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Abstract—One of the biggest unsolved problems in condensed
matter physics is what mechanism causes high-temperature
superconductivity and if there is a material that can exhibit
superconductivity at both room temperature and atmospheric
pressure. Among the many important properties of a supercon-
ductor, the critical temperature (Tc) or transition temperature is
the point at which a material transitions into a superconductive
state. In this implementation, machine learning is used to predict
the critical temperatures of chemically unique compounds in
an attempt to identify new chemically novel, high-temperature
superconductors. The training data set (SuperCon) consists of
known superconductors and their critical temperatures, and the
testing data set (NOMAD) consists of around 700,000 novel
chemical formulae. The chemical formulae in these data sets
are first passed through a collection of rapid screening tools,
SMACT, to check for chemical validity. Next, the DiSCoVeR
algorithm is used to train on the SuperCon data to form a
model, and then screens through batches of the formulae in the
NOMAD data set. Having a combination of a chemical distance
metric, density-aware dimensionality reduction, clustering, and
a regression model, the DiSCoVeR algorithm serves as a tool
to identify and assess these superconducting compositions [1].
This research and implementation resulted in the screening of
chemically novel compositions exhibiting critical temperatures
upwards of 150 K, which correlates to superconductors in the
cuprate class. This implementation demonstrates a process of
performing machine learning-assisted superconductor screening
(while exploring chemically distinct spaces) which can be utilized
in the materials discovery process.

Index Terms—machine learning, materials informatics, high-
temperature superconductor, critical temperature, transition tem-
perature, cuprates

I. INTRODUCTION

Superconductivity has been a major focus in research since
its discovery in 1911 [2]. The discovery of a material that
exhibits superconductivity at operating temperatures above
273 K and at atmospheric pressure (101 kPa) would have

an enormous technological impact. It would absolutely rev-
olutionize the fields of digital electronics and the electric
power industry. For many years, all known superconductors
were thought to exist within the bounds of Bardeen-Cooper-
Schrieffer (BCS) theory, which stated that the superconduc-
tivity of materials could not exist above temperatures of 30
K [3]. It wasn’t until 1986 when Johannes G. Bednorz and
Karl A. Müller discovered a new class of superconductor in
the cuprate family that exceeded this BCS theory threshold.
[4]. As explained in [5], “the superconducting cuprates are
very different from conventional superconductors, in the fact
that they are not traditional metals, but instead doped oxides
that behave like bad metals. Often, the pairing for supercon-
duction does not happen with electrons, but instead with the
doped holes – which act as quasiparticles that pair up and
behave like the Cooper pairs, but with opposite charge. It
is still not fully known what drives the pairing mechanism
to get superconductivity in these materials.” Materials with
these properties are deemed in the category of a type-II
superconductor. Other types of superconductors have since
been discovered beyond the cuprate family such as heavy-
fermion-based, buckminsterfullerine-based, carbon-allotrope,
iron-pnictogen-based, nickel-based, and strontium-ruthenate
superconductors among others.

It was also a cuprate that was discovered with a critical
temperature above the boiling point of liquid nitrogen (77
K). This led to the realization that applications of super-
conductivity were looking more realistic and feasible in the
near future [6]. Superconductors with a critical temperature
above the boiling point of liquid nitrogen are called high-
temperature superconductors. It is important to note that all
high-temperature superconductors are type-II superconductors.
To date, cuprate superconductors hold the record for the
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BCS (dark green circle) Heavy-fermions-based (light green star)
Cuprate (blue diamond) Buckminsterfullerene-based (purple inverted triangle)
Carbon-allotrope (red triangle) Iron-pnictogen-based (orange square)
Strontium-ruthenate (grey pentagon) Nickel-based (pink six-point star)

Fig. 1: Timeline of superconductors as adapted from [5]. Colors represent different classes of materials. Note the change in
axes around 1980 and 50 K

highest critical temperature at atmospheric pressure. In the
past few years, other materials have demonstrated high critical
temperatures, but only at extremely high pressures [7]. Fig. 1
shows a timeline of the discovery of superconductors and their
critical temperatures.

A critical technological need will be to bridge the increas-
ingly high-temperature performance with ambient pressure [8].
A useful tool to accomplish this goal of accelerated super-
conductive materials discovery is through machine learning,
where there has been various implementations. For example,
superconducting phase diagrams were predicted using text
mining [9], superconducting hydrogen compounds were found
using a genetic algorithm and genetic programming [10],
critical temperature and pressure were predicted for hydrides
[11], critical temperatures of doped Fe-based superconductors
were predicted based on structural and topological parameters
[12], and critical temperature was predicted on a structure
based model using a structural descriptor [13], and super-
conductor materials and properties have been automatically
extracted from literature [14]. An ML-guided discovery will
hopefully replace the “serendipitous discovery paradigm” that
has existed in this last century of superconductor research [15].

In this work, we use the SuperCon data set for training,
similar to what has been done in other implementations [13],
[16]–[20]. Unique, reduced chemical formulae are curated [21]
from the NOMAD data set [22] and used for testing. The
chemical formulae in the training and testing data are first
screened through SMACT [23] for validity and then trained
and predicted using the DiSCoVeR algorithm [1]. This results
in the screening of novel, chemically valid formulae with
predicted critical temperatures.

II. METHODS

A. Data

Materials informatics has shown that the cuprate class of
superconductors contains a highly unexplored materials space
that has yet to be explored [19]. This is why formulae
from the SuperCon database are used for the training of
our model. Of these formulae, “roughly 5,700 compounds
are cuprates and 1,500 are iron-based (about 35 and 9 per-
cent, respectively), reflecting the significant research efforts
invested in these two families. The remaining set of about
8,000 is a mix of various materials, including conventional
phonon-driven superconductors (e.g., elemental superconduc-
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Fig. 2: Workflow of implementation. 12,415 formulae from SuperCon and 694,398 formulae from NOMAD are first verified
through SMACT. After featurization and training of the SuperCon data through DiSCoVeR, chunks of the NOMAD data are
screened through the model

tors, A15 compounds), known unconventional superconduc-
tors like the layered nitrides and heavy fermions, and many
materials for which the mechanism of superconductivity is
still under debate (such as bismuthates and borocarbides)”
[16]. The compositions in SuperCon were reduced using the
get_reduced_composition_and_factor() method
from the pymatgen.core.Composition class. After
some data cleaning, the SuperCon training data was reduced
to 12,415 formulae of superconductors and their critical tem-
peratures. Fig. 3a shows the distribution of the SuperCon data
set after cleaning.

Compositions from the Novel Materials Discovery (NO-
MAD) data set are used in the prediction of our model. This
repository contains computational materials science data that
is allowed to be curated [22]. For this implementation, we
used a specific curated data set of unique reduced chemical
formulae [21]. This data was restricted to density functional
theory (DFT) calculations and does not include noble gases
or radioactive elements. It is also directly usable with the
pymatgen.core.Composition class [24], which is what
this implementation exploits.

Additional curating was done on the NOMAD data set.
Next, the formulae in NOMAD that overlapped with formu-
lae in the SuperCon training data were removed for better
accuracy while predicting. The NOMAD data was reduced to
694,398 compositions. The training data and test data are then

screened through SMACT for validity (see Fig. 2).

B. SMACT

SMACT is a composition-based screening tool [23]. It gen-
erates a search space, or a set of element combinations, that
is screened using chemical filters. Oxidation states, charge
neutrality, and electronegativity can be considered to screen for
candidates that make “chemical sense.” If the overall charge
of a composition is neutral, then SMACT will consider it valid.
The original checker however does not consider the countless
combinations of oxidation states for metal alloys. To account
for this, materials composed of all metal elements are assumed
valid in the checker. To perform this, we implement a function
called smact_validity(). The Boolean values for each of
the predicted compositions are under the is_valid column
in Table II

C. DiSCoVeR

DiSCoVeR stands for Descending from Stochastic Clus-
tering Variance Regression. This algorithm is a conglomerate
of multiple tools (as shown in Fig. 2) that are ultimately
used for the screening and assessment of the superconductive
compositions. “DiSCoVeR screens candidates that have a high
probability of success while enforcing – through the use of
novel loss functions – that the candidates exist beyond typical
materials landscapes and have high performance. In other

https://doi.org/10.26434/chemrxiv-2023-8t8kt-v4 ORCID: https://orcid.org/0000-0001-9511-2918 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-8t8kt-v4
https://orcid.org/0000-0001-9511-2918
https://creativecommons.org/licenses/by/4.0/


TABLE I: Methods used in the DiSCoVeR algorithm. Reproduced from [1] with permission from the Royal Society of
Chemistry.

Method What is it? What is its role in DiSCoVeR?

CrabNet [25] Composition-based property regression Predict performance for proxy scores
ElMD [26] Composition-based distance metric Supply distance matrix to DensMAP
DensMAP [27] Density-aware dimensionality reduction Obtain densities for density proxy
HDBSCAN [28] Density-aware clustering Create chemically homogenous clusters
Peak proxy High performance relative to nearby compounds Proxy for surprising high performance
Density proxy Sparsity relative to nearby compounds Proxy for chemical novelty
Peak proxy score Weighted sum of performance and peak proxy Used to rank compounds
Density proxy score Weighted sum of performance and density proxy Used to rank compounds
Pareto front Optimal performance/uniqueness trade-offs Visually screen compounds (no weights)

words, DiSCoVeR acts as a multi-objective screening where
the promise of a compound depends on both having desirable
target properties and existing in sparsely populated regions of
the cluster to which it’s assigned. This approach then favors
discovery of novel, high-performing chemical families as long
as embedded points which are close together or far apart
exhibit chemical similarity or chemical distinctiveness, respec-
tively” [1]. Table I describes the methods used in DiSCoVeR
and explains each of their roles.

The training data for the CrabNet model consists only
of the compositions and the measured property values (in
this case, critical transition temperature). peak_proxy and
dens_proxy come into play when assessing the trade-offs
between performance and novelty. This can be visualized via
a Pareto front (performance vs. novelty), which exists only as
a visualization tool in this work, and is a complement to the
scaled and weighted sums of performance novelty.

The training data is also trained using sklearn’s
DummyRegressor and the mean average error (MAE)
is compared alongside that of DiSCoVeR’s to serve as a
metric. During testing, the NOMAD data set is partitioned
into chunks to help with computation. The predictions for
high-performing compositions are appended and organized
after being screened through the trained model.

III. RESULTS AND DISCUSSION

There are many essential properties to consider in the search
for a novel superconductor such as pressure information, the
material’s critical magnetic field, its critical current density,
phase diagram information, and additional structural data.
When considering the entire materials discovery process, syn-
thesizing and screening candidate materials for superconduc-
tivity is the final objective. Critical temperature is the most
reasonable superconductor property to predict since pressure,
critical magnetic field, and critical current density are more
difficult, intensive, and expensive to measure and less evident
in current data. In regard to extrapolation performance for
superconductor discovery, Meredig et al. states that “novel
materials discovery would be enabled by running a model
against a large database of candidate compounds and simply
ranking them by predicted Tc” [29], which is what is done

in this implementation. For this specific implementation, a
composition-based approach is used to test the limits of this
algorithm by predicting a single property: a material’s critical
temperature.

A. peak_score and dens_score

The DiSCoVeR algorithm has two expected outputs,
peak_score and dens_score, which are two different
ways of evaluating the joint performance and novelty of a
compound. peak_score uses peak proxy as the underlying
novelty proxy which favors compounds that have “surprising”
high performance. In other words, these compounds stand out
as a high-performance “peak” in the embedding space relative
to surrounding compounds that are low performance. On the
other hand, dens_score uses density proxy which favors
compounds that are far from the training data points (i.e. low
density in the embedding space), irrespective of the target
values. The overall score is determined by considering both the
performance (predicted property) and a novelty proxy (either
peak_score or dens_score in this work); however, these
scores can have different units and different distributions that
make it difficult to compare the values fairly. For example,
peak proxy has the same units as the predicted property
(degrees Kelvin in this case) but is the difference between
the predicted property and the average of the neighboring
compounds, On the other hand, density proxy is a measure
of density in an embedding space (i.e. non-physical units) and
has no direct comparison with performance. Since the absolute
values can vary by orders of magnitude, it’s necessary to scale
the values to a relative range prior to aggregating them (e.g. via
a weighted sum). However, the choice of scaling is arbitrary.
For example, one could use sklearn’s MinMaxScaler or
RobustScaler, or any number of common or custom
scaling functions. In order to reduce the effect of outliers,
RobustScaler was used.

After scaling, the default weighting is a 50/50 between
the performance score (i.e. the predicted property) and the
novelty proxy; however, this is also a parameter that can be
adjusted by the user. In this implementation, peak_score
and dens_score are both considered and set at the default
weighting.
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(a) (b)

Fig. 3: (a) Distribution of SuperCon data set after cleaning, critical temperature (Tc in K) on x-axis and frequency in log
scale on y-axis (b) Distribution of NOMAD data set after predictions, critical temperature predictions (Tc in K) on x-axis and
frequency in log scale on y-axis

B. Tc prediction

Table II shows the 20 highest screened compositions after
being sorted by Tc (shown in the prediction column). The
columns for both scores aren’t sorted since they are both
evenly weighted, and both high-performing and chemically
novel compositions are desired.

The distribution for the top 100,000 of these screened
compositions is shown in Fig. 3b.

C. Synthesizability prediction

Since the test data was obtained from the NOMAD database,
a repository of computationally-generated materials, we aimed
to evaluate the synthesizability of the superconductors with
predicted critical temperatures. To assess their stability, we
queried the materials from the Materials Project and obtained
their energy above hull values. The lower the energy above
hull, the more stable the compound is considered to be. These
values are under the predicted_e_above_hull column
in Table II. Additionally, we obtained the is_theoretical
property, which indicates if a material has been reported in the
International Crystal Structure Database (ICSD) (i.e. if it has
been synthesized previously).

We trained a CrabNet [25] model using data from the
Materials Project, optimizing its hyperparameters with the
Adaptive Experimentation (Ax) Platform (https://ax.dev). Af-
ter training, this model was used to predict the energy above
hull and is_theoretical property for the superconductors
in question. For the is_theoretical property, a value
close to 1 indicates that similar compounds have not been
synthesized previously, and their synthesis would represent a
new exploration in the chemical space. A value close to 0,
on the other hand, suggests that similar compounds have been
synthesized before, and their synthesis would be considered
exploitation. These values are under the is_theoretical
column in Table II.

D. Conditional thresholds

Considering each of the properties represented
as columns in Table II, conditional thresholds were
determined to identify the best formulae. This condition
was determined by evaluating the uncertainties of the
properties. The condition is met if is_valid ==
TRUE & predicted_e_above_hull <= 0.1 &
is_theoretical >= 0.95. Compositions that meet
these conditions are the ones shown in Table II.

IV. CONCLUSION

12,415 known superconductors in the SuperCon database
were first validated through SMACT, and then trained on the
DiSCoVeR algorithm. 694,398 curated, chemically-novel for-
mulae were taken from the NOMAD repository, also validated
through SMACT, and then screened through the trained model
in chunks. Critical temperatures for each of the formulae in
this NOMAD data set were predicted. A weighted unique-
ness/performance ranking for each of the compositions was
obtained. These sorted compositions also include a Boolean
value to whether or not they are valid according to SMACT.

After screening these compositions, additional post-
processing work was done to predict energy above hull and
stability, which are useful metrics for synthesis. Finally, the
compositions were filtered through a condition to get the best
representation of formulae that are ready for synthesis.

This implementation reveals a process of performing ML-
assisted superconductor screening using an algorithm that
uniquely accounts for chemical similarity, and identifies and
evaluates new high-performing, chemically distinct composi-
tions. These predicted compositions are openly available in the
hopes of being used in the materials discovery process. Since
these validation formulae are sorted, they can now undergo
additional post-processing and characterization.
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TABLE II: Top 20 Screened Compositions

formula prediction (Tc in K) dens score peak score is valid predicted e above hull (eV/atom) is theoretical

CaSbPb4 129.98 12.087 24.588 TRUE 0.02017 0.99966
Ba4Ca4Cu6Hg2O17 129.46 75.558 20.483 TRUE 0.04358 1.00037
Ba6Ca6Cu9Hg3O25 128.02 90.421 19.858 TRUE 0.03249 0.98616

Ba2CaTl 126.58 2.4024 24.832 TRUE -0.00004 0.99990
Ba2Ca3TlCu4O11 125.17 51.912 20.975 TRUE 0.02111 0.99982

BaY7 119.31 2.7561 22.166 TRUE 0.09270 0.99994
Na(Cu3O4)2 112.20 11.140 20.507 TRUE 0.05103 0.99985

TlCuO2 110.69 11.381 20.107 TRUE 0.00912 1.00002
CrHO2 103.07 9.6154 19.126 TRUE 0.00159 1.00069

Ca3Tl2O6 102.97 40.688 17.146 TRUE 0.00299 0.99564
CrAuO2 101.84 18.792 18.565 TRUE 0.00012 1.00023
AlTlO2 100.97 10.007 19.484 TRUE 0.04094 1.00061

Ba3Sr(Cu2O5)2 100.83 102.87 13.320 TRUE 0.06490 0.99991
CuHgO2 100.30 19.942 18.027 TRUE 0.04921 1.00021
CdAgO2 99.445 20.981 17.237 TRUE 0.02421 1.00022

Ca6Al7O16F 98.903 11.387 18.215 TRUE 0.00013 1.00011
Ca3LaMn4O12 98.880 12.568 17.770 TRUE 0.06862 1.00001

TlAgO2 96.406 13.486 17.558 TRUE 0.00192 1.00004
Ca10Ti8NbAl(SiO5)10 95.957 10.442 17.674 TRUE 0.00445 0.99938
Ca33In4P28Pb3O112 95.874 37.240 15.794 TRUE 0.00152 1.00006
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