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Abstract

A new approach is proposed for clustering time-series
data. The approach can be used to discover groupings of
similar object motions that were observed in a video collec-
tion. A finite mixture of hidden Markov models (HMMs) is
fitted to the motion data using the expectation-maximization
(EM) framework. Previous approaches for HMM-based
clustering employ a k-means formulation, where each se-
quence is assigned to only a single HMM. In contrast, the
formulation presented in this paper allows each sequence to
belong to more than a single HMM with some probability,
and the hard decision about the sequence class member-
ship can be deferred until a later time when such a decision
is required. Experiments with simulated data demonstrate
the benefit of using this EM-based approach when there is
more “overlap” in the processes generating the data. Ex-
periments with real data show the promising potential of
HMM-based motion clustering in a number of applications.

1. Introduction

In the past decade, there has been an explosive growth in
the number systems that gather and store data about the mo-
tion of objects, machines, vehicles, humans, animals, etc.
These data sets are collected and analyzed for a broad range
of applications, too numerous to mention. The parameter-
ization and dimensionality of the motion time series data
can vary widely, depending on the particular input device,
tracking method, motion model, relevant degrees of free-
dom, etc.

Given the size and diversity of these motion data
archives, clearly, general-purpose tools are needed for
grouping and organizing the motion patterns contained
therein. For instance, methods for discovering clusters of
similar motion sequences in these data sets would enable
pattern discovery, anomaly detection, modeling, summa-
rization, etc. Furthermore, knowledge of clusters could be

exploited in data reduction, as well as in efficient methods
for sequence indexing and retrieval.

In this paper, we focus on the problem of finding groups,
or clusters of similar object motions within a database of
motion sequences, and estimating motion time series mod-
els based on these groups. We employ a probabilistic
model-based approach, where the data is assumed to have
been generated by a finite mixture model. In particular, we
assume that the observed sequences are generated by a fi-
nite mixture of hidden Markov models (HMMs), and esti-
mate this mixture of HMMs via an Expectation Maximiza-
tion (EM) formulation.

Previous approaches for HMM-based clustering employ
a k-means formulation [11, 13, 16], which has the drawback
that in each iteration, each sequence can only be assigned to
a single cluster, and then only those sequences that are as-
signed to a particular cluster are used in the re-estimation of
its HMM parameters. This can lead to problems when there
is not a particularly good separation between the underlying
processes that generated the groups of time series data.

In our proposed EM approach, a sequence can be par-
tially assigned to all clusters, with the degree of cluster
membership determined by the a posteriori probability,
which depends via Bayes rule on the cluster a priori proba-
bility and the data likelihood. In contrast with k-means, the
parameter estimates of a single HMM cluster are influenced
by all the observation sequences with the corresponding a
posteriori probabilities. The hard decision about the se-
quence class membership can be deferred until a later time
when such a decision is required. In experimental evalua-
tion, this EM-based formulation tends to yield improved ac-
curacy over the k-means approach, particularly when there
is more “overlap” in the processes that generated the data.

2. Related Work

Methods for clustering time-series data have been pro-
posed recently, particularly, in the statistics and data min-
ing communities. (See e.g., [4]). In the computer vi-



sion community clustering of motion data has been used
mainly for classification and prediction of pedestrian trajec-
tories [8, 18], and for event-based analysis of long video
sequences [18, 19].

Methods for clustering sequences or temporal data us-
ing hidden Markov models have been proposed in speech
recognition [9], computational biology [3], and machine
learning [16, 11, 13]. In computer vision, hidden Markov
models have been successfully used in the supervised learn-
ing and recognition of specific activities [2] and gestures
[17]; however, to the best of our knowledge, unsupervised
learning or clustering using hidden Markov models has re-
ceived little or no attention.

A complete approach to HMM-clustering should address
four key problems [11]: estimating the parameters of a sin-
gle HMM cluster, selecting the number of HMM clusters,
learning HMM structure (topology and size), and assigning
sequences to clusters.

The fourth problem, and the focus of this paper is how
to assign sequences to clusters. In previous approaches
[11, 13] the sequences are assigned in a winner-take-all
manner: a sequence is assigned to the HMM that most likely
generated it. In contrast, the EM-based formulation given in
this paper enables soft assignment, whereby each sequence
is partially assigned to a cluster according to the cluster a
posteriori probability given the sequence. This EM-based
algorithm is much preferred in noisy data situations or when
the underlying densities are with more “overlap” [10].

3. Background: HMMs

In this section, we give a brief review of hidden Markov
models (HMMs). Our main purpose is to define notation
used in our clustering formulation. For a detailed overview
of HMMs, readers are directed to [14].

A complete specification of a first-order HMM with a
simple Gaussian observation density is formally given by:

1. N states, S = {S1, S2, . . . , SN}.

2. The state transition probability distributionA = {aij},
where aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N .

3. The observation density bj(Ot) = N (Ot;µj ,Σj), 1 ≤
j ≤ N , where µj , and Σj are the mean and covariance
of the Gaussian of state j.

4. The initial state probability distribution, π = {πi},
where πi = P (q1 = Si), 1 ≤ i ≤ N

where Ot and qt are the observation and state respectively
at time t. It is common to use the compact notation

λ = (π,A, {µj}, {Σj}), 1 ≤ j ≤ N (1)

to indicate the complete parameter set of the model.

The problem of estimating the parameters of a HMM λ∗

given L independent sequences O(l), 1 ≤ l ≤ L can be cast
as a maximum likelihood (ML) problem

λ∗ = argmax
λ

L∏
l=1

P (O(l)|λ). (2)

Unfortunately, there is no known analytical way for find-
ing the global ML solution. The well known Baum-Welch
algorithm is an iterative procedure that can only guarantee
convergence to a local maximum. It consists of the follow-
ing re-estimation formulas [14]:

π̄i =
∑L

l=1 γ
(l)
1 (i)

L
(3)

āij =
∑L

l=1

∑T−1
t=1 ξ

(l)
t (i, j)∑L

l=1

∑T−1
t=1 γ

(l)
t (i)

(4)
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∑L

l=1

∑T
t=1 γ

(l)
t (i) ·Ot∑L

l=1

∑T
t=1 γ

(l)
t (i)

(5)

Σ̄j =
∑L

l=1

∑T
t=1 γ

(l)
t (i) · (Ot − µj)(Ot − µj)′∑L
l=1

∑T
t=1 γ

(l)
t (i)

(6)

where γt(i) is the probability of being in state Si at time
t, given the observation sequence O and the model λ, and
ξt(i, j) is the probability of being in state Si at time t and
state Sj at time t+1, given the observation sequence O and
the model λ. These two variables can be computed by the
forward-backward algorithm [1].

4. Finite Mixture of HMMs

In this section we present a specialization of the general
framework for probabilistic model-based clustering, where
the cluster models are HMMs. In HMM-based clustering
it is assumed that an observation sequence O is generated
according to a mixture distribution of M components. Let
P (O|λ(m)) be the probability distribution of the sequence
O given the m’th HMM parameterized by λ(m), and let
zl = (zl1, . . . , zlM ) be the cluster membership vector for
the l’th sequence, where zlm = 1 if sequence O(l) was gen-
erated by the m’th HMM and 0 otherwise. Then, the zlm’s
can be treated in one of two ways: as fixed but unknown
parameters, or alternatively as missing binary random vari-
ables. In the first case, we want to estimate the set of pa-
rameters θ = {λ(m), zl|1 ≤ m ≤ M, 1 ≤ l ≤ L} that
maximize the likelihood function

L1(θ) =
L∏

l=1

P (O(l)|λ(zl)), (7)



In the second case, each zlm has a prior probability p(m) of
being generated by the m’th HMM. In this case we want to
estimate the set of parameters θ = {λ(m), p(m)|1 ≤ m ≤
M} that maximize the likelihood function

L2(θ) =
L∏

l=1

M∑
m=1

p(m)P (O|λ(m)), (8)

It is well known that ML estimates cannot be found analyti-
cally for neither likelihood function, and one must resort to
iterative procedures. K-means is an iterative procedure for
finding the estimates for the first likelihood function (Eq. 7).
In k-means, each iteration consists of two steps:

• Assign sequences O(l) to clusters λ(m)

zlm =
{

1 ifm = argmaxi P (O(l)|λ(i))
0 otherwise.

(9)

• Update estimates λ̄(m)

π̄
(m)
i =

∑L
l=1 zlmγ

(lm)
1 (i)∑L

l=1 zlm

(10)

ā
(m)
ij =

∑L
l=1 zlm

∑T−1
t=1 ξ

(lm)
t (i, j)∑L

l=1 zlm

∑T−1
t=1 γ

(lm)
t (i)

(11)

µ̄j =
∑L

l=1 zlm

∑T
t=1 γ

(lm)
t (i) ·Ot∑L

l=1 zlm

∑T
t=1 γ
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∑L

l=1 zlm
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(lm)
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(13)
EM is an iterative procedure for finding the ML estimates

for the mixture likelihood function (Eq. 8). Similar to the
k-means algorithm, each iteration consists of two steps:

• E-Step

wlm
def
= E [zlm|O, θ] = Pr

[
zlm = 1|O(l), λ(m)

]
(14)

=
p(m)P (O(l)|λ(m))∑M

m=1 p
(m)P (O(l)|λ(m))

,

where the last equality follows from Bayes law, p(m) is the
a priori probability that zlm = 1, and wlm is the posterior
probability that zlm = 1 after observing O(l), and

• M-Step

p̄(m) =
∑L

l=1 wlm∑M
m=1

∑L
l=1 wlm

=
∑L

l=1 wlm

L
(15)

and replace zlm with wlm in Eq. (10)-(13) throughout. We
note that the computation of the posterior probabilities in
the E-step (Eq. 14) requires special arithmetic manipula-
tions to avoid numerical problems. Otherwise, the compu-
tation cost of EM and k-means is similar.

5. Model Selection

In the previous section, we have assumed that the num-
ber of mixture componentsM is known. The problem of es-
timating the “correct” number of clusters is a difficult one:
a full Bayesian solution for obtaining the posterior proba-
bility on M , requires a complex integration over the HMM
parameter space, as well as knowledge about the priors on
the mixture parameters and about the priors on M itself.
Often this integration cannot be solved in closed form, and
Monte-Carlo methods and other approximation methods are
used to evaluate it. However, these methods are computa-
tionally intensive. Other methods that sacrifice some accu-
racy for efficiency, are the penalized likelihood approaches,
where the log-likelihood term is penalized by subtraction of
a complexity term. We use such a method that tries to find
a model with Minimum Description Length (MDL) [15].
Assuming all the models are equally likely a-priori we can
write:

logP (M |O) ≈ logP (O|M, θ̂)− d

2
logL, (16)

where P (M |O) is the approximate posterior distribution on
M , P (O|M, θ̂) is the data likelihood term (Eq. 7 for k-
means and Eq. 8 for EM) given the ML estimates θ̂, and
d
2 logL is the MDL term, where d = M + |θ̂| is the number
of model parameters.

6. Experimental Evaluation

The two HMM-based clustering algorithms (EM and k-
means) described in Section 4 were implemented in Matlab
using a HMM toolbox [12]. The measure used for testing
the validity of our clustering results is classification accu-
racy. The reason is that for all our experiments ground-truth
was available, so the majority class of each cluster could be
associated with the cluster itself, which enabled the compu-
tation of classification accuracy. When ground-truth is not
available, or when it is not known whether the data points
can be naturally clustered, other validity measures should
be employed [7]. The purpose of the experiments with
simulated data is to compare performance of the k-means
and the EM-based approaches for clustering sequences with
HMMs. The purpose of the experiments with real data is to
demonstrate the usefulness of HMM-based clustering in a
number of applications.

6.1 Experiment with Synthetic Data

In this experiment, 100 sequences of length 200 are gen-
erated from a 2-component HMM mixture (50 sequences
from each component). Both HMMs are modeled with two



Method Separation ∆µ
σ

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

True 0 0 3 28 44 50 50 50 50
EM 0 0 0 1 22 46 49 47 47

k-means 0 0 0 0 21 29 30 44 49

Table 1. EM vs. k-means classification accuracy. Each entry in the table is the number of trials
for which the method achieved the specified classification accuracy as a function of the separation
between the observation Gaussian densities

states, and a 1-d Gaussian observation density, in a manner
similar to [16]. Using Dynamic Time Warping (DTW) for
initial clustering, both models were initialized in the stan-
dard way: uniform priors, uniform transition matrices, and
means and variances were estimated using k-means. In this
experiment the amount of overlap between the generating
models was varied by varying the mean separation between
the Gaussian outputs of the two states, in a similar way
for both HMMs, leaving all the other parameters fixed. To
avoid confusion between states and HMM clusters, we use
superscripts to denote HMM clusters, and subscripts to de-
note states.

6.1.1 Experiment 1 : Sensitivity to Observation Noise

In this experiment the HMMs’ dynamics were

A(1) =
(

0.6 0.4
0.4 0.6

)
, A(2) =

(
0.4 0.6
0.6 0.4

)
, (17)

and for both HMMs the standard deviations of the Gaus-
sians were kept fixed σ1 = σ2 = 1, the mean of the
first state was kept fixed µ1 = 0, and the mean of the
second state (for both HMMs) varied in the range µ2 =
(1.00, . . . , 3.00), a total of nine values. This corresponds
to a change in ∆µ

σ , which is the normalized mean separa-
tion between the two Gaussians. For each of the nine values
of ∆µ

σ , 50 trials were run, and for each trial, classification
accuracy was computed. Model selection was applied only
to the data generated in the 50 trials corresponding to mean
separation ∆µ

σ = 3.00. In 46 out of the 50 trials the EM al-
gorithm correctly found 2 HMM clusters. The k-means al-
gorithm found the correct number of clusters in all of the tri-
als. We instantiated all other trials with a two-components
HMM mixture.

The results are summarized in Table 1. Each entry in
Table 1 is the number of trials (out of 50) for which the
method achieved 90% classification accuracy. Classifica-
tion results are given for the k-means and EM methods,
and for reference we give the classification accuracy of the
“true” HMMs that generated the sequences. These are the

optimal classifiers, and their performance gives an upper
bound on the possible classification accuracy.

The results from Table 1 indicate that when the separa-
tion between the Gaussians in state 1 and 2 is large enough
(3.00), both k-means and EM achieve near optimal classi-
fication accuracy. When the separation between the Gaus-
sians is very small (< 2.00), both approaches perform badly
as expected, as the Gaussians become practically indistin-
guishable. Between these two extremes the EM seems to
outperform k-means.

6.2 Experiments with Real Data

6.2.1 Experiment 2: Camera Mouse

In this experiment, we cluster 2D time-series data obtained
via the Camera Mouse system [5]. As shown in Fig. 1(a),
a correlation-based video tracking subsystem estimates the
image position of a selected facial feature. In these experi-
ments, the tip of the user’s nose was tracked. Motion of the
user’s head/nose then drives an onscreen cursor, and thereby
enables the user to control a hierarchical spelling interface,
as shown in Fig. 1(b). In the top-level menu of the hier-
archical spelling interface, the alphabet is divided into five
sub-alphabets. By moving the cursor, the user selects that
sub-alphabet which contains the desired letter, and then a
second menu appears that allows the user to pick the de-
sired letter from the sub-alphabet.

For this particular experiment, the subjects used the
Camera Mouse system to spell the words: “athens”,
“berlin”, “london”, “boston”, and “paris”. The number of
sequences obtained for each word were 3, 4, 4, 5, 4 respec-
tively, yielding a total of 20 sequences. The average length
of a sequence is around 1100. The shortest sequence length
is 834, and the longest one is 1719. Figure 2 shows four se-
quences: two corresponding to the word “berlin”, and two
corresponding to the word “london”.

The model selection criterion was tested with values of
M varying in the range between 1 and 6. Since the se-
quences were relatively long the likelihood term dominated
the MDL term, and a the maximum value of 6 was selected



(a)

(b)

Figure 1. Spelling via the CameraMouse inter-
face. (a) The correlation-based video tracking
system estimates the image position of a se-
lected facial feature. In these experiments,
the tip of the user’s nose was tracked. (b) Mo-
tion of the user’s nose then moves the cursor
on the screen to spell words via a hierarchical
spelling interface as described in the text.

as the “correct” number of clusters for both the EM and
k-means algorithms. The sequences corresponding to the
word “boston” were distributed among two clusters by both
algorithms. In what follows, we chose to ignore the esti-
mated number of clusters and initialized the algorithms with
the true number of classes, 5.

Two different initializations were tested: (1) initializa-
tion with DTW (in a similar manner to [13]), and (2) ran-
dom initialization. With DTW, 16 out of the 20 sequences
were initially correctly classified, and using this as initial
classification, both HMM-clustering approaches were able
to move one more sequence (corresponding to the word
’boston’) to its correct class, so 17 out of 20 were eventually
correctly classified. With random initialization only 10 out
of the 20 sequences were initially correctly classified, and
after HMM-clustering 16 out the 20 sequences were cor-
rectly classified. We noticed that the EM and k-means per-
formed essentially the same, because the sequences lengths
were long enough, causing the likelihood ratios to dominate
the prior probabilities ratios, and therefore causing the EM
soft posteriors to approach the k-means hard posteriors.
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Figure 2. Four tracking sequences: two corre-
sponding to the word “berlin”(blue dashed),
and two corresponding to the word “lon-
don”(red solid). The graph depicts the x and
y position of the user’s nose.

6.2.2 Experiment 3: Georgia-Tech Gait database

We conducted experiments with Gait data that was collected
for the Human ID project at the computational perception
lab at Georgia Tech. This database is available online at
http://www.cc.gatech.edu/cpl/projects/hid/. This database
consists of video sequences of 20 walking human subjects
taken under various viewing conditions We used a subset
of this database for our experiment: a total of 45 sequences
of 15 subjects (3 sequences per subject), for which binary
masks, extracted using a background subtraction algorithm,
was available.

All sequences were taken under the same viewing con-
ditions. Fig. 3 shows example frames of two out of the 45
sequences pertaining to subjects 3 and 5. Binary masks are
shown below their corresponding frames. For each binary
mask we computed the aspect ratio of its bounding box, and
thus for each of the 45 sequences we obtained an aspect ra-
tio time-series. An average smoothing filter of size five was
applied to the time-series. The resulting smoothed aspect
ratio time-series for subjects 3 and 5 are depicted in Fig. 4.

The model selection criterion was tested with 5, 10, and
15 clusters, the true number of classes. The EM algorithm
selected the value M = 5, and the k-means algorithm se-
lected M = 10. Model selection underestimated the num-
ber of clusters because the aspect ratio is not the most dis-
criminative feature, and in such cases MDL will tend to sim-
plify the model even more. In what follows, we chose to
ignore the estimated number of clusters and initialized the
algorithms with the true number of classes, 15.

In order to reduce the sensitivity of the HMM-clustering
algorithm to the initial grouping, we tried two initializa-
tions: Smyth’s method [16], and Dynamic time warping.
Both methods use agglomerative hierarchical clustering,



Frame 30 Frame 20 Frame 10
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Figure 3. Example frames and corresponding
silhouettes extracted from image sequences
pertaining to subjects 3 and 5.

and the clusters are formed by cutting the hierarchy at level
15. Smyth’s method uses the KL divergence as the dissim-
ilarity measure, while DTW uses the warping distance as
the dissimilarity measure. The results of the agglomerative
algorithms were used as initial clusterings, and were refined
using the two HMM partition-based clustering algorithms,
namely k-means and EM.

The input time-series depicted in Fig. 4 can be modeled
as sine waves plus noise. We therefore selected a periodic
HMM structure that consists of four states corresponding
to the sine valley, zero crossing up, peak, and zero cross-
ing down. This is a more compact representation than the
one typically used to represent periodic signals with HMMs
[6, 13]. The typical model consists of as many states as ob-
servations in a single period. The features we used are the
aspect ratio and its first derivative.

The results of this experiment are summarized in Ta-
ble 2. The results indicate that the EM and k-means pro-
cedures improve the initial clusters obtained from DTW.
Smyth’s procedure yields good initial clusters. EM and k-
means assigned a few more sequences to clusters with sim-
ilar sequences, thus reducing the number of clusters and
consequently the classification accuracy. The classification
accuracies of the clustering algorithms are very similar to
the classification accuracy obtained using supervised learn-
ing. In other words, the clustering-based classifier achieved
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Figure 4. Smoothed aspect ratio signals for
subjects 3 (blue dashed) and 5 (red solid).

Method Classification
Accuracy (%)

Supervised 1-NN leave-one-out 76
Unsupervised DTW init. 51

DTW init. K-means 69
EM 69

Unsupervised Smyth’s init. 71
Smyth’s init. K-means 69

EM 69

Table 2. Classification results for Georgia-
tech gait database.

comparable performance, but without the need for class la-
belings provided in the supervised learning approach. This
is an encouraging result.

7 Conclusion and Future Work

In this paper we presented an EM-based algorithm for
clustering sequences using a mixture of HMMs, and com-
pared it to the k-means algorithm typically used in this con-
text. Our experiments show that though the EM and k-
means approaches generally have similar performance, the
EM-based approach produces better estimates when there is
more “overlap” in the underlying densities.

In future work, we plan to improve the clustering algo-
rithm by incorporating a robust method to handle outliers,
and a method for learning the structure of the HMMs. Our
main goal then is to make use of motion clusters for efficient
indexing and retrieval of similar motion sequences.
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