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Driving a vehicle along a route consists of control actions applied to the vehicle by taking into account the
vehicle and route states. Control actions are usually selected by optimizing the traveling time and the fuel
consumption. However, the resulting vehicle behavior can be uncomfortable for the driver/passengers. The
comfort is measured as the change of acceleration, i.e., jerk. To obtain more comfortable driving strategies,
we introduce comfort as an objective to the Multiobjective Optimization algorithm for discovering Driving
Strategies (MODS), thus obtaining the Multiobjective Optimization algorithm for discovering Comfortable
Driving Strategies (MOCDS). The two algorithms are compared on a real-world route. The results show
that MOCDS finds more comfortable driving strategies than MODS, while not significantly deteriorating
their traveling time and fuel consumption. The most significant improvement in comfort is achieved on
driving strategies with low fuel consumption, which are highly uncomfortable and therefore have the most
room for improvement. On the other hand, the driving strategies found by MODS with short traveling time
are already comfortable and therefore cannot be additionally improved.

Povzetek: Prispevek predstavlja algoritem za iskanje strategij vožnje, ki ne optimira le časa vožnje in
porabe goriva, temveč tudi udobje za voznika/potnike.

1 Introduction

When driving a vehicle along a route, two objectives are
usually optimized: the traveling time and the fuel con-
sumption. However, the algorithms optimizing only these
objectives usually find pulse-and-glide driving strategies
[10, 12]. Such driving strategies repeatedly exchange high
throttle percentage and zero throttle percentage. Therefore,
the acceleration continuously changes which significantly
reduces the driving comfort [14]. Low driving comfort is
unacceptable from the user point of view, even though such
driving strategies efficiently reduce the traveling time and
the consumed fuel. Consequently, the driving comfort has
to be taken into account when discovering driving strate-
gies.

In our previous work we designed and implemented

the Multiobjective Optimization algorithm for discovering
Driving Strategies (MODS) [2, 3], which searches for driv-
ing strategies by modeling a real vehicle driving on a real
route as a black box, and optimizing the traveling time and
the fuel consumption. The obtained driving strategies are
better than the driving strategies found by optimization al-
gorithms used so far [4], i.e., predictive control [16] and
dynamic programming [7, 8]. However, MODS fails to
find comfortable driving strategies, especially with low fuel
consumption. In order to obtain comfortable driving strate-
gies, we introduce the third objective, i.e., the comfort that
has to be maximized, or equivalently, the discomfort that
has to be minimized. To quantify the discomfort, Nils-
son [14] suggested to measure the magnitude of the jerk.
This measure was added to the dynamic programming al-
gorithm presented in [7] and the obtained algorithm found
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more comfortable driving strategies. Wu et al. [19] pre-
sented a car-following model focused on passenger com-
fort. A comfortable vehicle driving was achieved by lim-
iting the jerk. The same measure was also used by Haj-
Fraj et al. [6] who searched for the optimal control of gear
shift operations. In order to obtain a comfortable shifting, a
dynamic programming algorithm was implemented which
minimizes the jerk.

Comfort can be defined in various other ways, too. For
example, a comfortable driving strategy may be a strat-
egy that does not change the control actions frequently. In
addition, it is not compulsory to consider the comfort as
an objective in the algorithm to obtain comfortable driv-
ing strategies. For example, Gerdts [5] and Kirches et al.
[9] developed single objective algorithms that search for
the optimal double-lane-change manoeuver on a short (140
m) horizontal route and minimize the traveling time. The
same problem was tackled by Logist et al. [13], who devel-
oped a multiobjetive algorithm that minimizes the travel-
ing time and the fuel consumption. Although none of them
optimizes the comfort, they obtained comfortable driving
strategies that do not change the control actions frequently.
However, such driving strategies were obtained by using
model-based approaches, which cannot be applied when a
black-box simulator is used. In addition, the algorithms
were tested only on a short horizontal artificially generated
route. Therefore, it is not clear if these algorithms would
produce comfortable driving strategies also on data from
(longer) real-world routes with inclined route segments and
velocity limits.

In this paper we present the two-level Multiobjective
Optimization algorithm for discovering Comfortable Driv-
ing Strategies (MOCDS) that minimizes the traveling time,
fuel consumption and discomfort, i.e., jerk. The lower-
level algorithm is based on breadth-first search [17] and
Nondominated Sorting Genetic Algorithm (NSGA-II) [1].
The best input-parameter values for the lower-level algo-
rithm are found by the upper-level evolutionary algorithm.
MOCDS returns a set of nondominated [1] driving strate-
gies and leaves the selection of the preferred driving strat-
egy to the user.

The paper is further organized as follows. The MOCDS
algorithm is described in Section 2. Section 3 presents the
experiments and the obtained results. Finally, Section 5
concludes the paper with ideas for future work.

2 The Algorithm for Discovering
Comfortable Driving Strategies

This section presents the two-level algorithm for discov-
ering comfortable driving strategies (MOCDS) that mini-
mizes the traveling time t, the fuel consumption c, and the
driving discomfort d.

2.1 Strategy representation and evaluation

A driving strategy is a set of connections between the ve-
hicle and route states, i.e., the state space, on the one hand,
and the weights used to select the control action that is ap-
plied to the vehicle during the driving simulation on the
other hand. The vehicle state is defined with the vehicle ve-
locity, while the route state is defined with the inclinations
and the velocity limits of the current and the next segments,
and the route to the next segment. The control action is de-
fined with the throttle and braking percentage εV and the
gear gV, while the weights are the consumption weight ωc

and time weight ωt. The state space, control actions and
weights are discretized in advance. The subspaces obtained
by the state space discretization are called hypercubes [18].
Each hypercube stores a consumption weight and a time
weight. These data are used to select the appropriate con-
trol action when the vehicle and route states correspond to
the hypercube.

The driving strategy is evaluated with a black-box vehi-
cle driving simulator that was implemented based on the
vehicle description from [11, 15] and is described in [4].
The simulator receives the control action for the vehicle,
simulates the vehicle driving for one route step, where the
length of a step is ∆s, and returns the spent time, the con-
sumed fuel, the driving discomfort, and the new vehicle and
route states. The new vehicle and route states are then used
to select the current hypercube, and consequently to find
the new control action that is used for the simulation of
the next route step. This process continues until the trav-
eling along the entire route has been simulated, i.e., until∑x

1 ∆s = s, where s is the length of the route and x is the
number of already simulated route steps.

2.2 Lower-level algorithm

The lower-level algorithm is a deterministic multiobjec-
tive algorithm for discovering comfortable driving strate-
gies that minimizes the traveling time, the fuel consump-
tion and the driving discomfort (see Figure 1). It starts with
a single driving strategy with empty hypercubes. Then it
simulates the vehicle driving for several route steps with
several driving strategies until the driving along the entire
route has been simulated (Main procedure in Figure 1). If
the current hypercube of a driving strategy at a route step is
empty, the driving strategy is cloned for each discrete set of
weights {ωc, ωt} and this data is stored in the hypercube.
More precisely, the driving strategy is cloned when the ve-
hicle and route states correspond to the current hypercube
for the first time during the driving simulation. When the
current hypercube stores the weights, these data are used to
select the most preferred control action as shown in Figure
1. The control action is selected by predicting the vehicle
driving for NP prediction steps ahead for each possible dis-
crete control action {εV, gV}. Afterwards, the spent time t,
the consumed fuel c and the driving discomfort d are com-



DISCOVERING COMFORTABLE DRIVING STRATEGIES. . . Informatica 36 (2012) 319–326 321

Figure 1: The lower-level algorithm for discovering driving strategies.

bined into the cost function f :

f = ωcc+ ωtt+ (1− ωc − ωt)d, (1)

and the control action that minimizes f is selected for one
step simulation (in the Main procedure in Figure 1). The
driving discomfort is calculated by summing up the mag-
nitudes of the jerk, i.e., the differences in acceleration a
denoted as ∆a, during the driving simulation as follows:

d =

(x+NP)∆s∑
x∆s

|∆a| (2)

Since the driving strategies are cloned, the number of driv-
ing strategies grows exponentially. To reduce their num-
ber, fast nondominated sort and crowding distance mecha-
nisms from the Nondominated Sorting Genetic Algorithm
(NSGA-II) [1] are used at each route step to select the
most promising driving strategies with respect to the objec-
tives and maintain a constant number of driving strategies.
The non-promising driving strategies are deleted and are
marked with “×” in the Main procedure in Figure 1. When
the vehicle driving along the entire route has been simu-
lated, the algorithm returns a set of nondominated driving
strategies.

The lower-level algorithm requires the following input
parameters:

– discretization of vehicle and route state space,

– discretization of control actions,

– discretization of weights, and

– number of prediction steps NP.

2.3 Upper-level algorithm

The upper-level evolutionary algorithm searches for the
best sets of input-parameter values for the lower-level algo-
rithm and maximizes the hypervolume [20]. A set of input-
parameter values is an upper-level solution. The upper-
level algorithm applies evolutionary principles, i.e., selec-
tion, crossover and mutation, to the set of upper-level so-
lutions through several generations [1]. The evaluation of
an upper-level solution is carried out as follows. Firstly,
the lower-level algorithm finds the nondominated driving
strategies using the input-parameter values stored in the
upper-level solution. Finally, the hypervolume covered by
the driving strategies is calculated. For more details see
[3, 4].

3 Experiments and Results
MOCDS was tested on data describing a real-world route
and the obtained driving strategies were compared to the
driving strategies obtained by MODS in order to determine
the influence of the comfort as an objective. The selected
route was an urban road of around 1100 m that includes a
few uphills and downhills. Its characteristics are summa-
rized in Figure 2.
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Figure 3: Driving strategies found by MODS and MOCDS.
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Figure 2: Inclinations of the testing route; the velocity limit
is 50 km/h along the entire route.

Figure 3 shows the nondominated driving strategies
found by MOCDS and MODS. Specifically, Figure 3(a)
shows the driving strategies in the objective space of all
three objectives, while Figure 3(b) shows a projection of
the driving strategies to the objective space with only the
objectives t and c. Ideally, MOCDS should find all the
driving strategies obtained by MODS. However, Figure 3
shows that MOCDS does not find (all) these driving strate-
gies. This is due to the fact that the number of driving
strategies grows exponentially at each route step and, there-
fore, several driving strategies have to be deleted as de-
scribed in Subsection 2.2. More precisely, MOCDS and
MODS maintain the same number of driving strategies but
MOCDS has a larger search space due to the additional ob-
jective. Consequently, several driving strategies that are
promising in the values of t and c are deleted by MOCDS
since a larger search space has to be covered by the same
number of driving strategies. Those driving strategies are
not deleted by MODS and therefore MODS better opti-

mizes the traveling time and fuel consumption. Neverthe-
less, the results show that MOCDS is able to find, in addi-
tion to the comfortable driving strategies, driving strategies
similar to the ones found by MODS in terms of traveling
time and fuel consumption.

Four interesting driving strategies were further analyzed.
They are marked in Figure 3 as follows:

– s1 is a driving strategy with short traveling time found
by MODS;

– s2 is a driving strategy with low fuel consumption
found by MODS;

– s3 is the driving strategy with the highest comfort but
also long traveling time and high fuel consumption
found by MOCDS; and

– s4 is a driving strategy found by MOCDS, which has
similar traveling time and fuel consumption but sig-
nificantly higher comfort than s2.

The objective values of these driving strategies are shown
in Table 1. Moreover, the vehicle behavior obtained by ap-
plying these driving strategies can be seen in Figures 4 and
5. These figures show the control actions, i.e., the throt-
tle and braking percentage and the gear, the vehicle veloc-
ity and the jerk along the entire route. The results show
that in order to obtain highly comfortable driving strategies
(e.g., s3), the control actions must rarely change. Conse-
quently, the vehicle velocity slowly changes and the jerk is
low along the entire route. On the other hand, when the
comfort is not taken into account (e.g., s1 and s2), the con-
trol actions change frequently and consequently the jerk is
higher. Finally, Figure 5 shows the vehicle behavior ob-
tained by applying the driving strategies that are similar



DISCOVERING COMFORTABLE DRIVING STRATEGIES. . . Informatica 36 (2012) 319–326 323

Driving t c d
strategy [s] [l] [m/s3]

s1 82.46 0.1076 12.784
s2 128.41 0.0812 44.573
s3 141.60 0.1208 1.298
s4 132.75 0.0833 9.518

Table 1: The objective values of the driving strategies
marked in Figure 3.

in terms of traveling time and fuel consumption, but sig-
nificantly differ in comfort (see also Table 1). More pre-
cisely, it shows that a driving strategy of the same quality
in terms of traveling time and fuel consumption but signif-
icantly more comfortable can be obtained by reducing the
changes of control actions. Such driving strategy can be
obtained by MOCDS but not by MODS.

Although the MOCDS driving strategies change the con-
trol actions, such as the gear, less frequently than the
MODS driving strategies, the number and frequency of
changes remains high when nondominated driving strate-
gies in terms of traveling time and fuel consumption are
taken into account, e.g., s4 (see Figure 5). Nevertheless,
MOCDS also finds driving strategies with a significantly
lower number and frequency of changes, see the driving
strategy with the highest comfort, s3 (see Figure 4). To
even further reduce the number and frequency of changes
of control actions, the comfort should be redefined, e.g.,
by penalizing the changes in control actions, or the search
space should be limited, for example, by restricting the
changes of control actions.

Figure 6 shows the driving strategies found by MODS
and MOCDS which are nondominated with regard to ob-
jectives t and c. These driving strategies found by MOCDS
are the most interesting ones since they are similar to the
driving strategies obtained by MODS in terms of travel-
ing time and fuel consumption. The figure shows that
MOCDS does not find more comfortable driving strate-
gies than MODS when traveling time is short (the driv-
ing strategies outside the dashed rectangle in Figure 6),
since MODS finds driving strategies with short traveling
time that are already comfortable and cannot be improved
in comfort anymore. However, MOCDS finds significantly
more comfortable driving strategies than MODS when fuel
consumption is low (the driving strategies inside the dashed
rectangle in Figure 6). This is due to the fact that MODS
finds driving strategies with low fuel consumption that
are highly uncomfortable and, therefore, have the most
room for improvement. In summary, the results show that
MOCDS finds more comfortable driving strategies than
MODS, while not significantly deteriorating the other ob-
jectives, especially when the fuel consumption is reduced.

Finally, the computation and simulated times are shown
in Table 2. It shows that the average computation time per
driving strategy is longer than the simulated traveling times
of driving strategies but still in the order of minutes.

4 Conclusion
We presented a two-level multiobjective optimization al-
gorithm for discovering comfortable driving strategies
(MOCDS). The lower-level algorithm is a determinis-
tic multiobjecitve algorithm that searches for comfortable
driving strategies, while the upper-level algorithm is an
evolutionary algorithm that searches for the best input-
parameter values for the lower-level algorithm. The ob-
tained driving strategies were compared to the driving
strategies found by the algorithm that does not optimize the
comfort, i.e., MODS. The results show that comfortable
driving strategies either rarely change the control actions
or reduce the changes of the control actions. Moreover,
when comparing the driving strategies with low fuel con-
sumption, those found by MOCDS are significantly more
comfortable than those found by MODS. However, when
comparing the driving strategies with short traveling time,
there is no significant difference in comfort between those
found by MOCDS and those found by MODS, since both
are already comfortable and cannot be improved anymore.

In the future work, we will test other approaches for in-
creasing the driving comfort. These approaches will in-
clude an objective other than jerk. However, the comfort-
able driving strategies may be obtained by not including
the third objective but limiting the search space, e.g., re-
stricting the changes of control actions. It would be also
interesting to include the third objective in the algorithms
used so far, i.e., predictive control and dynamic program-
ming, and/or limit the search space of these algorithms to
compare the obtained driving strategies with those found
by MOCDS.
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Figure 4: Examples of vehicle behavior obtained by apply-
ing the driving strategies with high fuel consumption (s1
and s3 from Figure 3).
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Figure 6: Nondominated driving strategies in the objective space with only the objectives t and c found by MOCDS and
MODS. The dashed rectangle denotes the driving strategies with low fuel consumption.
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