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Abstract—Given a collection of Boolean spatial features, the colocation pattern discovery process finds the subsets of features

frequently located together. For example, the analysis of an ecology data set may reveal symbiotic species. The spatial colocation rule

problem is different from the association rule problem since there is no natural notion of transactions in spatial data sets which are

embedded in continuous geographic space. In this paper, we provide a transaction-free approach to mine colocation patterns by using

the concept of proximity neighborhood. A new interest measure, a participation index, is also proposed for spatial colocation patterns.

The participation index is used as the measure of prevalence of a colocation for two reasons. First, this measure is closely related to

the cross-K function, which is often used as a statistical measure of interaction among pairs of spatial features. Second, it also

possesses an antimonotone property which can be exploited for computational efficiency. Furthermore, we design an algorithm to

discover colocation patterns. This algorithm includes a novel multiresolution pruning technique. Finally, experimental results are

provided to show the strength of the algorithm and design decisions related to performance tuning.

Index Terms—Colocation patterns, spatial association rules, participation index.
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1 INTRODUCTION

COLOCATION patterns represent subsets of Boolean spatial
features whose instances are often located in close

geographic proximity. Fig. 1 shows a data set consisting of
instances of several Boolean spatial features, each repre-
sented by a distinct shape. A careful review reveals two
colocation patterns, i.e., {‘+,’ ‘�’} and {‘o,’ ‘*’}. Real-world
examples of colocation patterns include symbiotic species,
e.g., the Nile Crocodile and Egyptian Plover in ecology.
Boolean spatial features describe the presence or absence of
geographic object types at different locations in a two-
dimensional or three-dimensional metric space, such as the
surface of the earth. Examples of Boolean spatial features
include plant species, animal species, road types, cancers,
crime, and business types.

Colocation rules are models to infer the presence of

spatial features in the neighborhood of instances of other

spatial features. For example, “Nile Crocodiles ! Egyptian

Plover” predicts the presence of Egyptian Plover birds in

areas with Nile Crocodiles.
We formalize the colocation rule mining problem as

follows: Given 1) a set T of K spatial feature types T ¼

ff1; f2; . . . ; fKg and their instances I ¼ fi1; i2; . . . ; iNg, each

ii 2 I is a vector < instance-id, spatial feature type,

location > , where location 2 spatial framework S and

2) a neighbor relation R over instances in I, efficiently

find all the colocated spatial features in the form of
subsets of features or rules.

1.1 Related Work

Approaches to discovering colocation rules in the literature
can be categorized into two classes, namely, spatial statistics
and data mining approaches. Spatial statistics-based
approaches use measures of spatial correlation to character-
ize the relationship between different types of spatial
features. Measures of spatial correlation include the
cross-K function with Monte Carlo simulation [6], mean
nearest-neighbor distance, and spatial regression models
[5]. Computing spatial correlation measures for all possible
colocation patterns can be computationally expensive due
to the exponential number of candidate subsets given a
large collection of spatial Boolean features.

Data mining approaches can be further divided into a
clustering-based map overlay approach and association
rule-based approaches. A clustering-based map overlay
approach [9], [8] treats every spatial attribute as a map layer
and considers spatial clusters (regions) of point-data in each
layer as candidates for mining associations. Given X and Y
as sets of layers, a clustered spatial association rule is
defined as X ) Y ðCS;CC%Þ, for X

T

Y ¼ ;, where CS is
the clustered support, defined as the ratio of the area of the
cluster (region) that satisfies both X and Y to the total area
of the study region S, and CC% is the clustered confidence,
which can be interpreted as CC% of areas of clusters
(regions) of X intersect with areas of clusters (regions) of Y .

Association rule-based approaches can be divided into
transaction-based approaches and distance-based ap-
proaches. Transaction-based approaches focus on defining
transactions over space so that an Apriori-like algorithm [2]
can be used. Transactions over space can be defined by a
reference-feature centric model [12]. Under this model,
transactions are created around instances of one user-
specified spatial feature. The association rules are derived
using the Apriori [2] algorithm. The rules found are all
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related to the reference feature. However, generalizing this
paradigm to the case where no reference feature is specified
is nontrivial. Also, defining transactions around locations of
instances of all features may yield duplicate counts for
many candidate associations.

A distance-based approach was proposed concurrently
by Morimoto [15] and Shekhar and Huang [19]. Morimoto
defined distance-based patterns called k-neighboring class
sets. In his work, the number of instances for each pattern is
used as the prevalence measure, which does not possess an
antimonotone property by nature. However, Morimoto
used a nonoverlapping instance constraint to get the
antimonotone property for this measure. In contrast, we
developed an event centric model, which does away with
the nonoverlapping instance constraint. We also defined a
new prevalence measure called the participation index. This
measure possesses the desirable antimonotone property. A
more detailed comparison of these two works is presented
in Section 6.

1.2 Contributions

This paper extends our work [19] on the event centric model
and makes the following contributions. First, we refine the
definition of distance-based spatial colocation patterns by
providing an interest measure called the participation
index. This measure not only possesses a desirable
antimonotone property for efficiently identifying colocation
patterns, but also allows for formalizing the correctness and
completeness of the proposed algorithm. Furthermore, we
show the relationship between the participation index and a
spatial statistics interest measure, the cross-K function.
More specifically, we show that the participation index is an
upper-bound of the cross-K function. Second, we provide
an algorithm to discover colocation patterns from spatial
point data sets. This algorithm includes a novel multi-
resolution filter, which exploits the spatial autocorrelation
property of spatial data to effectively reduce the search
space. An experimental evaluation on both synthetic and
real-world NASA climate data sets is provided to compare
alternative choices for key design decisions.

1.3 Outline and Scope

Section 2 describes our approach for modeling colocation
patterns. Section 3 proposes a family of algorithms to mine
colocation patterns. We show the relationship between the
participation index and an estimator of the cross-K function
and provide an analysis of the algorithms in the area of
correctness, completeness, and computational efficiency in
Section 4. In Section 5, we present the experimental setup
and results. Section 6 provides a comparison between our
work and the work by Morimoto [15]. Finally, in Section 7,
we present the conclusion and future work.

This paper does not address issues related to the edge
effects or the choice of the neighborhood size and interest
measure thresholds. Quantitative association, e.g., ðA;AÞ
and quantitative association rules, e.g., (A ) A), are beyond
the scope of this paper.

2 OUR APPROACH FOR MODELING COLOCATION

PATTERNS

This section defines the event centric model, our approach
to modeling colocation patterns. We use Fig. 2 as an
example spatial data set to illustrate the model. In the
figure, each instance is uniquely identified by T:i, where T
is the spatial feature type and i is the unique id inside each
spatial feature type. For example, B:2 represents the
instance 2 of spatial feature B. Two instances are connected
by edges if they have a spatial neighbor relationship.

A colocation is a subset of Boolean spatial features. A
colocation rule is of the form: c1 ) c2ðp; cpÞ, where c1 and c2
are colocations, c1

T

c2 ¼ ;, p is a number representing the
prevalence measure, and cp is a number measuring
conditional probability.

An important concept in the event centric model is
proximity neighborhood. Given a reflexive and symmetric
neighbor relation R over a set S of instances, a
R-proximity neighborhood is a set I � S of instances
that form a clique [4] under the relation R. The definition
of neighbor relation R is an input and should be based
on the semantics of the application domains. The
neighbor relation R may be defined using spatial
relationships (e.g., connected, adjacent [1]), metric rela-
tionships (e.g., Euclidean distance [15]), or a combination
(e.g., shortest-path distance in a graph such as a road-
map). The R-proximity neighborhood concept is different
from the neighborhood concept in topology [14] since
some supersets of a R-proximity neighborhood may not
qualify to be R-proximity neighborhoods.

TwoR-proximity neighborhoods I1 and I2 areR-reachable
to each other if I1

S

I2 is a R-proximity neighborhood. A
R-proximity neighborhood I is a row instance (denoted by
row instanceðcÞ) of a colocation c if I contains instances of all
the features in c and no proper subset of I does so. For
example, fA:3; B:4; C:1g is a row instance of colocation
fA; B; Cg in the spatial data set shown in Fig. 2. But,
fA:2; A:3; B:4; C:1g is not a row instance of colocation
fA; B; Cg because its proper subset fA:3; B:4; C:1g contains
instances of all features in fA; B; Cg. In another example,
fA:2; A:4g is not a row instance of colocation fAg because its
proper subset fA:2g (or fA:4g) contains instances of all the
features in fAg. The table instance, table instanceðcÞ, of a
colocation c is the collection of all row instances of c. In Fig. 2,
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t1, t2, t3, t4, t5, t6, and t7 represent table instances. For
instance, t5 ¼ ffA:1;C:2g; fA:3;C:1gg is a table instance of
the colocation fA;Cg.

The participation ratio prðc; fiÞ for feature type fi in a
size-k colocation c ¼ ff1; . . . ; fkg is the fraction of instances
of feature fi R-reachable to some row instance of colocation
c� ffig. The participation index piðcÞ of a colocation c ¼
ff1; . . . ; fkg is mink

i¼1fprðc; fiÞg. The participation index is
used as the measure of prevalence of a colocation for two
reasons. First, the participation index is closely related to
the cross-K function [16], [17] which is often used as a
statistical measure of interaction among pairs of spatial
features. Second, it also possesses an antimonotone prop-
erty which can be exploited for computational efficiency.
The participation ratio can be computed as

�fiðjtable instanceðcÞj

jtable instanceðfiÞj
;

where� is the relationalprojectionoperationwithduplication
elimination. Forexample, inFig. 2, rowinstancesof colocation
fA;BgareffA:1; B:1g; fA:2; B:4g; fA:3; B:4gg.Only two (B:1
andB:4) outof five instancesof spatial featureBparticipate in
colocation fA;Bg. So, prðfA;Bg; BÞ ¼ 2=5 ¼ 0:4. Similarly,
prðfA;Bg; AÞ is 0.75. The participation index piðfA;BgÞ ¼
minð0:75; 0:4Þ ¼ 0:4.

The conditional probability cpðc1 ) c2Þ of a colocation
rule c1 ) c2 is the fraction of row instances of c1 R-reachable

to some row instance of c2. It is computed as

j�c1ðtable instanceðfc1
S

c2gÞÞj

jtable instanceðfc1gÞj
;

where � is the relational projection operation with duplica-
tion elimination. For example, in the colocation rule A ) C

in Fig. 2, the conditional probability of this rule is equal to

j�Aðtable instanceðfA
S

CgÞÞj

jtable instanceðfAgÞ
¼

2

4
¼ 50%:

3 COLOCATION MINING ALGORITHM

In this section, we introduce a colocation mining algorithm.
Note that the prevalence measure used in Fig. 3 is the
participation index and that a colocation pattern is
prevalent if the values of its participation index is above a
user specified threshold.

As shown in Fig. 3, the algorithm takes a set ET of
spatial event types, a set E of event instances, user-defined
functions representing spatial neighborhood relationships
as well as thresholds for interest measures, i.e., prevalence
and conditional probability. The algorithm outputs a set of
prevalent colocation rules with the values of the interest
measures above the user defined thresholds.

The initialization steps (i.e., steps 1 and 2 in Fig. 3) assign
starting values to various data structures used in the
algorithm. We note that the value of the participation index
is 1 for all colocations of size 1. In other words, all
colocations of size 1 are prevalent and there is no need for
either the computation of a prevalence measure or pre-
valence-based filtering. Thus, the set C1 of candidate
colocations of size 1 as well as the set P1 of prevalent
colocations of size 1 are initialized to ET , the set of event
types. The set T1 of table instances of size 1 colocation is
created by sorting the set E of event instances by event
types. If a multiresolution pruning step is desired, the set of
events are discretized into coarse level instances. The set
T C1 of coarse-level table instances of size 1 colocations is
generated by sorting the coarse-level event instances by
event types.

The proposed algorithms for mining colocation rules
iteratively perform four basic tasks, namely, generation of
candidate colocations, generation of table instances of
candidate colocations, pruning, and generation of coloca-
tion rules. These tasks are carried out inside a loop iterating
over the size of the colocations. Iterations start with size 2
since our definition of prevalence measure allows no
pruning for colocations of size 1.
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3.1 Generation of Candidate Colocations

We could rely on a combinatorial approach and use
apriori gen [2] to generate size kþ 1 candidate colocations
from size k prevalent colocations.

The apriori-gen function takes as argument Pk, the set of
all prevalent size k colocations. The function works as
follows: First, in the join step, we join Pk with Pk. This step
is specified in a SQL-like syntax as follows:

insert into Ckþ1

select p:f1, p:f2; . . . , p:fk, q:fk, p:table instance id,

q:table instance id

from Pk p, Pk q

where p:f1 ¼ q:f1, . . . , p:fk�1 ¼ q:fk�1, p:fk < q:fk;

Next, in the prune step, we delete all colocations c 2 Ck

such that some size k� 1 subset of c is not in Pk:

forall colocation c 2 Ckþ1 do

forall size k� 1 subsets s of c do

if (s=2Pk), then delete c from Ckþ1;

Note that the column fi of Pk refers to the i feature of
colocations in table Pk and the column table_instance_id of
table Pk refers to table instances of appropriate colocations.

3.2 Generation of Table Instances of Candidate
Colocations

Computation for generating size kþ 1 candidate colocations
can be expressed as the following join query:

forall colocation c 2 Ckþ1

insert into Tc /* Tc is the table instance of

colocation c */

select p:instance1, p:instance2, . . . , p:instancek,

q:instancek
from c:table instance id1 p, c:table instance id2 q

where p:instance1 ¼ q:instance1, . . . ,
p:instancek�1 ¼ q:instancek�1, (p:instancek,

q:instancekÞ 2 R;

end;

The query takes the size kþ 1 candidate colocation set
Ckþ1 and table instances of the size k prevalent colocations
as arguments and works as follows: c:table instance id1 and
c:table instance id2 specify the table instances of the two
colocations joined in apriori gen to produce c. Here, a sort-
merge join is preferred because the table instances of each
iteration can be kept sorted for the next iteration. This
follows from a similar property of apriori-gen [2]. Sort order
is based on an ordering of the set of feature types to order
feature types in a colocation to form the sort-field. Finally,
all colocations with empty table instances will be eliminated
from Ckþ1.

The join computation for generating table instances has
two constraints, a spatial neighbor relationship constraint
((p:instancek; q:instancekÞ 2 R) and a combinatorial dis-
tinct event-type constraint (p:instance1 ¼ q:instance1; . . . ;
p:instancek�1 ¼ q:instancek�1Þ. We examine three strate-
gies for computing this join: a geometric strategy, a
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combinatorial strategy, and a hybrid strategy. These are
described in forthcoming sections. Exploration of other
join strategies is beyond the scope of this paper but we
may explore such strategies in future work.

Geometric Approach. The geometric approach can be
implemented by neighborhood relationship-based spatial
joins of table instances of prevalent colocations of size k
with table instance sets of prevalent colocations of size 1. In
practice, spatial join operations are divided into a filter step
and a refinement step [18] to efficiently process complex
spatial data types such as point collections in a row
instance. In the filter step, the spatial objects are represented
by simpler approximations such as the MBR—Minimum
Bounding Rectangle. There are several well-known algo-
rithms, such as plane sweep [3], space partition [11], and
tree matching [13], which can then be used for computing
the spatial join of MBRs using the overlap relationship; the
answers from this test form the candidate solution set. In
the refinement step, the exact geometry of each element
from the candidate set and the exact spatial predicates are
examined along with the combinatorial predicate to obtain
the final result.

Combinatorial Approach. The combinatorial join predi-
cate (i.e., p:instance1¼q:instance1; p:instance2¼ q:instance2;
. . . ; p:instancek�1 ¼ q:instancek�1Þ can be processed effi-
ciently using a sort-merge join strategy [10] since the set of
feature types is ordered and tables c:table instance id1 and
c:table instance id2 are sorted. The resulting tuples are
checked for the spatial condition ((p:instancek; q:instancekÞ
2 R) to get the row-instance in the result. In Fig. 2, table 4 of
colocation fA;Bgand table 5of colocationfA;Cgare joined to
produce the table instance of colocation fA;B;Cg because
colocation fA;Bg and colocation fA;Cg were joined in
apriori_gen to produce colocation fA;B;Cg in the previous
step. In the example, row instance f3; 4g of table 4 and row
instance f3; 1g of table 5 are joined to generate row instance
f3; 4; 1gofcolocationfA;B;Cg (table7).Rowinstancef1; 1gof
table 4 and row instance f1; 2g of table 5 fail to generate row
instance f1; 1; 2g of colocation fA;B;Cg because instance 1 of
B and instance 2 of C are not neighbors.

HybridApproach.The hybrid approach chooses themore
promising of the spatial and combinatorial approaches in
each iteration. In our experiment, it picks the spatial approach
togenerate table instances for colocationpatternsof size 2 and
the combinatorial approach for generating table instances for
colocation patterns of size 3 or more.

3.3 Pruning

Candidate colocations can be pruned using the given
threshold � on the prevalence measure. In addition, multi-
resolution pruning can be used for spatial data set with
strong autocorrelation [6], i.e., where instances tend to be
located near each other.

Prevalence-Based Pruning. We first calculate the parti-
cipation indexes for all candidate colocations in Tkþ1.
Computation of the participation indexes can be accom-
plished by keeping a bitmap of size cardinality (fi) for each
feature fi of colocation c. One scan of the table instance of c
will be enough to put 1s in the corresponding bits in each
bitmap. By summarizing the total number of 1s (pfi ) in each
bitmap, we obtain the participation ratio of each feature fi
(divide pfi by j instance of fij). In Fig. 2c, to calculate the
participation index for colocation fA;Bg, we need to
calculate the participation ratios for A and B in colocation

fA;Bg. Bitmap bA ¼ ð0; 0; 0; 0Þ of size four for A and bitmap
bB ¼ ð0; 0; 0; 0; 0Þ of size 5 for B are initialized to zeros.
Scanning of table 4 will result in bA ¼ ð1; 1; 1; 0Þ and
bB ¼ ð1; 0; 0; 1; 0Þ. Three out of four instances of A (i.e., 1,
2, and 3) participate in colocation fA;Bg, so the participa-
tion ratio for A is .75. Similarly, the participation ratio for B
is .4. Therefore, the participation index is minf:75; :4g ¼ :4.

After the participation indexes are determined, preva-
lence-based pruning is carried out and nonprevalent
colocations are deleted from the candidate prevalent
colocation sets. For each remaining prevalent colocation c
after prevalence-based pruning, we keep a counter to
specify the cardinality of the table instance of c. All the
table instances of the prevalent colocations in this iteration
will be kept for generation of the prevalent colocations of
size kþ 2 and discarded after the next iteration.

Multiresolution Pruning. Multiresolution pruning is
learned on a summary of spatial data at a coarse resolution
using a disjoint partitioning, e.g., pagination imposed by
leaves of a spatial index or a grid. A new neighbor relation-
ship Rc on partitions is derived from relationship R so that
twopartitions areR neighbors if any two instances from each
of the two partitions are R neighbors. We combine all
instances of a spatial feature f in each partition s in the
partitioningasanewcoarse instance< s; f;m > in the coarse
space, where m is the number of instances of spatial point
feature f in cell s. For each candidate colocation generated by
apriori gen, we generate its coarse table instance using new
coarse instances, newneighbor relationshipRc, and its coarse
participation index based on the coarse table instance.
Multiresolution pruning eliminates a colocation if its coarse
participation indexes fall below the threshold, because coarse
participation never underestimates the participation index,
as shown in Section 4.2.

We now illustrate multiresolution pruning by using a
simple recti-linear grid for simplicity. In Fig. 4a, different
shapes represent different point spatial feature types. Every
instance has a unique ID in its spatial feature type and is
labeled below it in the figure. Two instances are defined as
neighbors if they are in a common d� d square. A grid with
uniform cell size d is superimposed on the data set. Cells
(i,j) refer to cells with an x-axis index of i and a y-axis index
of j. In this grid, two cells are coarse-neighbors if their
centers are in a common square of size d� d, which
imposes an 8-neighborhood (North, South, East, West,
North East, North West, South East, South West) on the
cells. For example, cell-pairs fð0; 3Þ; ð0; 4ÞÞ; ðð0; 3Þ; ð1; 3Þg
and fð0; 4Þ; ð1; 3Þg illustrate coarse-neighbors. This coarse-
neighborhood definition guarantees that two cells are
neighbors if there exists a pair of points from each of the
two cells which are neighbors in the original data set. The
process of multiresolution pruning is shown as follows.

First, we generate coarse table instances of candidate
colocations of size kþ 1 by joining the coarse table instances
with the coarse-neighbor relationships.

Next, we calculate the participation indexes for all
candidate colocations based on the coarse table instances.
For each spatial feature fi, we add up all the counts of point
instances in each coarse instance with 1s in its corresponding
bitmap (pfi ) and divide this by j instance of fij to get the
coarse-participation ratio of feature fi. For example, inFig. 4a,
coarse prðð?; �Þ; ?Þ ¼ 4=7 since there are two coarse row
instances of f?; �g, each containing two fine-grain instances of
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? and a total of seven fine-grain instances of ?. Similarly,
coarse prðf?; �g; �Þ ¼ 4=4 ¼ 1, yielding coarse participation
index piðf?; �gÞ ¼ minð4=7; 4=4Þ ¼ 4=7. Fig. 4b shows coarse
table instances of colocations {*, ut}, {*, �}, and {ut, �}. If the
threshold for prevalence is set to 0.6, then colocation c5 and c6
can be pruned by multiresolution pruning. We also note that
the sizes of coarse table instances are smaller than the sizes of
table instances at fine resolution. This shows the possibility of
computation cost saving via multiresolution pruning for
clustered data sets. Finally, the examples in Fig. 4b show that
the coarse participation ratios and participation indexes
never underestimate the true participation indexes of the
original data set.

3.4 Generating Colocation Rules

The generate_colocation_rule function generates all the

colocation rules with the user defined conditional prob-

ability threshold � from the prevalent colocations and their

table instances. The conditional probability of a colocation

rule c1 ) c2 in the event centric model is the probability of

c1 reachable to a R-proximity neighborhood containing all

the features in c2. It can be calculated as:

j�c1ðtable instanceðc1
S

c2ÞÞj

jtable instanceðc1Þj
;

where � is a projection operation with duplication elimina-

tion. Bitmaps or other data structures can be used for

efficient computation using the same strategies for pre-

valence-based pruning.

4 ANALYSIS OF THE COLOCATION MINING

ALGORITHMS

Here, we analyze the colocation mining algorithms in the
areas of statistical interpretation of colocation patterns,
completeness, correctness, and computational complexity.

4.1 Statistical Interpretation of the Colocation
Patterns

In spatial statistics [6], interest measures such as the cross-K
function, a generalization of Ripley’s K-function [16], [17]
(and variations such as the L-function and G function) are
used to identify colocated spatial feature types. The cross-K
function KðhÞ for binary spatial features is defined as
follows:

KijðhÞ ¼��1
j E½number of type j instances within distance

h of a randomly chosen type i instance�;

where �j is the density (number per unit area) of type j

instances and h is the distance. Without edge effects [7], the

cross-K-function could be estimated by: K̂KijðhÞ ¼
1

�i�jW

P

k
P

l Ihðdðik; jlÞÞ, where dðik; jlÞ is the distance between the

kth instance of type i and the lth instance of type j, Ih is the

indicator function assuming value 1 if the distance between

instance ik and jl dðik; jlÞ � h, and value 0 otherwise, and W

is the area of the study region. �j � K̂KijðhÞ estimates the

expected number of type j instances within distance h of a

type i instances. The variance of the cross-K function can be

estimated by Monte Carlo simulation [6], in general, and by
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a close form equation under special circumstances [6]. In

Fig. 5, the cross-K functions of the two pairs of spatial

features, i.e., {‘+,’ ‘�’} and {‘o,’ ‘*’}, are well above the

spatial complete randomness curve y ¼ � � h2, while the

cross-K functions of the other random two pairs of spatial

features, i.e., {‘*,’ ‘�’} and {‘*,’ ‘+’}, are very close to

complete spatial randomness. This figure does not show the

confidence band.
We compare the participation index with the cross-K

function in an attempt to provide an independent method
for evaluating colocation patterns. In particular, we explore
the correctness of colocations using the following character-
ization of the relationship between the cross-K function and
colocations.

Lemma 1. Participation index piðfA;BgÞ for colocation fA;Bg
is an upper-bound on

^KABKABðhÞ
W , where ^KABKABðhÞ is the estimation of

the cross-K function of colocation fA;Bg for a proximity
neighborhood defined by distance � h, and W is the total area
of the region.

Proof. From the definition of the participation index and the
definition of cross-K function, we have

piðfA;BgÞ ¼

min
j�Aðtable instanceðA;BÞÞj

jAj
;
j�Bðtable instanceðA;BÞÞj

jBj

� �

and

^KABKABðhÞ

W
¼

1

W
�

1

�A�BW

X

k

X

l

IhðdðAk; BlÞÞ

¼
jtable instanceðA;BÞj

jAj � jBj
:

We need to show only that

j�Aðtable instanceðA;BÞÞj

jAj
	

jtable instanceðA;BÞj

jAj � jBj

and

j�Bðtable instanceðA;BÞÞj

jBj
	

jtable instanceðA;BÞj

jAj � jBj
:

To prove the first inequality, we need to show only that
j�Aðtable instanceðfA;BgÞÞj 	 jtable instanceðfA;BgÞj

jBj . This is

obvious because the total number of instances of A with
at least one instance of type B nearby (left side) is always
greater or equal to the average number of instances of
type A around an instance of type B (right side). The
second inequality could be proved in a similar manner.tu

Lemma 2. The table instance table instanceðfA;BgÞ of a binary

colocation fA;Bg has enough information to compute the

estimator
^KABKABðhÞ
W of the cross-K function for h ¼ d, where

distance d defines the proximity neighborhood.

Proof. Since

^KABKABðhÞ

W
¼

1

W
�

1

�A�BW

X

k

X

l

IhðdðAk; BlÞÞ

¼
jtable instanceðA;BÞj

jAj � jBj
;

this lemma holds. tu

Lemma 1 may be used to establish the correctness of
colocation rules with respect to the threshold defined by
K̂KABðhÞ

W , and Lemma 2 may be used to establish the colocation
miner as an algorithm to efficiently compute K̂KAB for
selected colocations, particularly when the multiresolution
filter is effective. We are at present aware of only the use of
the cross-K function to characterize pairwise spatial inter-
actions. We plan to explore spatial statistics research
literature to look for measures of spatial interaction among
more than two features and compare those measures to the
participation index.

4.2 Completeness and Correctness

Lemma 3: Antimonotone. The participation ratio and partici-
pation index are antimonotone (monotonically nonincreasing)
as the size of the colocation increases.

Proof. The participation ratio is antimonotonic because a
spatial feature instance that participates in a row instance
of a colocation c also participates in a row instance of a
colocation c0, where c0 
 c. The participation index is also
antimonotonic because 1) the participation ratio is
antimonotonic and 2)

pi c
[

fkþ1

� �

¼ min
kþ1

i¼1
pr c

[

fkþ1; fi

� �n o

� min
k

i¼1
pr c

[

fkþ1; fi

� �n o

� min
k

i¼1
fprðc; fiÞg ¼ piðcÞ:

ut

Lemma 4. The coarse participation index computed by multi-
resolution pruning never underestimates the participation
indexes of the original data set. The candidate colocation set
found is a superset of the prevalent colocation set on the
original data set.

Proof. When colocation size = 1, the value of the coarse
participation index and the true participation index is 1,
so Lemma 4 is trivially true. Suppose Lemma 4 is true for
colocations size = k. Let us consider the case that
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colocation size is equal to kþ 1. For each candidate
colocation c of size kþ 1 generated from the apriori_gen
by joining c1 and c2 of size k, we generate its coarse
instance table by joining the coarse instance tables of c1
and c2. Because Lemma 4 is true for colocations of size k,
the candidate colocation set of size k found is a superset
of the prevalent colocation set on the original data set.
Thus, c1 and c2 are in the candidate colocation set in the
previous iteration and their coarse level table instances
are available to be joined to produce the coarse level
table instance of c. The table join to produce the coarse
table instance of c has the following property: If Rðp1; p2Þ
is in the original data set, then coarse Rcðcell c1; cell c2Þ
will be in the coarse-level data set given p1 2 c1 and
p2 2 c2. When we calculate the coarse participation
index, any spatial feature instance which participates in
the colocation in the original data set will contribute to
the counts during the coarse participation ratio calcula-
tion. So, the coarse participation ratios never under-
estimate the true participation ratios, implying that the
coarse participation index never underestimates the true
participation index and that the pruning will not
eliminate any truly prevalent colocation. Thus, the
candidate colocation set after multiresolution pruning
is a superset of the prevalent colocation set on the
original data set. tu

Lemma 5: Completeness. The Colocation Miner algorithm is

complete.

Proof. The schema level pruning using apriori_gen is
complete due to the monotonicity of the participation
index as proved in Lemma 3. Then, we prove that the
join of the table instances of c1 and c2 to produce the table
instance of c is complete. According to the proximity
neighborhood definition, any subset of a proximity
neighborhood is a proximity neighborhood too. For any
instance I ¼ fi1; . . . ; ikþ1g of colocation c, subsets I1 ¼
fi1; . . . ; ikg and I2 ¼ fi1; . . . ; ik�1; ikþ1g are neighbor-
hoods, ik and ikþ1 are neighbors, and I1 and I2 are row
instances of C1 and C2, respectively. Joining I1 and I2
will produce I. Enumeration of the subsets of each of the
prevalent colocations ensures that no spatial colocation
rules with both high prevalence and high conditional
probabilities are missed. We then prove that multi-
resolution pruning does not affect completeness. By
Lemma 4, the colocation set found is a superset of the
prevalent colocation set on the original data set. Thus,
multiresolution pruning does not falsely eliminate any
prevalent colocation. tu

Lemma 6: Correctness. The Colocation Miner is correct.

Proof. We will show only that the row instance of each
colocation is correct, as that will imply the correctness of
the participation index values and that of each colocation
meeting the user specified threshold. An instance I1 ¼
fi1;1; . . . ; i1;kg of c1 ¼ ff1; . . . ; fkþ1g and an instance I2 ¼
fi2;1; . . . ; i2;kg of c2 ¼ ff1; . . . ; fk�1; fkþ1g is joined to pro-
duce an instance Inew ¼ fi1;1; . . . ; i1;k; i2;kg of c ¼ ff1; . . . ;
fkþ1g if: 1) all elements of I1 and I2 are the same except i1;k
and i2;k; 2) i1;k and i2;k are neighbors. The schema of Inew is
apparently c, and elements in Inew are in a proximity
neighborhoodbecause I1 is a proximity neighborhoodand
i2;k is a neighbor of every element of I1. tu

4.3 Computational Complexity Analysis

This section examines the strategies for generating candi-

date colocations, the evaluation of the multiresolution

pruning strategy, and the effect of noise. First, there are

two basic strategies for generating table instances of

candidate colocations, namely, the geometric approach

and the combinatorial approach. For generating size-2

colocations, the combinatorial approach ends up being the

nest-loop join strategy with an asymptotic complexity of

OðN2Þ, while the geometric approach has the CPU cost1 of

OðNlogN þMÞ, where N is the total number of instances of

all features and M is the number os intersections. When the

data set is sparse, the cost of the combinatorial approach

will be much higher. However, when generating table

instances of colocations of size 3 or more, the combinatorial

approach becomes cheaper than the geometric approach.

This is due to its exploitation of the sort-merge join strategy

while keeping each table instance sorted. In a hybrid

approach, we pick the cheaper of the two basic strategies in

each iteration to achieve the best overall cost.
Second, let us compare the cost of the Colocation Miner

algorithm with and without the multiresolution pruning

step. Let TmcmðkÞ and TcmðkÞ represent the costs of iteration

k of the Colocation Miner algorithm with and without the

multiresolution pruning.

TmcmðkÞ ¼ Tapriori genðCðprev;kÞÞ þ TpruneðCðcand;kþ1Þ;grid dataÞ

þ TpruneðCðsub cand;kþ1Þ;dataÞ

TcmðkÞ ¼ Tapriori genðCðprev;kÞÞ þ TpruneðCðcand;kþ1Þ;dataÞ:

ð1Þ

In (1), Tapriori genðCðprev;kÞÞ represents the cost of apriori_gen

based on the prevalent colocation set of size k. Here,

resolution is not relevant since apriori_gen works on the

spatial feature level only. TpruneðCðcand;kþ1Þ;grid dataÞ represents

the cost for multiresolution pruning on the coarse level data

set in iteration k. After coarse-level pruning, we only need

to search the leftover subset of the original data set.

TpruneðCðsub cand;kþ1Þ;dataÞ represents the cost for fine level

instance pruning on the leftover subsets of the original data

set. In addition, TpruneðCðcand;kþ1Þ;dataÞ represents the cost for

fine level instance pruning on the original data set in

iteration k.
The bulk of time is consumed in generating table

instances and calculating the participation indexes; thus,

the ratio can be simplified as:

TmcmðkÞ

TcmðkÞ
�

TpruneðCðcand;kþ1Þ;grid dataÞ þ TpruneðCðsub cand;kþ1Þ;dataÞ

TpruneðCðcand;kþ1Þ;dataÞ
:

ð2Þ

Furthermore, we assume that the average time to generate

a table instance in the original data set isTorigðkÞ for iteration k

and the average time to generate a table instance in the grid

data set is TgridðkÞ for iteration k. The number of candidate

colocations generated by the apriori_gen is jCkþ1j and the

number of candidate colocations after the coarse instance

level pruning is jC0
kþ1j, (2) can be written as:
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TmcmðkÞ

TcmðkÞ
�

jCkþ1j � TgridðkÞ þ jC0
kþ1j � TorigðkÞ

jCkþ1j � TorigðkÞ

¼
TgridðkÞ

TorigðkÞ
þ
jC0

kþ1j

jCkþ1j
:

ð3Þ

The first term of the ratio is controlled by the “clumpiness”
(the average number of instances of the spatial features per
grid cell) of the locations of spatial features. The second term
is controlled by the filtering efficiency of the coarse instance
level pruning. When the locations of spatial features are
clustered, the sizes of the fine level table instances are much
greater than the sizes of the coarse level table instances and
the timeneeded togenerate fine level table instances isgreater
than the time needed to generate coarse level table instances.
In our experiments, as described in the next section, we use
the parametermclump, which controls the number of instances
clumping together for each spatial feature, to evaluate the
first term, and we use the parameter moverlap, which
represents the possible false candidate ratios, to evaluate
the second term. From the formula, we can see that the
colocation miner with multiresolution pruning is likely to be
more efficient than the colocation miner without multi-
resolution pruning when the locations of spatial features are
clustered and the false candidate ratio is high.

5 EXPERIMENTAL PERFORMANCE EVALUATION

Fig. 6 describes the experimental setup to evaluate the
impact of design decisions on the relative performance of
the colocation miner algorithm. We evaluated the perfor-
mance of the algorithms with synthetic and real-world
NASA climate data sets. Synthetic data sets are generated
using a methodology similar to methodologies used to
evaluate algorithms for mining association rules [2].
Synthetic data sets allow better control towards studying
the effects of interesting parameters.

A data-flow diagram of the data generation process is
shown in Fig. 6. The process began with the generation of
core colocation subsets of spatial features. To generate a
subset of features, we first chose the size of the subset from
a Poisson distribution with mean (�1). Then, a set of features
for this core colocation pattern was randomly chosen. For
each core colocation, moverlap maximal colocations were
generated by appending one more spatial feature to a core
colocation. The larger moverlap is, the more false candidate
apriori_gen generates. The size of each table instance of each

colocation was chosen from another Poisson distribution
with mean �2. Next, we generated the set of proximity
neighborhoods for colocations instances using the size of
their table instances from the previous step. mclump point
locations for each feature in the colocation were embedded
inside a proximity neighborhood of size d. The locations of
proximity neighborhoods were chosen at random in the
overall spatial framework. For simplicity, the shape of the
overall spatial framework was a rectangle of size D1 �D2

and the size of each proximity neighborhood was d� d. The
final step involved adding noise. The model for noise used
two parameters, namely, the ratio of noise features rnoise f

and the number of noise instances pnoise n. Noise was added
by generating a set of instances of features from a set of
noise features disjoint with the features involving genera-
tion of core colocations and placing the instances at random
locations in the global spatial framework.

The real-world NASA climate data used in our experi-
ments contain monthly measurements of various monthly
numeric climate variables, e.g., precipitation and sea surface
temperature, over a period of 12 years, starting in January
1982. Events, such as drought, wet, and hot, are defined via
statistical thresholding using mean and standard deviation
as detailed in [20].

Our experiments were performed on a Sun Ultra 10
workstation with a 440 MHz CPU and 128 Mbytes memory
running the SunOS 5.7 operating system.

5.1 Comparing Strategies for Generating Table
Instances

In this section, we compare the geometric, the combinator-
ial, and the hybrid strategies using synthetic and real-world
NASA climate data sets. The synthetic data set, generated
using parameter values in column C1 of Table 1, used a
rectangle spatial framework of size 106 � 106, a square
proximity neighborhood of size 10� 10, an average coloca-
tion size of 5, an average table instance size of 50 when
mclump ¼ 1, a noise feature ratio of 0.5, a noise number of
50,000, and an overlapping degree of 1.

Fig. 7a shows the execution times for the three
candidates with the prevalence threshold set to 0.9. In the
figure, the first column reports the execution time needed to
discover colocations of size 2. As can be seen, the geometric
strategy is faster than the combinatorial strategy for
generating size-2 colocations. Spatial-join data structures
help the geometric algorithm in this step. Also, the
remaining columns in Fig. 7a report the total execution
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time to discover all the colocations as well as the time to
discover colocations of size 3 or more, given prevalent
colocations of size 2. In these cases, the combinatorial
algorithm is orders of magnitude faster than the geometric
algorithm. A sort-merge join strategy (e.g., apriori-gen [2])
helps the combinatorial algorithm. The hybrid strategy uses
the geometric algorithm for discovering prevalent coloca-
tions of size 2 and the combinatorial algorithm for
discovering larger colocations. Thus, it is expected to
achieve the best overall performance.

Similar trends were also observed for the NASA climate
event data set, as shown in Fig. 7b. In this experiment, the
prevalence threshold is set to 0.3 and the grid size is 4 by 4.
All events are extracted at the threshold 1.5 using Z-score
transformation.

5.2 Effect of the Filter

The effect of the multiresolution pruning filter was
evaluated with spatial data sets generated using parameter
values shown in column C2 of Table 1. We used a

rectangular spatial framework of size 250� 1; 000, a square
proximity neighborhood of size 10� 10, an average coloca-
tion size of 5, an average table instance size of 50 when
mclump ¼ 1 a noise feature ratio of 0.5, a noise number of
1000, a core colocation size of 4, and an overlapping degree
of 1. Spatial framework sizes were proportional to the total
number of instances to avoid unexpected patterns created
by overcrowding of instances. The overlapping degree
(moverlap) was set from 2 to 8 and the clumpiness measure
(mclump) was set from 5 to 20 to generate other data sets. We
ran the Colocation Miner with and without multiresolution
pruning on these data sets. Prevalence thresholds were set
to the estimation of the actual prevalences from the
generation of the data sets.

Fig. 8 summarizes the performance gain by using
multiresolution pruning. The x-axis represents the overlap
degree, which controls the false candidates generated by
apriori_gen in the first figure or the “clumpiness” of
locations of instances of spatial feature type in the second
figure. The y-axis represents the ratio of runtime of the
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Parameters Used to Generate the Synthetic Data

Fig. 7. (a) Relative performance of geometric, combinatorial, and hybrid algorithms on the synthetic data set. (b) Relative performance of geometric,

combinatorial, and hybrid algorithms on the NASA climate data set.



Colocation Miner without multiresolution pruning to the

runtime with multiresolution pruning. The results show

that, as the degree of overlap and the number of false

candidates increase, the running time is reduced by a factor

of 1 to 4.5.
Fig. 9 summarizes the ratio of the computation time for

multiresolution pruning and for prevalence-based pruning.

The x-axis represents the overlap degree or the “clumpi-

ness” of the locations of each feature type. The overhead of

multiresolution pruning as a fraction of prevalence-based

pruning decreases when the degree of overlap or clumpi-

ness increases. Clumpiness affects the overhead, reducing it

from 0.45 to 0.1.

5.3 Effect of Noise

The base data set, generated using parameter values in

column C1 of Table 1, used a rectangle spatial framework of

size 106 � 106, a square proximity neighborhood of size

10� 10, an average colocation size of 5, an average table

instance size of 50 when mclump ¼ 1, a noise feature ratio of

0.5, a noise number of 50,000, and an overlapping degree of

1. Then, we increased the noise instances up to 800,000 and
measured the performance, as shown in Fig. 10. The
execution time for discovering colocations of size 2 and 3+
are shown in the figure. The results show that noise level
affects the execution time to discover colocations of size 2,
but does not affect the execution time to discover larger
colocations given colocations of size 2. In other words, noise
is filtered out during the determination of colocations of
size 2.

6 DISCUSSION

In this section, we present a detailed comparison of our
approach with the closest related work [15] for pattern
semantics and algorithmic ideas.

. Pattern Semantics. Morimoto [15] defined distance-
based patterns called k-neighboring class sets. In this
work, the number of instances for a pattern is used
as its prevalence measure. However, this measure
may not possess an antimonotone property if the
instances overlap; that is, the number of instances
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may increase with the increase of the pattern size.
For example, in Fig. 11, there are two overlapping
instances: {“2,” “8”} and {“1,” “8”} of the set {square,
triangle}. These two instances share one common
instance {“8”} of the triangle feature. Indeed, there is
only one instance of the triangle feature. In other
words, the number of instances of the set {square,
triangle} is greater than the number of instance of its
subset {triangle}. To deal with this issue, Morimoto
[15] used the following constraint to get the
antimonotone property.

“any point object must belong to only one instance of a k-
neighboring class set.”

As shown in Fig. 11, with this constraint, only one

instance {2, 8} is specified for the 2-neighboring class

set {square, triangle}. However, this constraint may

lead to the following difficulty as described in [15].

“Instances of k-neighboring class set for k > 2 may (be)
different depending on the order of the class as added into
the class set. Therefore, the support value of a k-neighboring
class set for k > 2 may be slightly different.”

Our approach does not need the constraint of “any

point object must belong to only one instance” since

we do not use the number of instances for a pattern

as its prevalence measure. We propose the participa-

tion index as the prevalence measure, which

possesses a desirable antimonotone property. A
unique subset of colocation patterns can be specified
using a threshold on the participation index without
consideration of algorithmic details such as the order
of examination of instances of a colocation. In
addition, the correctness and completeness of
colocation mining algorithms can be defined using
the participation index.

. Algorithmic Ideas. We have noted that a direct
performance comparison of our algorithm with the
algorithm by Morimoto [15] is not very meaningful
due to the difference in the prevalence measure and,
thus, the set of identified patterns. Nonetheless, we
provide a comparison of the algorithmic ideas now.
Morimoto [15] provided an iterative algorithm for
mining neighboring class sets with kþ 1 features
from those with k features. In his algorithm, a
nearest neighbor based spatial join was applied in
each iteration. More specifically, a geometric techni-
que, a Voronoi diagram, was used to take advantage
of the restriction that “any point object must belong
to only one instance of a k-neighboring class set.”
This algorithm considers a pure geometric join
approach. In contrast, our colocation mining algo-
rithm considers a combinatorial join approach in
addition to a pure geometric join approach to
generate size k+1 colocation patterns from size-k
colocation patterns. Our experimental results show
that a hybrid of geometric and combinatorial
methods results in lower computation cost than
either a pure geometric approach or pure combina-
torial approach. In addition, we apply a multi-
resolution filter to exploit the spatial autocorrelation
property of spatial data for effectively reducing the
search space.

7 CONCLUSION AND FUTURE WORK

In this paper, we formalized the colocation problem and
showed the similarities and differences between the
colocation rules problem and the classic association rules
problem as well as the difficulties in using traditional
measures (e.g., support, confidence) created by implicit,
overlapping and potentially infinite transactions in spatial
data sets. We proposed the notion of user-specified
proximity neighborhoods in place of transactions to specify
groups of items and defined interest measures that are
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Fig. 10. Noise effect on the colocation miner.

Fig. 11. A spatial data set with three features represented by circle, square, and triangle. This sample data set is from Morimoto’s paper [15]. In total,
there are eight instances for three features. An edge connects two instances if the distance between these two instances is less than the distance
threshold.



robust in the face of potentially infinite overlapping
proximity neighborhoods. A key observation was that some
properties of proximity neighborhood cliques obey the
downward inclusion property necessary for a priori-based
rule mining. The cardinality of table instances does not obey
this property but the proposed participation index does,
allowing interactive pruning. In addition, the participation
index has a spatial statistical interpretation as an upper-
bound on the cross-K function, a classical spatial statistical
measure of association for binary spatial features. In
contrast, related approaches [12], [15] have not provided
spatial statistical interpretations of their results.

The Colocation Miner, an algorithm for mining colocation
patterns, was presented and analyzed for correctness,
completeness, and computation cost. Design decisions in
the proposed algorithm were evaluated using theoretical
and experimental methods. Empirical evaluation shows
that the geometric strategy performs much better than the
combinatorial strategy when generating size-2 colocations;
however, it becomes slower when generating colocations
with more than two features. The hybrid strategy integrates
the best features of the above two approaches. Furthermore,
when the locations of the features tend to be spatially
clustered, which is often true for spatial data due to spatial-
autocorrelation, the computation cost of the colocation
miner can be significantly reduced with a multiresolution
filter.

Several questions remain open. First, the choice of
neighbor relation R does impact the performance of the
proposed algorithms. We plan to examine statistical
methods, e.g., interinstance distance histograms, to develop
guidelines for the selection of R. Second, the colocation
mining problem should be investigated to account for
extended spatial data types, such as line segments and
polygons. Also, we considered only Boolean features here.
In the real world, the features can be categorical and
continuous. There is a need to extend the colocation mining
framework to handle continuous features. Third, we plan to
evaluate the impact of multiresolution filtering on overall
performance of the proposed algorithms using real world
data sets which exhibit strong spatial autocorrelation.
Finally, if locations of features change over time, it is
possible for us to identify some spatiotemporal association
patterns. Quantitative association, e.g., (A,A), and quanti-
tative association rules, e.g., (A ) A), may also be explored
in the future.
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