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Abstract

Ontologies have become an important means for structuring information and information

systems and, hence, important in knowledge as well as in software engineering. However,

there remains the problem of engineering large and adequate ontologies within short time

frames in order to keep costs low. For this purpose, efforts have been made to facilitate

the ontology engineering process, in particular the acquisition of ontologies from domain

texts. We broaden these investigations with regard to two dimensions. First, we present a

general architecture for discovering ontological concepts and relations. This architecture is

general enough to subsume current approaches in this direction. Second, we propose a new

approach to extend current approaches, who mostly focus on the semi-automatic acquisition

of taxonomies, by the discovery of non-taxonomic conceptual relations. We use a generalized

association rule algorithm that does not only detect relations between concepts, but also de-

termines the appropriate level of abstraction at which to define relations. This is crucial for

an appropriate ontology definition in order that it be succinct and conceptually adequate and,

hence, easy to understand, maintain, and extend. In order to prove the validity of our proposal

we evaluate the success of our learning approach against a manually engineered ontology. For

this objective, we present a new paradigm suited to evaluate the degree to which relations that

are learned match relations in a manually engineered ontology.

1 Introduction

Ontologies1 have shown their usefulness in application areas such as intelligent information inte-

gration or information brokering by providing a technical means to share and exchange knowledge

and/or information between humans and/or machines (Wiederhold, 1993; Abecker et al., 1999;

Schnurr & Staab, 2000). Hence, their importance for software and knowledge engineering may

hardly be overestimated. Nevertheless, their wide-spread usage is still hindered by ontology en-

gineering being rather time-consuming and, hence, expensive. Therefore a number of proposals

have been made to facilitate ontology engineering through automatic discovery from domain data,

1We restrict our attention in this paper to domain ontologies that describe a particular small model of of the world as

relevant to applications, in contrast to top-level ontologies and representational ontologies that aim at the description of

generally applicable conceptual structures and meta-structures, respectively, and that are mostly based on philosophical

and logical point of views rather than focused on applications.

1



domain-specific natural language texts in particular (cf. (Byrd & Ravin, 1999; Faure & Nedellec,

1998; Hahn & Schnattinger, 1998; Morin, 1999; Resnik, 1993; Wiemer-Hastings et al., 1998)).

However, we see two pitfalls occur in most of these seminal approaches.

First, these investigation have mostly been conceived in isolation from actual issues of ontol-

ogy engineering systems. A framework for classification and evaluation of approaches is lack-

ing. Thus, the overall picture of what resources may or should be used in ontology discovery

approaches remains rather vague and has not been under discussion at all.

Second, most of these approaches have only looked at how to learn the taxonomic part of on-

tologies. In applications like (Wiederhold, 1993; Abecker et al., 1999; Schnurr & Staab, 2000),

an ontology O often boils down to a an object model represented by a set of concepts C , which

are taxonomically related by the transitive ISA relation H � C � C and non-taxonomically re-

lated by named object relations R� � C � C � String. On the basis of the object model a

set of logical axioms, A, enforce semantic constraints. Common approaches mostly focus on the

automatic acquisition of C and H and often neglect the importance of interlinkage between con-

cepts. Though taxonomic knowledge is certainly of utmost importance, major efforts in ontology

engineering must be dedicated to the definition of non-taxonomic conceptual relationships, e.g.

hasPart relations between concepts. The determination of non-taxonomic conceptual relationships

is not this well-researched.2 In fact, it appears to be the more intricate task as, in general, it is less

well known how many and what type of conceptual relationships should be modeled in a particular

ontology.

This paper presents a framework for semi-automatic engineering of ontologies. Within our

general architecture (Section 2), we embed a new approach for discovering non-taxonomic con-

ceptual relations from text and, hence, for facilitating the engineering of non-taxonomic relations.

Building on the taxonomic part of the ontology, our approach analyzes domain-specific texts.

It uses shallow text processing methods to identify linguistically related pairs of words (cf. Sec-

tion 3). An algorithm for discovering generalized association rules analyzes statistical information

about the linguistic output (cf. Section 4). Thereby, it uses the background knowledge from the

taxonomy in order to propose relations at the appropriate level of abstraction. For instance, the

linguistic processing may find that the word “costs” frequently co-occurs with each of the words

“hotel”, “guest house”, and “youth hostel” in sentences such as (1).3

(1) Costs at the youth hostel amount to $ 20 per night.

From this statistical linguistic data our approach derives correlations at the conceptual level,

viz. between the concept Costs and the concepts, Hotel, Guest House, and Youth Hostel. The

discovery algorithm determines support and confidence measures for the relationships between

these three pairs, as well as for relationships at higher levels of abstraction, such as between

Accommodation and Costs. In a final step, the algorithm determines the level of abstraction most

suited to describe the conceptual relationships by pruning appearingly less adequate ones. Here,

the relation between Accommodation and Costs may be proposed for inclusion in the ontology. A

more comprehensive example will be presented in Section 5.

2An informal survey performed by a former colleague found that a number of prominent and freely available on-

tologies, like WordNet or Sensus, lacked rich interlinking of concepts through conceptual relations.
3For ease of presentation we mostly give English examples, however, our evaluation is based on our implementation

that processes German texts.
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Finally, we also evaluate our approach against an ontology about the tourism domain that we

had modeled before using standard knowledge engineering techniques. Linguistic processing was

done on a text corpus extracted from a web site about tourist information. We have performed

evaluation with regard to standard measures, however, we have also found that evaluation needs

to take account of the sliding scale of adequacy prevalent in a hierarchical target structure. Thus,

we have also conceived of a new evaluation measure to evaluate our experiments (cf. Section 6).

We conclude with a survey of related work and a short remark on the acquisition of ontological

axioms, A.

2 An Architecture for Semi-Automatic Ontology Acquisition

The purpose of this section is to give an overview of the architecture of our system Text-To-

Onto (cf. the overall schema in Figure 1 and the snapshot in Figure 2). The process of semi-

automatic ontology acquisition is embedded in an application that comprises several core features

described as a kind of pipeline in the following. Nevertheless, the reader may bear in mind that the

overall development of ontologies remains a cyclic process (cf. (Maedche et al., 2000)). In fact,

we provide a broad set of interactions such that the engineer may start with primitive methods

first. These methods require very little or even no background knowledge, but they may also be

restricted to return only simple hints, like term frequencies. While the knowledge model matures

during the semi-automatic engineering process, the engineer may turn towards more advanced

and more knowledge-intensive algorithms, such as our mechanism for discovering generalized

relations.

Text & Processing Management Component. The ontology engineer uses the Text & Process-

ing Management Component to select domain texts exploited in the further discovery process.

She chooses among a set of text (pre-)processing methods available on the Text Processing Server

and among a set of algorithms available at the Learning & Discovering component. The former

module returns text that is annotated by XML and this XML-tagged text is fed to the Learning &

Discovering component.

Text Processing Server. The Text Processing Server may comprise a broad set of different meth-

ods. In our case, it contains a shallow text processor based on the core system SMES (Saarbrücken

Message Extraction System). SMES is a system that performs syntactic analysis on natural lan-

guage documents. Its functionality is described in detail in Section 3. In general, the Text Process-

ing Server is organized in modules, such as a tokenizer, morphological and lexical processing, and

chunk parsing that use lexical resources to produce mixed syntactic/semantic information. The

results of text processing are stored in annotations using XML-tagged text.

Lexical DB & Domain Lexicon. Syntactic processing relies on lexical knowledge. In our sys-

tem, SMES accesses a lexical database with more than 120.000 stem entries and more than 12,000

subcategorization frames that are used for lexical analysis and chunk parsing. The domain-specific

part of the lexicon (abbreviated “domain lexicon”; cf. left upper part of Figure 2) associates word
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Figure 1: Architecture of the Ontology Learning Environment

stems with concepts available in the concept taxonomy. Hence, it links syntactic information with

semantic knowledge that may be further refined in the ontology.

Learning & Discovering component. The Learning & Discovering component uses various

discovering methods on the annotated texts, e.g. term extraction methods for concept acquisition.

Our scenario for discovering non-taxonomic relations uses the learning algorithm for discovering

generalized association rules described in Section 4. Conceptual structures that exist at learning

time (e.g. a concept taxonomy) may be incorporated into the learning algorithms as background

knowledge. The evaluation such as described in Section 6 is performed in a submodule based on

the results of the learning algorithm.

Ontology Modeling Environment. The Ontology Modeling Environment (OntoEdit4) sup-

ports the ontology engineer in semi-automatically adding newly discovered conceptual structures

to the ontology.5 The screenshot depicted in Figure 2 shows on the left side the object-model

backbone of an ontology, i.e. the sets C;H , and R�. In addition to core capabilities for structuring

4OntoEdit is a submodule of the Ontology Learning Environment “Text-To-Onto”.
5A comprehensive description of the ontology engineering system OntoEdit and the underlying methodology is

given in (Staab & Maedche, 2000).
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Figure 2: The Text-To-Onto Ontology Learning Environment

the ontology, the engineering environment provides some additional features for the purpose of

documentation, maintenance, and ontology exchange.
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3 Shallow Text Processing

Our approach has been implemented on top of SMES (Saarbrücken Message Extraction System),

a shallow text processor for German (cf. (Neumann et al., 1997)) that has been adapted to the

tourism domain. This is a generic component that adheres to several principles that are crucial for

our objectives. (i), it is fast fast and robust, (ii), it yields dependency relations between terms, and,

(iii), it returns pairs of concepts the coupling of which is motivated through linguistic constraints

on the corresponding textual terms. In addition, we made some minor changes such that principle

(iv), linguistic processing delivers a high recall on the number of dependency relations occuring in

a text, is also guaranteed. We here give a short survey on SMES in order provide the reader with

a comprehensive picture of what underlies our evaluation.

The Architecture of our Text Processing Server, SMES, comprises a tokenizer based on reg-

ular expressions, a lexical analysis component, and a chunk parser.

Tokenizer. Its main task is to scan the text in order to identify boundaries of words and complex

expressions like “$20.00” or “Mecklenburg-Vorpommern”6 , and to expand abbreviations.

Lexical Analysis uses lexical information to perform, (1), morphological analysis, i.e., the iden-

tification of the canonical common stem of a set of related word forms and the analysis of com-

pounds, (2), recognition of name entities, (3), retrieval of domain-specific information, and, (4),

part-of-speech tagging:

1. In German compounds are extremely frequent and, hence, their analysis into their parts, e.g.

“database” becoming “data” and “base”, is crucial and may yield interesting relationships

between concepts. Furthermore, morphological analysis returns possible readings for the

words concerned, e.g. the noun and the verb reading for a word like “man” in “The old man

the boats.”

2. Processing of named entities includes the recognition of proper and company names like

“Hotel Schwarzer Adler” as single, complex entities, as well as the recognition and trans-

formation of complex time and date expressions into a canonical format, e.g. “January 1st,

2000” becomes “1/1/2000”.

3. The next step associates single words or complex expressions with a concept from the on-

tology if a corresponding entry in the domain-specific part of the lexicon exists. E.g., the

expression “Hotel Schwarzer Adler” is associated with the concept Hotel.

4. Finally, part-of-speech tagging disambiguates the reading returned from morphological anal-

ysis of words or complex expressions using the local context.

Chunk Parser. SMES uses weighted finite state transducers to efficiently process phrasal and

sentential patterns. The parser works on the phrasal level, before it analyzes the overall sentence.

Grammatical functions (such as subject, direct-object) are determined for each dependency-based

sentential structure on the basis of subcategorizations frames in the lexicon.

Dependency Relations. Our primary output derived from SMES consists of dependency rela-

tions (Hudson, 1990) found through lexical analysis (compound processing) and through parsing

6Mecklenburg-Vorpommern is a region in the north east of Germany.
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at the phrase and sentential level. It is important for our approach that on these levels syntactic

dependency relations coincide rather closely with semantic relations that are often found to hold

between the very same entities (cf. (Hajicova, 1987)). Thus, we derived our motivation to output

those conceptual pairs to the learning algorithm the corresponding terms of which are dependen-

tially related. Thereby, the grammatical dependency relation need not even hold directly between

two conceptually meaningful entities. For instance, in (2) “Hotel Schwarzer Adler” and “Ros-

tock”, the concepts of which appear in the ontology as Hotel and City, respectively, are not directly

connected by a dependency relation. However, the preposition “in” acts as a mediator that incurs

the conceptual pairing of Hotel with City (cf. (Romacker et al., 1999) for a complete survey of

mediated conceptual relationships).

(2) The Hotel Schwarzer Adler in Rostock celebrates Christmas.

Heuristics. Chunk parsing such as performed by SMES still returns many phrasal entities that are

not related within or across sentence boundaries. This however means that our approach would

be doomed to miss many relations that often occur in the corpus, but that may not be detected

due to the limited capabilities of SMES. For instance, it does not attach prepositional phrases in

any way and it does not handle anaphora, to name but two desiderata. We have decided that we

needed a high recall of the linguistic dependency relations involved, even if that would incur a

loss of linguistic precision. The motivation is that with a low recall of dependency relations the

subsequent algorithm may learn only very little, while with less precision the learning algorithm

may still sort out part of the noise. Therefore, the SMES output has been extended to include

heuristic correlations beside linguistics-based dependency relations:

� The NP-PP-heuristic attaches all prepositional phrases to adjacent noun phrases.

� The sentence-heuristic relates all concepts contained in one sentence if other criteria fail.

This is a crude heuristic that needs further refinement. However, we found that it yielded

many interesting relations, e.g. for enumerations, which could not be parsed successfully.

� The title-heuristic is very specific for our domain. It links the concepts such as referred to

in the HTML title tags with all the concepts contained in the the overall document. This

strategy might utterly fail in other domains, but it was successful for our hotel and sight

descriptions.

To sum up, linguistic processing outputs a set of concept pairs, CP := f(ai;1; ai;2)jai;j 2 Cg.

Their coupling is motivated through various direct and mediated linguistic constraints or by several

general or domain-specific heuristic strategies.

4 Learning Algorithm

Our learning mechanism is based on the algorithm for discovering generalized association rules

proposed by Srikant and Agrawal (Srikant & Agrawal, 1995). Their algorithm finds associa-

tions that occur between items, e.g. supermarket products, in a set of transactions, e.g. customers’

purchases, and describes them at the appropriate level of abstraction, e.g. “snacks are purchased

together with drinks” rather than “chips are purchased with beer” and “peanuts are purchased with

soda”.
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The basic association rule algorithm is provided with a set of transactions T := ftiji =

1 : : : ng, where each transaction ti consists of a set of items ti := fai;j jj = 1 : : : mi; ai;j 2 Cg

and each item ai;j is from a set of concepts C . The algorithm computes association rules Xk ) Yk

(Xk; Yk � C;Xk \ Yk = fg) such that measures for support and confidence exceed user-defined

thresholds. Thereby, support of a rule Xk ) Yk is the percentage of transactions that contain

Xk [ Yk as a subset, and confidence for Xk ) Yk is defined as the percentage of transactions that

Yk is seen when Xk appears in a transaction, viz.

(3) support(Xk ) Yk) =
jftijXk [ Yk � tigj

n

(4) confidence(Xk ) Yk) =
jftijXk [ Yk � tigj
jftijXk � tigj

Srikant and Agrawal have extended this basic mechanism to determine associations at the

right level of a taxonomy, formally given by a taxonomic relation H � C � C . For this purpose,

they first extend each transaction ti to also include each ancestor of a particular item ai;j , i.e.

t0i := ti [ fai;lj(ai;j ; ai;l) 2 Hg. Then, they compute confidence and support for all possible

association rules Xk ) Yk where Yk does not contain an ancestor of Xk as this would be a trivially

valid association. Finally, they prune all those association rules Xk ) Yk that are subsumed by an

“ancestral” rule X̂k ) Ŷk, the itemsets X̂k; Ŷk of which only contain ancestors or identical items

of their corresponding itemset in Xk ) Yk.

For the discovery of conceptual relations we may directly build on their scheme, as described

in the following four steps that summarize our learning module:

1. Determine T := ffai;1; ai;2; : : : ; ai;m0

i
gj(ai;1; ai;2) 2 CP^

l � 3! ((ai;1; ai;l) 2 H _ (ai;2; ai;l) 2 H)g.

2. Determine support for all association rules Xk ) Yk, where jXkj = jYkj = 1.

3. Determine confidence for all association rules Xk ) Yk that exceed user-defined support in

step 2.

4. Output association rules that exceed user-defined confidence in step 3 and that are not pruned

by ancestral rules with higher or equal confidence and support.

Thus, the output of association rules are pairs of concepts that are proposed to the engineer

for inclusion in the ontology as non-taxonomic relations D := fdig. The reader may note two

important observations here.

First, we abstract from the naming of relations in our approach. Though this may certainly

lead to unwanted conflations of relations, like (Person,Person,HIT) with (Person,Person,LOVE),

we consider this a secondary concern for our interactive approach — though, of course, this is a

major issue for further research.

Second, we here have chosen a baseline approach considering the determination of the set of

transactions T . Actually, one may conceive of many strategies that cluster multiple concept pairs

into one transaction. For instance, given a set of 100 texts each describing a particular hotel in

detail. Each hotel might come with an address, but it might also have an elaborate description of

the different types of public and private rooms and their furnishing resulting in 10,000 concept

pairs returned from linguistic processing. Our baseline choice considers each concept pair as a
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transaction. Then support for the rule fHotelg)fAddressg is equal or, much more probably, (far)

less than 1%, while rules about rooms and their furnishing or their style, like fRoomg)fBedg,

might achieve ratings of several percentage points. This means that an important relationship

between fHotelg and fAddressg might get lost among other conceptual relationships. In contrast,

if one considers complete texts to constitute transactions, an ideal linguistic processor might lead

to more balanced support measures for fHotelg)fAddressg and fRoomg)fBedg of up to 100%

each.

Thus, discovery might benefit when background knowledge about the domain texts is exploited

for compiling transactions. In the future, we will have to further investigate the effects of different

strategies.

5 Example

For the purpose of illustration, this chapter gives a comprehensive example, which is based on our

actual experiments. We have processed a text corpus by a WWW provider for tourist information

(URL: http://www.all-in-all.de). The corpus describes actual objects, like locations, accomoda-

tions, furnishings of accomodations, administrative information, or cultural events, such as given

in the following example sentences.

(5) a. Mecklenburg’s schönstes Hotel liegt in Rostock. (Mecklenburg’s most beautiful hotel is

located in Rostock.)

b. Ein besonderer Service für unsere Gäste ist der Frisörsalon in unserem Hotel. (A

hairdresser in our hotel is a special service for our guests.)

c. Das Hotel Mercure hat Balkone mit direktem Strandzugang. (The hotel Mercure offers

balconies with direct access to the beach.)

d. Alle Zimmer sind mit TV , Telefon, Modem und Minibar ausgestattet. (All rooms have

TV , telephone, modem and minibar.)

Processing the example sentences (5a) and (5b), SMES (Section 3) outputs dependency rela-

tions between the terms, which are indicated in slanted fonts (and some more). In sentences (5c)

and (5d) the heuristic for prepositional phrase-attachment and the sentence heuristic relate pairs of

terms (marked by slanted fonts), respectively. Thus, four concept pairs – among many others – are

derived with knowledge from the domain lexicon (cf. Table 1).

Table 1: Examples for linguistically related pairs of concepts

Term1 ai;1 Term2 ai;2

Mecklenburgs area hotel hotel

hairdresser hairdresser hotel hotel

balconies balcony access access

room room TV television

The algorithm for learning generalized association rules (cf. Section 4) uses the domain taxon-

omy, an excerpt of which is depicted in Figure 3, and the concept pairs from above (among many
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other concept pairs). In our actual experiments, we have defined a set of 284 concepts, C := faig,

and the domain-specific part of the lexicon has contained 486 entries referring to one of these

concepts.

root

furnishing

accomodation

event area

...

hotel youth hostel...

cityregion ...

Figure 3: An example scenario

The learning algorithm discovered a large number of interesting and important non-taxonomic

conceptual relations. A few of them are listed in Table 2. Note that in this table we also list two

conceptual pairs, viz. (area, hotel) and (room, television), that are not presented to the user, but

that are pruned. The reason is that there are ancestral association rules, viz. (area, accomodation)

and (room, furnishing), respectively with higher confidence and support measures.

Table 2: Examples of discovered relations

Discovered relation Confidence Support

(area, accomodation) 0.38 0.04

(area, hotel) 0.1 0.03

(room, furnishing) 0.39 0.03

(room, television) 0.29 0.02

(accomodation, address) 0.34 0.05

(restaurant, accomodation) 0.33 0.02

6 Evaluation

For our evaluation we analyzed 2234 HTML documents, 16 million words and HTML tags, from

our text corpus (cf. Section 5) with SMES (Section 3). The linguistic and heuristic preprocessing

came up with approx. 51,000 linguistically related pairs, such as the ones in Table 1. For our

overall project we had modeled an ontology, which contained 284 concepts and 88 non-taxonomic

conceptual relations. The ontology, O := (C;H;R), served for two purposes. On the one hand,

the taxonomic structure of concepts, C , of our domain ontology was given as an input, viz. as

the taxonomic relation H � C � C , to the learning algorithm described in Section 4. On the
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other hand, we evaluated the success of our learning approach against the set of unnamed, non-

taxonomic relations, R � C � C , that had been hand-coded into the very same ontology before.

Thus, we could compare the learning approach against human performance. Though human deci-

sions in this matter should not be taken for pure gold7, we think it is necessary to have measures

that allow the comparison of different approaches and parameter settings — even when the bases

of these measures depend to some extent on the quality of and on rather arbitrary, but equally

plausible, choices between modeling decisions.

Precision and Recall. The first measures that we considered were precision and recall such as

often used in information retrieval. When we denote the set of discovered relations by D � C�C ,

they are defined by precision := jD \Rj=jDj and recall := jD \Rj=jRj.

Running our experiments we found that precision and recall gave us some hints about how

to gauge our thresholds for support and confidence (cf. Table 3). Nevertheless, these measures

lacked a sense for the sliding scale of adequacy prevalent in our hierarchical target structures. To

evaluate the quality of relations proposed to the ontology engineer, we also wanted to add some

bonus to relations that almost fitted a hand-coded relation and, then, to compare different learning

schemes on this basis. For this reason, we conceived of a new evaluation measure that reflected the

distance between the automatically discovered relations D and the set of non-taxonomic, hand-

coded relations R.

Relation Learning Accuracy (RLA) is defined to capture intuitive notions for relation matches

like “utterly wrong”, “rather bad”, “near miss” and “direct hit”. RLA is the averaged accuracy

that the instances d of discovered relations D match against their best counterparts from R —

disregarding arbitrary relational directions.

(6) RLA(D;R) = 1

jDj

P
d2D RLA(d;R):

(7) RLA(d;R) = maxr2R;R�1fMA(d; r)g:

We determine the accuracy that two relations match, MA, based on the geometric mean value

of how close their domain and range concepts match such as given by the conceptual learning

accuracy CLA (Note that MA(d; r) = MA((a1; a2); (b1; b2))).
8

(8) MA((a1; a2); (b1; b2)) :=
p

CLA(a1; b1) � CLA(a2; b2):

CLA is very similar in style to learning accuracy as introduced by Hahn & Schnattinger (Hahn

& Schnattinger, 1998) who evaluate the categorization of unknown objects in a taxonomy. How-

ever, they assume that the target concept that is to be learned is always a leaf concept and, hence,

a categorization learned for an object may not be more specific than the correct categorization. In

our approach this assumption does not hold, hence our CLA differs from their measure. Basically,

this accuracy measure reaches 100% when both concepts coincide (i.e., their distance Æ(a; b) in the

taxonomy H is 0); it degrades to the extent to which their distance increases; however, this degra-

7In fact, we are currently preparing an experiment. We want to determine the extent to which conceptual relations

coincide when several ontology engineers introduce them independently from each other into a given taxonomy.
8The geometric mean reflects the intuition that if either domain or range concepts utterly fail to match, the matching

accuracy converges against 0, whereas the arithmetic mean value might still turn out a value of 0.5.
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Figure 4: Relation Learning Accuracy

dation is seen as relative to the extent of their agreement such as given by the distance between

their least common superconcept, lcs, and the top concept root.9

(9) CLA(a; b) :=
Æ(lcs(a; b); root)

Æ(lcs(a; b); root) + Æ(a; b)
2 [0; 1℄:

The length of the shortest path Æ(as; ae) between as and ae in the taxonomy H is defined via

an auxiliary predicate Path that denotes all the valid paths in H .

(10) Path(a0; : : : ; an) :, 8i 2 1 : : : n : (ai�1; ai) 2 H [H�1:

(11) Æ(as; ae) := minfnja1; :::; an�1 2 C ^ Path(as; a1; :::; an�1; ae)g:

The only restriction for CLA applies to extremely general relations that use the root concept

in their domain or in their range. In our scenario, no such relation appeared in the hand-coded

ontology O. Indeed, we found it appropriate to consider such relations as derived from noise that

may easily be pruned.

Thus, RLA captures the fact that relations can be introduced at different levels of the taxonomy

and that the quality of relations that are learned may vary within a range of degrees.

Example Evaluation. Figure 4 illustrates our definition of the relation learning accuracy with two

small examples. On the left hand side of Figure 4 the relation that best matches d0 := (a01; a
0
2)

is r0 := (b01; b
0
2). The distances between domain and range concepts count 1 each. The distances

Æ(lcs(a01; b
0
1); root) and Æ(lcs(a02; b

0
2); root) count 1 and 2, respectively. Hence, we compute

(12) RLA(d0; R) = MA(d0; r0) =
q

1

1+1
� 2

2+1
=
q

1

3
� 0:58:

Similarly, for d00 := (a001 ; a
00
2) and r00 := (b001 ; b

00
2).

(13) RLA(d00; R) = MA(d00; r00) =
q

1

1+1
� 1

1+2
=
q

1

6
� 0:41:

Results. An excerpt of our evaluation that surveys the most characteristic results is given in Ta-

ble 3. We have computed the number of discovered relations D, RLA, recall and precision for

9Multiple inheritance may result in several least common superconcepts for a pair (a; b). Then we continue using

the best value for CLA. All the other definitions remain applicable as they are stated here.
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Table 3: Evaluation Results — number of discovered relations, RLA, recall, precision

Confidence

Support 0.01 0.1 0.2 0.4

0.0001 2429 / 0.55 865 / 0.57 485 / 0.57 238 / 0.51

66% / 2% 31% / 3% 18% / 3% 2% / 1%

0.0005 1544 / 0.57 651 / 0.59 380 / 0.58 198 / 0.5

59% / 3% 30% / 4% 17% / 4% 1% / 1%

0.002 889 / 0.6 426 / 0.61 245 / 0.61 131 / 0.52

47% / 5% 27% / 6% 16% / 6% 1% / 1%

0.01 342 / 0.64 225 / 0.64 143 / 0.64 74 / 0.53

31% / 8% 19% / 8% 14% / 8% 1% / 1%

0.04 98 / 0.67 96 / 0.67 70 / 0.65 32 / 0.51

13% / 11% 11% / 10% 6% / 7% 0% / 0%

0.06 56 / 0.63 56 / 0.63 48 / 0.62 30 / 0.53

6% / 9% 6% / 9% 3% / 6% 0% / 0%

varying support and confidence thresholds. Calculating all relations using a support and confi-

dence threshold of 0 yields 8058 relations, scoring a RLA of 0:51. As expected, both the number

of discovered relations D and recall is decreasing with growing support and confidence thresholds.

Precision is increasing monotonically at first, but it drops off when so few relations are discovered

that almost no one is a direct hit. Higher support thresholds correspond to larger RLA values.

Moving confidence thresholds from 0 to 1, RLA peaks between 0:1 and 0:2, but decreases there-

after. This behaviour may be due to our definition of transaction sets and will have to be further

explored. The best RLA is reached using a support threshold of 0:04 and a confidence threshold

of 0:01 and achieves 0:67 (better than example 12). This constellation also results in the best trade

off between recall and precision (13% and 11%). The RLA value of 0:53 remains meaningful,

even when recall and precision fall to 0%, due to a lack of exactly matching relations.

Standard deviation ranged between 0.22 and 0.32 in our experiments. Given that our average

RLA scored well in the sixties, this means that we had a significant portion of bad guesses, but

— what is more important — a large number of very good matches, too. Hence, we may infer

that our approach is well-suited for integration into an interactive ontology editor. The reason is

that an editor does not require near perfect discovery, but a restriction from a large number of

relations, e.g. 2832 = 80089 (squared number of concepts leaving out root), to a selection, e.g. a

few hundred, that contains a reasonable high percentage of good recommendations.

Random Choice. Finally, we have explored the significance of our RLA measure as compared

against a uniform distribution of all possible, viz. 2832, conceptual relations. The RLA computed

from this set was 0.39 and, thus, significantly worse than learning results in our approach. Stan-

dard deviation achieved 0.17 and, thus, it was lower than for our discovery approach — the good

match by random is indeed very rare. One may note that though the overall mean of 0.39 is still

comparatively high (comparable to the one of example (13)), there are relations that score with the

minimum, i.e. 9d 2 D : RLA(d;R) = 0, in our ontology.
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7 Related Work

As mentioned before, most researchers in the area of discovering conceptual relations have “only”

considered the learning of taxonomic relations. To mention but a few, we refer to some fairly

recent work, e.g., by Hahn & Schnattinger (Hahn & Schnattinger, 1998) and Morin (Morin, 1999)

who used lexico-syntactic patterns with and without background knowledge, respectively, in order

to acquire taxonomic knowledge.

Other researchers also pursue a similar principle goal, viz. the semi-automatic engineering of

ontologies from text. Our architectural framework (cf. Section 2) provides a comprehensive pic-

ture into which these other approaches may be subsumed (Szpakowicz, 1990; Biébow & Szulman,

1999; Faure & Nedellec, 1998).

Regarding the acquisition of non-taxonomic conceptual relations we want to give a somewhat

closer look at related approaches. For purposes of natural language processing, several researchers

have looked into the acquisition of verb meaning, subcategorizations of verb frames in particular.

Resnik (Resnik, 1993) has done some of the earliest work in this category. His model is based

on the distribution of predicates and their arguments in order to find selectional constraints and,

hence, to reject semantically illegitimate propositions like “The number 2 is blue.” His approach

combines information-theoretic measures with background knowledge of a hierarchy given by the

WordNet taxonomy. He is able to partially account for the appropriate level of relations within the

taxonomy by trading off a marginal class probability against a conditional class probability, but

he does not give any evaluation measures for his approach. He considers the question of finding

appropriate levels of generalization within a taxonomy to be very intriguing and concedes that

further research is required on this topic (cf. p. 123f in (Resnik, 1993)) .

Faure and Nedellec (Faure & Nedellec, 1998) have presented an interactive machine learning

system called ASIUM, which is able to acquire taxonomic relations and subcategorization frames

of verbs based on syntactic input. The ASIUM system hierarchically clusters nouns based on the

verbs that they co-occur with and vice versa.

Wiemer-Hastings et al. (Wiemer-Hastings et al., 1998) aim beyond the learning of selectional

constraints, as they report about inferring the meanings of unknown verbs from context. Using

WordNet as background knowledge, their system, Camille, generates hypotheses for verb mean-

ings from linguistic and conceptual evidence. A statistical analysis identifies relevant syntactic

and semantic cues that characterize the semantic meaning of a verb, e.g. a terrorist actor and a

human direct object are both diagnostic for the word “kidnap”.

The proposal by Byrd and Ravin (Byrd & Ravin, 1999) comes closest to our own work. They

extract named relations when they find particular syntactic patterns, such as an appositive phrase.

They derive unnamed relations from concepts that co-occur by calculating the measure for mutual

information between terms — rather similar as we do. Eventually, however, it is hard to assess

their approach, as their description is rather high-level and lacks concise definitions.

To contrast our approach with the research just cited, we want to mention that all the verb-

centered approaches may miss important conceptual relations not mediated by verbs. All of the

cited approaches except (Resnik, 1993) neglect the importance of the appropriate level of abstrac-

tion. Regarding evaluation, they have only appealed to the intuition of the reader (Byrd & Ravin,

1999; Faure & Nedellec, 1998), focused at a distinguished level in the hierarchy (Wiemer-Hastings

et al., 1998) or lacked rigorous measures for evaluation (Resnik, 1993). We have evaluated our
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approach in blind experiments using two standard and our original RLA measure. The latter has

been thoroughly tested for plausibility and validated against the set of all possible relations.

8 Conclusion

We have presented an approach towards learning non-taxonomic conceptual relations from text

embedded in a general architecture for semi-automatic acquisition of ontologies. We have evalu-

ated the discovery approach on a set of real world texts against conceptual relations that had been

modeled by hand. For this purpose, we used standard measures, viz. precision and recall, but we

also developed an evaluation metrics that took into account the scales of adequacy prevalent in

our target structures. The evaluation showed that though our approach is too weak for fully auto-

matic discovery of non-taxonomic conceptual relations, it is highly adequate to help the ontology

engineer with modeling the ontology through proposing conceptual relations.

For the future much work remains to be done. We want to highlight but two major issues.

The naming and the categorization of relations into a relation hierarchy needs to be approached.

We want to combine some of the related work on the acquisition of verb meaning with our own

proposal in order to approach this objective.

Then, there remains the topic of engineering ontological axioms. Naturally, this is worth sev-

eral papers on its own. We may just mention that we envision several positions from which to start.

We have conceived a principled approach to the engineering of ontological axioms (Staab & Maed-

che, 2000). Our approach may be extended towards an interactive mode that has been proposed

in (Klettke, 1998) for the acquisition of integrity constraints (aka axioms) aiming at the model-

ing of relational databases. Other than that, we want to explore possibilities offered by inductive

logic programming methods — which, of course, presume the availability of corresponding data

in order to allow for induction of logical rules.

Acknowledgments. The research presented in this paper has been partially funded by BMBF

under grant number 01IN802 (project “GETESS”). We thank our students Raphael Volz and Dirk

Wenke who implemented large parts of the learning algorithm and the ontology editor, respec-

tively, and our project partners, in particular Günter Neumann, from DFKI, language technology

group, who generously supported us in using their SMES system.

References

Abecker, A., Bernardi, A., & Sintek, M. (1999). Proactive knowledge delivery for enterprise

knowledge management. In SEKE-99: Proceedings of the 11th Conference on Software

Engineering and Knowledge Engineering. Kaiserslautern, Germany, June 17-19 1999.
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