e
s
s

IM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

IMi ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

HM - (12) ✗ (10) ✗ (11) ✗ (10) ✗ (11) ✗ (12) ✗ (12) ✗ (12) ✗ (12) ✗ (12) ✗ (12) ✗

ILP - (12) ✗ - (12) ✗ (12) ✗ - - - (12) ✗ (12) ✗

ETM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TM - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

m
in

in
g

ti
m

e
(s

) IM 68.3 5.6 0.8 0.2 0.6 0.2 0.9 0.3 0.4 0.1 0.6 0.2
IMi 182.3 8.1 5.1 0.4 1.7 0.6 1.8 0.5 0.8 0.6 1.3 0.6
HM 7200.0 2519.2 1.9 0.2 2.5 2.1 1.9 0.2 1.1 0.1 2.0 2.3
ILP 7200.0 5085.3 7200.0 319.8 1343.5 123.3 7200.0 7200.0 7200.0 1406.2 1452.4 185.1

ETM 7220.7 51.1 7261.7 2189.1 6018.9 2539.8 5524.2 7282.5 7260.2 2998.1 4268.5 4828.4
FM 1.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0
TM 7200.0 7200.0 320.6 27.9 252.6 25.1 361.3 87.1 115.8 16.8 131.1 19.4

fi
tn

e
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s

IM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
IMi 0.698 0.931 0.756 0.780 0.977 0.888 1.000 0.874 0.993 0.757 0.990 0.833
HM - 0.940 0.957 0.979 0.960

ILP - 1.000 - 1.000 1.000 - - - 1.000 1.000 1.000

ETM 0.158 0.022 0.372 0.709 0.464 0.616 0.520 0.593 0.403 0.698 0.562 0.680
FM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
TM - - 1.000 1.000 1.000 1.000 1.000
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IM 0.009 0.040 0.090 0.034 0.077 0.035 0.075 0.070 0.090 0.038 0.083
IMi 0.300 0.637 0.042 0.465 0.078 0.599 0.091 0.605 0.058 0.644
HM - 0.744 0.725 0.489 0.622

ILP - 0.306 - 0.537 0.413 - - - 0.352 0.324 0.391

ETM 0.927 1.000 0.937 0.913 0.973 0.994 0.920 0.952 0.961 0.890 1.000 0.895
FM 0.002 0.051 0.011 0.043 0.009 0.037 0.010 0.040 0.012 0.040 0.009 0.039
TM - - 1.000 1.000 1.000 1.000 1.000

g
e

n
e

ra
lis

a
ti
o

n IM 1.000 0.999 1.000 1.000 0.999 1.000 1.000 0.999 0.999 0.999 1.000
IMi 0.999 1.000 0.999 1.000 0.999 1.000 0.999 0.999 0.998 1.000
HM - 0.998 0.998 0.923 0.895

ILP - 0.997 - 0.803 0.916 - - - 0.824 0.690 0.784

ETM 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.998 1.000 0.992 1.000 0.992
FM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000
TM - - 0.046 0.039 0.035 0.050 0.044

4.4 Discussion

First observation is that for all logs a model was discovered within two hours by IM,

IMi, FM and ETM. IMi was for all logs a bit slower than IM, while taking a lot less time
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Table 2: Simplicity (#arcs,#places,#transitions).
IM IMi HM ILP ETM FM TM

BPIC‘11 1256,5,628 1290,27,645 - - 16,7,8 1256,3,628 -

BPIC‘12 80,7,40 166,41,81 90375,76,16737 919,88,38 2,2,1 80,3,40 -

WABO 1 368,12,184 474,97,237 1071,350,496 - 32,15,16 354,3,177 19582,9513,9791

WABO 1 c 96,5,48 122,37,61 249,92,121 802,73,46 72,32,35 96,3,48 6056,2890,3028

WABO 2 336,8,168 406,43,202 870,324,419 4560,215,162 56,28,26 328,3,164 17340,8454,8670

WABO 2 c 120,16,60 112,25,56 235,92,116 770,62,46 44,21,22 96,3,48 5754,2766,2877

WABO 3 378,18,189 358,14,179 946,344,459 - 50,24,23 348,3,174 20128,9813,10064

WABO 3 c 122,15,61 116,32,58 279,92,135 - 42,21,18 96,3,48 10604,5116,5302

WABO 4 304,23,152 290,21,145 764,270,362 - 34,16,17 274,3,137 12186,5907,6093

WABO 4 c 100,7,50 108,33,54 230,92,114 1239,80,46 78,35,31 96,3,48 4742,2255,2371

WABO 5 368,8,184 392,30,196 910,356,451 5479,233,178 46,22,22 360,3,180 12628,6136,6314

WABO 5 c 96,5,48 116,36,58 254,92,122 786,60,46 64,32,27 96,3,48 5052,2418,2526

than ILP, ETM and TM. A noticeable difference exists between ETM and IMi; ETM

took much longer for each log. Second observation is that, not considering FM and TM,

no miner has a log on which it performs best on all fitness, precision and generalisation.

Tradeoffs have to be made.

IM and ILP did not manage to discover a good 80% model: to achieve perfect fit-

ness, IM sacrifices precision, while ILP sacrifices precision and simplicity. An 80%

model was discovered for most logs by HM, but were less simple, not sound, and for

some logs discovery took a long time. ETM, with its default settings as tested, focuses

on precision and therefore achieves a lower fitness. Moreover, discovery took a long

time. IMi discovered sound 80% models quickly in all cases. Regarding precision, two

groups of event logs can be identified:

– BPIC‘11 and WABO 1 to WABO 5. On these logs, IMi produces 80% models with

better precision than IM and the baseline FM. Fitness of IMi on all these logs is, as

expected for 80% models, higher than ETM, but lower than IM. A manual inspec-

tion of the resulting models shows that IMi returns a sequence of activities, whereas

IM returns a flower model. Still, some sequential elements are flower models, caus-

ing the low precision. Figure 5b shows a part of the model discovered by IMi for

WABO 4.

– BPIC‘12 and WABO 1 c to WABO 5 c. On these logs, IMi discovers good 80%

models that can keep up with other miners. Figure 5 shows the results of three

miners on the WABO 2 c log. The model discovered by ETM contains the least

number of transitions and is obviously the simplest model, but its fitness (0.506) is

considerably lower than of IMi (0.946). The main difference is that IMi adds two

flower submodels not discovered by ETM, giving a precision of 0.430 for IMi and

0.994 for ETM. For generalisation, both models have the perfect score. Of the 44

activities in WABO 2 c, 23 are not in the model discovered by ETM and only 2 are

not in the model discovered by IMi. Therefore, a future trace is more likely to be

accepted by the IMi-model than by the ETM-model. Also, note that IMi returned a

model in 0.1 seconds and ETM needed 42 minutes, showing that IMi can achieve

better results in significantly less time.
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(a) IMi on WABO 2 c (b) IMi on WABO 4 (part of).

(c) ILP on WABO 2 c (part of)

(d) ETM on WABO 2 c

Figure 5: Results of discovery.

5 Conclusion

In this paper, we presented the Inductive Miner - infrequent (IMi), an extension of the

Inductive Miner (IM, called B’ in [16]) that filters infrequent behaviour locally in each

algorithmic step of IM: selecting an operator and a cut, splitting the log and the base

cases of the recursion.

Unlike other approaches, IMi can create the so-called 80% model using the Pareto

principle while guaranteeing to return a sound process model in a short time. We com-

pared IMi to several existing techniques using performance and soundness, fitness, pre-

cision, generalisation and simplicity of the discovered models. IM, HM, ILP and ETM

were applied to twelve real-life logs. Compared with IM, models discovered by IMi

have a lower fitness, higher precision, equal generalisation and comparable simplicity.

IMi always returned a sound 80% model fast, and on all logs scores good on all qual-

ity criteria except precision. Results for precision are twofold: on half of the logs, IMi

discovered sound 80% models fast, having a lower precision due to discovery of flower

models early in the recursion. Note that for many logs, a model scoring well on all qual-

ity criteria doesn’t exist: process discovery is a tradeoff. On the other half of the logs,

IMi discovered better 80% models faster than any other discovery technique, showing

the potential of the constructive approach.

Future Work. The parallel operator ∧ remains problematic in operator and cut selec-

tion, as none of the features proposed in this paper can filter infrequent behaviour and

incompleteness related to this construct. Efficient detection of non-complete parallel

logs remains a subject of further research.
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