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Abstract

We generalize Shimizu et al’s (2006)
ICA-based approach for discovering linear
non-Gaussian acyclic (LiNGAM) Structural
Equation Models (SEMs) from causally suffi-
cient, continuous-valued observational data.
By relaxing the assumption that the gener-
ating SEM’s graph is acyclic, we solve the
more general problem of linear non-Gaussian
(LiNG) SEM discovery. LiNG discovery algo-
rithms output a set of distribution-equivalent
SEMs that, in the large sample limit, cor-
rectly represent the population distribution.
We also give sufficient conditions under which
only one of the distribution-equivalent output
SEMs is “stable”, and apply a LiNG discov-
ery algorithm to simulated data.

1 Linear SEMs

Linear structural equation models (SEMs) are statisti-
cal causal models widely used in the natural and social
sciences (including econometrics, political science, so-
ciology, and biology) [1].

The variables in a linear SEM can be divided into two
sets, the error terms (typically unobserved), and the
substantive variables. Corresponding to each substan-
tive variable xi is a linear equation with xi on the
left-hand-side, and the direct causes of xi plus the cor-
responding error term on the right-hand-side.

Each SEM with jointly independent error terms can
be associated with a directed graph (abbreviated as
DG) that represents the causal structure of the model
and the form of the linear equations. The vertices of
the graph are the substantive variables, and there is
a directed edge from xi to xj just when the linear
coefficient of xi in the structural equation for xj is

non-zero. 1

1.1 The model and an illustration

Let x be the random vector of substantive variables, e
be the vector of error terms, and B be the matrix of
linear coefficients for the substantive variables. Then
equation 1 describes the linear SEM model:

x = Bx + e (1)

For example, consider the model defined by:

x1 = e1

x2 = 1.2x1 − 0.3x4 + e2

x3 = 2x2 + e3 (2)

x4 = −x3 + e4

x5 = 3x2 + e5

Note that the coefficient of each variable on the left-
hand-side of the equation is 1.
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Fig. 1: Example 1

x can also be expressed directly as a linear combina-
tion of the error terms, as long as I − B is invertible.
Solving for x in Eq. 1 gives x = (I − B)−1e. If we

1SEMs with acyclic graphs are called “recursive” or
“acyclic”, and SEMs with cyclic graphs are called “non-
recursive” or “cyclic” [13].



let A = (I − B)−1, then x = Ae. A is called the re-
duced form matrix (in the terminology of Independent
Components Analysis (see 3.1), it is called the “mixing
matrix”).

The distributions over the error terms in a SEM, to-
gether with the linear equations, entail a joint distri-
bution over the substantive/print. variables. These
probability distributions can be interpreted in terms
of physical processes, as shown next.

1.2 Physical interpretation of linear SEMs

One interpretation of the equations is that they de-
scribe relationships among a set of variables that are in
equilibrium ([14]). Under this interpretation, we will
refer to the equations as “simultaneous” equations.

We will assume that the underlying dynamical equa-
tions relate the values of a substantive variable at time
t to the values of other substantive variables at time
t−1, and its respective constant error term. For exam-
ple, the underlying dynamical equations for the SEM
in Example 1 are:

x1[t ] = e1

x2[t ] = 1.2x1[t − 1]− 0.3x4[t − 1] + e2

x3[t ] = 2x2[t − 1] + e3 (3)

x4[t ] = −x3[t − 1] + e4

x5[t ] = 3x2[t − 1] + e5

Note that the error terms are not indexed by time be-
cause they are constant over time (although they may
vary from individual to individual in the population).
The physical interpretation of this is that the error
terms are changing much more slowly than the state
of the system (i.e. the values of the substantive vari-
ables). This is a slight variation of the interpretation
given in [4].

In this interpretation of SEMs, the simultaneous equa-
tions are also “structural” in the sense that the effect
of intervening in the system to set xi to a constant c
can be modeled by replacing the simultaneous equa-
tion for xi by a new equation xi = c (See [13], [12],
[8], [7]).

The dynamical equations lead to the corresponding
“simultaneous” equations describing the equilibrium
state only if the value of each substantive variable xi[t]
converges to a constant ci as t → ∞. If, for example,
the product of the coefficients in the cycle (henceforth
called the “cycle-product”) containing x2, x3, and x4

has an absolute value greater than 1, this convergence
will not occur and the SEM is thus said to be “unsta-
ble” (see 5.2).

In both the acyclic and cyclic cases, the dynamical

equations are deterministic, and the distribution of x
results from different units in the population having
different values for the error terms e.

Note that in the dynamical equations, we have (of-
ten unrealistically) assumed that xi[t ] does not de-
pend upon xi[t − 1] – we will say such a SEM has
no “self-loops”. If such a dependency does occur, e.g.
x3[t ] = 0.5x3[t−1]+x2[t−1]+e′3, in equilibrium this
turns into x3 = 0.5x3 + x2 + e′3, which we can then
renormalize as x3 = 2x2 + e3. Hence from the simul-
taneous equation, we cannot determine the coefficient
of x3[t − 1] in the equation for x3[t ]. However, this in-
ability to estimate the coefficient of x3[t − 1] does not
lead to problems in estimating the simultaneous equa-
tions, and does not lead to problems in predicting the
effects of manipulating x3 to a constant except in two
circumstances. First, it is possible that manipulating
x3 can turn a stable system into an unstable system
(by breaking loops that otherwise keep the system sta-
ble). Second, if the coefficient of x3[t − 1] is exactly 1,
it is impossible to renormalize the equation, because
after subtraction, the coefficient of x3[t ] on the left-
hand-side of the equation is zero. If the coefficient of
x3[t − 1] is exactly one, this does not imply that there
is no set of simultaneous linear equations describing
the equilibrium, but it does imply that the form of the
simultaneous equations does not match the form of the
underlying dynamical equations.

2 The problem and its history

2.1 The problem of DG causal discovery

Using the interpretation from 1.2, we can frame the
problem as follows: find the set of all SEMs such that
each SEM in the set describes the equilibrium pop-
ulation distribution of a set of variables, under the
assumption that there is such a SEM.

2.2 Richardson’s Cyclic Causal Discovery
(CCD) Algorithm

While many algorithms have been suggested for dis-
covering (equivalence classes of) DAGs from data, for
general DGs only one provably correct algorithm is
known, namely Richardson’s Cyclic Causal Discovery
(CCD) algorithm.

CCD outputs a “partial ancestral graph” (PAG) that
represents both a set of directed graphs that entail the
same set of zero partial correlations for all values of
the linear coefficients, and features common to those
directed graphs (such as ancestor relations). The al-
gorithm performs a series of statistical tests of zero
partial correlations to construct the PAG. The set of



zero partial correlations that is entailed by a linear
SEM depends only upon the linear coefficients, and
not upon the distribution of the error terms. Under
some assumptions2, in the large sample limit, CCD
outputs a PAG that represents the true graph.

There are a number of limitations to this algorithm.
First, the set of DGs contained in a PAG can be large,
and while they all entail the same zero partial corre-
lations (viz., those judged to hold in the population),
they need not entail the same joint distribution or even
the same covariances. Hence in some cases, the set rep-
resented by the PAG will include cyclic graphs that do
not fit the data well. Therefore, even assuming that
the errors are all Gaussian, it is possible in theory to
reduce the size of the set of graphs output by CCD, al-
though in practice this can be intractable. For details
on the algorithm, see [9].

3 Shimizu et al’s approach for

discovering LiNGAM SEMs

The “LiNGAM algorithm” [11], which uses Indepen-
dent Components Analysis (ICA), reliably discovers a
unique correct LiNGAM SEM, under the following as-
sumptions about the data: the structural equations
of the generating process are linear and can be rep-
resented by an acyclic graph; the error terms have
non-zero variance; the samples are independent and
identically distributed; no more than one error term
is Gaussian; and the error terms are jointly indepen-
dent.3

3.1 Independent Components Analysis (ICA)

Independent components analysis ([3], [5]) is a statis-
tical technique used for estimating the mixing matrix
A in equations of the form x = Ae (e is often called
“sources” and written s), where x is observed and e
and A are not ([3], [5]).

ICA algorithms find the invertible linear transforma-
tion W = A−1 of the data X that makes the error dis-
tributions corresponding to the implied samples E of
e maximally non-Gaussian (and thus, maximally inde-
pendent). The matrix A can be identified up to scaling
and permutation as long as the observed distribution
is a linear, invertible mixture of independent compo-

2The assumptions are: linearity of the equations, the
existence of a unique reduced form, that there are no zero
partial correlations in the population that are not entailed
for all values of the free parameters of the true graph, and
that the error terms are uncorrelated

3The error terms are typically not jointly independent if
the set of variables is not “causally sufficient”, i.e. if there
is an unobserved direct common cause of two or more of
the observed variables.

nents, at most one of which is Gaussian [3]. There are
efficient algorithms for estimating A [5].

If we run an ICA algorithm on data generated by a lin-
ear SEM, the matrix W obtained will be a row-scaled,
row-permuted version of I −B, where B is the coeffi-
cient matrix of the true model (this is a consequence
of the derivation in 1.1). We are now left with the
problem of finding the proper permutation and scale
for the W matrix so that it equals I −B.

3.2 The LiNGAM discovery algorithm

Fig. 2(a) represents the W matrix output by a run of
ICA, after removing the edges whose coefficients are
statistically indistinguishable from zero4:

e... e... e...

x1 x2 x3

e1 e2 e3

x1 x2 x3

Fig. 2: (a) the raw W matrix output by ICA on a SEM
whose graph is x2 → x1 ← x3 (b) the corresponding

W̃ matrix, obtained by permuting W

Since the order of the error terms given by ICA is ar-
bitrary, the algorithm needs to correctly match each
error term ei to its respective substantive variable xi.
This means finding the correct permutation of the rows
of the W matrix. We know that the W corresponding
to the correct model cannot have a zero in the diagonal
because this would imply that an error term has zero
variance, which is a violation of LiNGAM’s assump-
tions. We call such permutations “inadmissible”.

Since, by assumption, the data was generated by a
DAG, there is exactly one row-permutation of W that
is admissible. To visualize this, this constraint says
that there is exactly one way to reorder the error terms
so that every ei is the target of a vertical arrow.5for

In this example, swapping the first and second error
term is the only permutation that produces an admis-
sible matrix, as seen in Fig. 2(b).

After the algorithm finds the correct permutation, it
finds the correct scaling, i.e. “normalizing” W by di-
viding each row by its diagonal element, so that the
diagonal of the output matrix is all 1s (i.e. the coef-

4This is a simplification. Shimizu’s paper actually finds
an ordering in a non-local way, based on solving the linear
assignment problem. See the next section.

5Another consequence of acyclicity is that there will be
no right-pointing arrows in this representation, provided
that the xs are listed in an order that is compatible with
the DAG.



ficient of each error term is 1, as specified in Section
1).

Bringing it all together, the algorithm computes B by
using B = I −W ′, where W ′ = normalize(W̃ ), W̃ =
RowPermute(W ) and W = ICA(X).

Besides the fact that it determines the direction of ev-
ery causal arrow, another advantage of LiNGAM over
conditional-independence-based methods ([12]) is that
it does not require the faithfulness assumption.

For more details on the LiNGAM approach, see [11].

4 Discovering LiNG SEMs

The assumptions of the family of LiNG discovery al-
gorithms described below (abbreviated as “LiNG-D”)
are the same as the LiNGAM assumptions minus the
assumption that the SEM is acyclic. In this more
general case, as in the acyclic case, candidate mod-
els are generated by finding all admissible matches of
the error terms (ei’s) to the observed variables (xi’s).
In other words, each candidate corresponds to a row-
permutation of the W matrix that has a zeroless diag-
onal.

As in LiNGAM, the output is the set of admissible
models. In LiNGAM, this set always contains a single
model, because of the acyclicity assumption. If the
true model has cycles, however, more than one model
will be admissible.

The remainder of this section addresses the problem
of finding the admissible models, given that the zeros
obtained by running ICA on finite samples are not
exact.

4.1 Local algorithms

Local algorithms generate candidate models by locally
testing which entries of W are zero, and finding all ad-
missible permutations based on that. More formally,
we call an algorithm “local” if, for each entry wi,j of
W , it makes a decision about whether wi,j is zero us-
ing only wi,j , and runs a combinatorial algorithm to
find the row-permutations of W in which the diagonal
has no zeros.

4.1.1 Deciding which entries are zero

There are several methods for deciding which small
entries to set to zero:

• Thresholding: the simplest method for estimat-
ing which elements of W are zero is to simply
choose a threshold value, and set every coefficient
smaller than the threshold (in absolute value)

to zero. This method fails to account for the
fact that different coefficients may have different
spreads, and will miss all coefficients smaller than
the threshold.

• Test the non-zero hypothesis by bootstrap
sampling: another method for estimating which
elements of W are zero is to do bootstrap sam-
pling. Bootstrap samples are created by resam-
pling with replacement from the original data.
Then ICA is run on each bootstrap sample, and
each coefficient wi,j is calculated for each boot-
strap sample. This leads to a real-valued distri-
bution for each coefficient.6 Then, for each one, a
quantile test (a non-parametric one, if enough re-
samples are used) is performed in order to decide
whether 0 is an outlier. If it isn’t, the coefficient
is pruned.

4.1.2 Constrained n-Rooks: the problem and
an algorithm

Once it is decided which entries are zero, the algo-
rithm searches for every row-permutation of W that
has a zeroless diagonal. Each such row-permutation
corresponds to a placement of n rooks onto the non-
zero entries on an n × n chessboard such that no two
rooks threaten each other. Then the rows can be per-
muted so that all the rooks end up on the diagonal,
thus ensuring that the diagonal has no zeros.

To solve this problem, we use a simple depth-first
search that prunes search paths that have nowhere to
place the next rook. In the worst case, every permu-
tation is admissible, and the search takes O(n!).

4.2 Non-local algorithms

In the LiNGAM (acyclic) approach, it is straightfor-
ward to use non-local methods, by solving the linear
assignment problem (i.e. finding the best match be-
tween the eis and xis). For example, the Hungarian
algorithm [6] can be used to find the single best row-
permutation of W , by minimizing a loss function that
heavily penalizes entries in the diagonal that are close
to zero (such as x→ |1/x|) [11]. For general LiNG dis-
covery, however, algorithms that find the best linear
assignment do not suffice, since there may be multiple
admissible permutations.

One idea is to use a k-th best assignment algorithm
[2] to find all of the permutations of W that have a

6One needs to be careful when doing this, since each
run of ICA may return a W in a different row-permutation.
This means that we first need to row-permute each boot-
strap W to match with the original W .



Fig. 3: The output of LiNG-D: Candidate #1 and Candi-
date #2

zeroless diagonal (i.e. the k permutations with the
least penalty on the diagonal), for increasing k.

With enough data, all permutations corresponding to
inadmissible models will score poorly, and there should
be a clear separation between admissible and inadmis-
sible models.

4.3 Sample run

We generated 15000 sample points using Model 1
and error terms distributed according to a symmetric
Gaussian-squared distribution7.

Fig. 3 shows the output of the local thresholding al-
gorithm with the cut-off set to 0.05.

For the sake of reproducibility, our code with instruc-
tions is available from: www.phil.cmu.edu/∼tetrad/
cd2008.html .

By assuming that the true model is stable, one would
select candidate #2. Since our simulation used a sta-
ble model, this is indeed the correct answer (see Fig.
1). In general, however, there may be multiple stable
models, and one cannot reliably select the correct one.

Since ICA cannot give us coefficients from a node to
itself, we will be unsure about the existence or non-
existence of self-loops. Since self-loops can affect the
stability of a model in either direction, whenever we
use the stability criterion, we must assume the absence
of self-loops.

7The distribution was created by sampling from the
standard Gaussian(0,1) and squaring it. If the value sam-
pled was negative, it was made negative again.

5 Theory

5.1 Notions of DG equivalence

There are a number of different senses in which the
directed graphs associated with SEMs can be “equiva-
lent” or “indistinguishable” given observational data,
assuming linearity and no dependence between error
terms.

• DGs G1 and G2 are zero partial correlation equiv-
alent if and only if the set of zero partial correla-
tions entailed for all values of the free parameters
(non-zero linear coefficients, distribution of the er-
ror terms) of a linear SEM with DG G1 is the same
as the set of zero partial correlations entailed for
all values of the free parameters of a linear SEM
with G2. For linear models, this is the same as
d-separation equivalence [12]

• DGs G1 and G2 are covariance equivalent if and
only if for every set of parameter values for the free
parameters of a linear SEM with DG G1, there is
a set of parameter values for the free parameters
of a linear SEM with DG G2 such that the two
SEMs entail the same covariance matrix over the
substantive variables, and vice-versa.

• DGs G1 and G2 are distribution equivalent if and
only if for every set of parameter values for the free
parameters of a linear SEM with DG G1, there is a
set of parameter values for the free parameters of
a linear SEM with DG G2 such that the two SEMs
entail the same distribution over the substantive
variables, and vice-versa.

It follows from well-known theorems about the Gaus-
sian case [12], and some trivial consequences of known
results about the non-Gaussian case [11], that the fol-
lowing relationships exist among the different senses of
equivalence for acyclic SEMs: If all of the error terms
are assumed to be Gaussian, distribution equivalence
is equivalent to covariance equivalence, which in turn
is equivalent to d-separation equivalence. If not all of
the error terms are assumed to be Gaussian, then dis-
tribution equivalence entails (but is not entailed by)
covariance equivalence, which entails (but is not en-
tailed by) d-separation equivalence.

So for example, given Gaussian error terms, A ← B
and A→ B are zero partial correlation equivalent, co-
variance equivalent, and distribution equivalent. But
given non-Gaussian error terms, A ← B and A → B
are zero-partial-correlation equivalent and covariance
equivalent, but not distribution equivalent. So for
Gaussian errors and this pair of DGs, no algorithm



that relies only on observational data can reliably se-
lect a unique acyclic graph that fits the population dis-
tribution as the correct causal graph without making
further assumptions; but for all (or all except one) non-
Gaussian errors there will always be a unique acyclic
graph that fits the population distribution.

While there are theorems about the case of cyclic
SEMs and Gaussian errors, we are not aware of
any such theorems about cyclic SEMs with non-
Gaussian errors with respect to distribution equiv-
alence. In the case of cyclic SEMs with all Gaus-
sian errors, distribution equivalence is equivalent to
covariance equivalence, which entails (but is not en-
tailed by) d-separation equivalence. In the case of
cyclic SEMs in which some of the error terms may
be non-Gaussian, distribution equivalence entails (but
is not entailed by) covariance equivalence, which in
turn entails (buedu.cmu.cmu.tetrad.search.t is not en-
tailed by) d-separation equivalence. However, given all
(or all but one) non-Gaussian error terms, the impor-
tant difference between acyclic SEMs and cyclic SEMs
is that no two different acyclic SEMs are distribution
equivalent, but there are different cyclic SEMs that are
distribution equivalent.

Hence, no algorithm that relies only on observational
data can reliably select a unique cyclic graph that fits
the data as the correct causal graph without mak-
ing further assumptions. For example, the two cyclic
graphs in Fig. 3 are distribution equivalent.

5.2 The output of LiNG-D is as fine as
possible

The following theorem states that any two SEMs out-
put by LiNG-D entail the same distribution.

Theorem 1 The output of LiNG-D is the set of all
SEMs that represent the observed distribution.

Proof: The weight matrix output by ICA is deter-
mined only up to scaling and row permutation. In-
tuitively, then, permuting the error terms does not
change the mixture. Now, more formally:

Let M1 and M2 be candidate models output by LiNG-
D. Then W1 and W2 are row-permutations of W :

W1 = P1W , W2 = P2W

Likewise, for the error terms: E1 = P1E, E2 = P2E

Then the list of samples X implied by M1 is A1E1 =
(W1)

−1E1 = (P1W )−1(P1E) = W−1P1
−1P1E =

W−1E.

By a similar argument, the list of samples X implied
by M2 is also W−1E. Therefore, any two SEM models
output by LiNG-D entail the same distribution.

Now, it remains to be shown that the output of LiNG-
D is exhaustive.

Suppose that there is a SEM S that represents the
same distribution as some T , which is output by LiNG-
D. Then the reduced-form coefficient matrices for S
and T , AS and AT , are the same up to column-
permutation and scaling. Hence, I − BS and I − BT

are also the same up to scaling and row-permutation
(by I − B = A−1). By the definition of SEM, neither
I − BT nor I − BS has zeros on the diagonal. Since
I −BT is a scaled row-permutation of W that has no
zeros on the diagonal, so is I − BS . Thus S is also
output by LiNG-D.

QED.

In general, each candidate model B′ = I − W ′ has
the structure of a row-permutation of W . The struc-
tures can be generated by analyzing what happens
when we permute the rows of W . Remember that
edges in B (and thus W ) are read column to row.
Thus, row-permutations of a model change the posi-
tions of the arrow-heads (targets), but not the arrow-
tails (sources). When the graph is a simple cycle, the
only other graph is the one obtained by reversing the
direction of the loop ([9]). Richardson proved that this
operation preserves the set of entailed zero partial cor-
relations, but did not consider distribution equivalence
[9].

5.3 Adding the assumption of stability

There are cases where the set of equations in a cyclic
SEM has a solution, but no interpretation as a dy-
namical system reaching equilibrium. Such systems
are known as “unstable”. In dynamical systems, “sta-
ble” models are ones in which the effects of one-time
noise dissipate. For example, a model that has a sin-
gle cycle whose cycle-product (product of coefficients
of edges in the cycle) is ≥ 1 is unstable, while one
that has a single cycle whose cycle-product is between
-1 and 1 is stable. On the other hand, if a positive
feedback loop of cycle-product 2 is counteracted by a
negative loop with cycle-product −1.5, then the model
is stable, because the effective cycle-product is 0.5.

A general way to express stability is lim
t→∞

Bt = 0,

which is mathematically equivalent to: for all eigen-
values e of B, |e| < 1, in which |z| means the modulus
of z (eigenvalues can be complex-valued). This eigen-
values criterion is easy to compute.

As discussed previously, it is impossible to measure
stability from ICA’s output without assuming the ab-
sence of self-loops. Therefore, in this section, it is as-
sumed that the true model has no self-loops.



It is often the case that some of the SEMs output by
LiNG-D are unstable. In many domains, however, it
is common to assume that the true model is stable.

In this section, we will prove that if the SEM gen-
erating the population distribution has a graph in
which the cycles are disjoint, then among the candi-
date SEMs output by LiNG-D, at most one will be
stable.

Theorem 2 SEMs in the form of a simple cycle with
a cycle-product π such that |π| ≥ 1 are unstable.

Proof: Let k be the length of the cycle. Then Bk =
πI. Then for all integers i, Bik = πiI. So if |π| ≥ 1,
the entries of Bik do not get smaller than the entries
of B as i increases. Thus, Bt will not converge to 0 as
t→∞.

Theorem 3 If a SEM M has a graph in the form
of a simple cycle C, then there is at most one more
SEM M ′ with simple cycle C′ in its distribution-
equivalence-class, and the following holds about their
cycle-products: πM ′ = 1/πM .

Proof: Without loss of generality, we let M ’s coeffi-
cient matrix have the form:

BM =




0 . . . 0 bk,1

b1,2 0 . . . 0

0 b2,3

. . . 0

0 0
. . . 0




Note that the cycle-product πM = bk,1

∏k−1

i=0
bi,i+1.

WM = I −BM =




1 0 . . . −bk,1

−b1,2 1 . . . 0

0 −b2,3

. . . 0

0 0
. . . 1




The only other admissible row-permutation of W is the
one in which the first row gets pushed to the bottom:

RowPermute(WM ) =




−b1,2 1 . . . 0

0 −b2,3

. . . 0

0 0
. . . 1

1 0 . . . −bk,1




Normalizing the diagonal to be all 1s, we get WM ′ .
Computing BM ′ = I − WM ′ , one can see that the
cycle-product πM ′ = 1

bk,1

∏k−1

i=0

1

bi,i+1
= 1/πM .

Corollary 1: If a SEM M has a graph in the form of

a simple cycle C, then at most one SEM in the output
of LiNG-D is stable.

Theorem 4 If a SEM has a graph such that all cy-
cles are disjoint (in the sense that they do not share a
node), then at most one SEM in the output of LiNG-D
is stable.

Proof:

By specification, each SEM output by LiNG-D corre-
sponds to a row-permutation of W such that the diag-
onal contains only non-zeroes. Suppose that there is a
row-permutation of W such that the diagonal contains
only non-zeroes and corresponds to a stable model; let
this permutation of W be called I −B.

Claim 1: Every admissible permutation of the rows
of I − B is a composition of (0 or more) reversals of
cycles in the graph, i.e. permutations that cannot rep-
resented as a composition of cycle reversals put a zero
in the diagonal.

Let P be an admissible permutation that maps row i
onto row j. Then the jth entry in row i of I − B is
non-zero, since the diagonal of the permuted matrix
has no zeros. Hence, xj is a parent of xi. Thus every
admissible permutation-cycle corresponds to a cycle C
in the graph, and has the effect of reversing C.

Since every permutation can be represented as a se-
quence of permutation-cycles that don’t intersect each
other, it follows that P is a composition of (0 or more)
reversals of graph-cycles.

Thus P corresponds to a reversal of a cycle in the
graph corresponding to I −B.

Claim 2: Every row-permutation of I − B that re-
verses a cycle corresponds to an unstable model.

By Corollary 1, every cycle-reversal leads to an unsta-
ble cycle, and hence, since none of the cycles touch, an
unstable model.

From Claims 1 and 2, it follows that I −B is the only
stable SEM that is output by LiNG-D.

QED.

This condition is sufficient, but not necessary. It is
easy to come up with SEMs where we have exactly
one stable SEM in the distribution-equivalence class,
despite intersecting cycles.

5.4 Correctness of LiNG-D

Theorem 5 If the simultaneous equations are linear
and can be represented by a directed graph; the error
terms have non-zero variance; the samples are inde-



pendently and identically distributed; no more than one
error term is Gaussian; and the error terms are jointly
independent, then in the large sample limit, LiNG-D
outputs a distribution-equivalence class of SEMs that
describe the population distribution.

Proof: ICA gives pointwise consistent estimates of A
and W under the assumptions listed [3]. This entails
that there are pointwise consistent tests of whether an
entry in the W matrix is zero, and hence by defini-
tion in the large sample limit, the limit of both type I
and type II errors of tests of zero coefficients are zero.
Given the correct zeroes in the W matrix, the output
of the local version of the LiNG-D algorithm is correct
in the sense that the simultaneous equation describes
the population distribution.

6 Discussion

We have presented an approach for discovering general
LiNG SEMs that improves upon the state-of-the-art by
narrowing the output to the distribution-equivalence-
class of SEMs and by relaxing the faithfulness assump-
tion. We have also shown that stability can be a pow-
erful constraint, sometimes narrowing the candidates
to a single SEM. There are a number of open questions
that remain for future research.

• The LiNG-D algorithm generates all admissible
permutations. The time-complexity of n-Rooks
is high when the correct model has many cycles.
Is there an algorithm to efficiently search for the
stable models, without going through all candi-
dates? In the case where the cycles are disjoint,
it is possible to just find the correct permutation
for each cycle independently, but no such trick is
known in general.

• How can prior information or a prior distribution
be incorporated into the algorithm?

• Can the algorithm be modified to allow the as-
sumption of causal sufficiency assumption to be
relaxed?

• Can the algorithm be modified to allow for mix-
tures of non-Gaussian and Gaussian (or almost
Gaussian) error terms?
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