
Discovering Data-Aware Declarative Process
Models from Event Logs

Fabrizio M. Maggi1, Marlon Dumas1, Luciano Garćıa-Bañuelos1, and
Marco Montali2

1 University of Tartu, Estonia
{f.m.maggi, marlon.dumas, luciano.garcia}@ut.ee

2 KRDB Research Centre, Free University of Bozen-Bolzano, Italy.
montali@inf.unibz.it

Abstract. A wealth of techniques are available to automatically dis-
cover business process models from event logs. However, the bulk of these
techniques yield procedural process models that may be useful for de-
tailed analysis, but do not necessarily provide a comprehensible picture
of the process. Additionally, barring few exceptions, these techniques do
not take into account data attributes associated to events in the log,
which can otherwise provide valuable insights into the rules that govern
the process. This paper contributes to filling these gaps by proposing a
technique to automatically discover declarative process models that in-
corporate both control-flow dependencies and data conditions. The dis-
covered models are conjunctions of first-order temporal logic expressions
with an associated graphical representation (Declare notation). Impor-
tantly, the proposed technique discovers underspecified models capturing
recurrent rules relating pairs of activities, as opposed to full specifica-
tions of process behavior – thus providing a summarized view of key rules
governing the process. The proposed technique is validated on a real-life
log of a cancer treatment process.
Keywords: Automated Process Discovery, Predicate Mining, Linear
Temporal Logic, Declare

1 Introduction

Business processes in modern organizations are generally supported and con-
trolled by information systems. These systems usually record relevant events,
such as messages and transactions, in the form of event logs. Process mining
aims at exploiting these event logs in order to model and analyze the underly-
ing processes. One of the most developed family of process mining techniques
is automated process discovery. Automated process discovery aims at construct-
ing a process model from an event log consisting of traces, such that each trace
corresponds to one execution of the process. Each event in a trace consists as a
minimum of an event class (i.e., the task to which the event corresponds) and
generally a timestamp. In some cases, other information may be available such
as the originator of the event (i.e., the performer of the task) as well as data
produced by the event in the form of attribute-value pairs.



The Process Mining Manifesto [9] argues that one of the open challenges in
process mining is to find a suitable representational bias (language) to visualize
the resulting models. The suitability of a language largely depends on the level
of standardization and the environment of the process. Standardized processes
in stable environments (e.g., a process for handling insurance claims) are char-
acterized by low complexity of collaboration, coordination and decision making.
In addition, they are highly predictable, meaning that it is feasible to determine
the path that the process will follow. On the other hand, processes in dynamic
environments are more complex and less predictable. They comprise a very large
number of possible paths as process participants have considerable freedom in
determining the next steps in the process (e.g., a doctor in a healthcare process).

As discussed in [24, 20, 23], procedural languages, such as BPMN, EPCs and
Petri nets, are suitable for describing standardized processes in stable environ-
ments. Due to their predictability and low complexity, these processes can be
described under a “closed world” assumption, meaning that it is feasible to ex-
plicitly represent all the allowed behavior of the process. In contrast, the use of
procedural languages for describing processes in dynamic environments leads to
complex and incomprehensible models. In this context, declarative process mod-
eling languages are more appropriate [23]. Unlike their procedural counterparts,
declarative models describe a process under an “open world” assumption, such
that everything is allowed unless it is explicitly forbidden. Accordingly, a declar-
ative model focuses on capturing commitments and prohibitions that describe
what must or must not occur in a given state of the process.

Previous work on automated discovery of declarative process models [16, 14]
has focused on mining control-flow dependencies, such as “the execution of a
task entails that another task must eventually be executed”. This prior work, as
well as the bulk of process discovery techniques for procedural languages, ignores
data attributes attached to events, besides the event class. Hence, the resulting
models lack insights into the role of data in the execution of the process.

The importance of data in business processes, particularly dynamic ones, is
paramount as it is often data that drives the decisions that participants make.
In dynamic processes, the fact that a task A is executed often tells us little
about what must or must not happen later. It is only when considering the
data produced by task A and other data associated to the process that we can
state that something must or must not happen later. This holds in particular
for healthcare processes, which according to Rebuge et al. [21] involve numerous
variables that determine how a specific patient should be treated (e.g., age,
gender, type of disease).

This paper addresses the above gap by presenting a technique to discover
data-aware declarative process models, represented using an extension of the
Declare notation [17]. Declare is a declarative language that combines a formal
semantics grounded in Linear Temporal Logic (LTL) on finite traces,3 with a
graphical representation. In essence, a Declare model is a collection of LTL rules,
each capturing a control-flow dependency between two activities. Declare itself

3 For compactness, we will use the LTL acronym to denote LTL on finite traces.

2



is not designed to capture data aspects of a process. Accordingly, for the sake of
discovering data-aware models, we extend Declare with the ability to define data
conditions (predicates). The extended (data-aware) Declare notation is defined
in terms of LTL-FO (First-Order LTL) rules, each one capturing an association
between a task, a condition and another task. An example of such rule is that if
a task is executed and a certain data condition holds after this execution, some
other task must eventually be performed.

The proposed approach relies on the notion of constraint activation [3]. For
example, for the constraint “every request is eventually acknowledged” each
request is an activation. This activation becomes a fulfillment or a violation de-
pending on whether the request is followed by an acknowledgement or not. In
our approach, we first generate a set of candidate constraints considering the
constraints that are most frequently activated. Then, we apply an algorithm
to replay the log and classify activations (with their data snapshots) into fulfill-
ments and violations. Given the resulting classification problem, we use invariant
discovery techniques to identify the data conditions that should hold for a con-
straint activation to be fulfilled.

The paper is structured as follows. Section 2 introduces the basic Declare
notation as well as the techniques used to discover data conditions. Next, Section
3 introduces the proposed data-aware extension of Declare and the technique for
automated discovery of data-aware Declare models. In Section 4, we validate
our approach in a real-life scenario. Finally, Section 5 discusses related work and
Section 6 concludes and spells out directions for future work.

2 Background

In this section, we introduce some background material needed to present our
proposed approach. In Section 2.1, we give an overview of the Declare language
and introduce the notion of activation, fulfillment and violation for a Declare
constraint. We describe the data condition discovery technique we use in our
discovery algorithm in Section 2.2.

2.1 Declare: Some Basic Notions

Declare is a declarative process modeling language first introduced by Pesic and
van der Aalst in [18]. A Declare model is a set of constraints that must hold in
conjunction during the process execution. Declare constraints are equipped with
a graphical notation and an LTL semantics. Examples of Declare constraints are
response(A,B) (formally: !(A → ♦B)), responded existence(A,B) (formally:
♦A → ♦B) and precedence(A,B) (formally: (¬B " A) ∨ !(¬B)). We refer the
reader to [19] for a complete overview of the language.

Constraint response(A,B) indicates that if A occurs, B must eventually
follow. Therefore, this constraint is satisfied for traces such as t1 = 〈A,A,B,C〉,
t2 = 〈B,B,C,D〉 and t3 = 〈A,B,C,B〉, but not for t4 = 〈A,B,A,C〉 because,
in this case, the second A is not followed by a B.

3



Note that, in t2, response(A,B) is satisfied in a trivial way because A never
occurs. In this case, we say that the constraint is vacuously satisfied [11]. In
[3], the authors introduce the notion of behavioral vacuity detection according
to which a constraint is non-vacuously satisfied in a trace when it is activated
in that trace. An constraint activation in a trace is an event whose occurrence
imposes, because of that constraint, some obligations on other events in the same
trace. For example, A is an activation for response(A,B) because the execution
of A forces B to be executed eventually.

A constraint activation can be classified as a fulfillment or a violation. When a
trace is perfectly compliant with respect to a constraint, every constraint activa-
tion in the trace leads to a fulfillment. Consider, again, constraint response(A,B).
In trace t1, the constraint is activated and fulfilled twice, whereas, in trace t3,
the same constraint is activated and fulfilled only once. On the other hand, when
a trace is not compliant with respect to a constraint, a constraint activation in
the trace can lead to a fulfillment but also to a violation (and at least one acti-
vation leads to a violation). In trace t4, for example, response(A,B) is activated
twice, but the first activation leads to a fulfillment (eventually B occurs) and the
second activation leads to a violation (the target event class B does not occur
eventually).

In [3], the authors define two metrics to measure the conformance of an
event log with respect to a constraint in terms of violations and fulfillments,
called violation ratio and fulfillment ratio of the constraint in the log. These
metrics are valued 0 if the log contains no activations of the considered constraint.
Otherwise, they are evaluated as the percentage of violations and fulfillments of
the constraint over the total number of activations.

2.2 Discovery of data conditions

Given a set of Declare constraints extracted from an event log, a key step of
the proposed technique is to generate a set of data-aware constraints, meaning
constraints that incorporate conditions based on data attributes found in the
logs. This problem can be mapped to a classification problem as follows. Given a
Declare constraint and a set of traces, we can determine by “replaying” the log,
the points in each trace of the log where the constraint is fulfilled or violated. In
other words, we can construct a set of trace snapshots where the constraint is
fulfilled and another set where the constraint is violated, where a snapshot is an
assignment of values to each attribute appearing in the log (possibly including
“null” values). Given these two sets, classification techniques, such as decision
tree learning, can be used to discover a condition on the data attributes that
discriminates between fulfillments and violations. The discovered condition is
then used to enrich the initial (control-flow) Declare constraint.

A similar principle is used in ProM’s Decision Miner [22] for the purpose of
discovering conditions that can be associated to branches of a decision point of
a business process model. ProM’s Decision Miner applies decision tree learning
to discover conditions consisting of atoms of the form ‘variable op constant’,
where ‘op’ is a relational operator (e.g., =, <, or >). Given the capabilities of

4



standard decision tree learning techniques, this approach does not allow us to
discover expressions of the form ‘variable op variable’ or conditions involving lin-
ear combinations of variables. This limitation is lifted in our previous work [5],
where we combine standard decision tree learning with a technique for the dis-
covery of (likely) invariants from execution logs, i.e., Daikon [7]. Daikon allows
us to discover invariants that hold true at a given point in a program, where a
program point may be a method call, a field access or some other construction
of the target programming language. The execution logs that serve as input to
Daikon are commonly generated by instrumented code that monitors the pro-
gram’s points of interest, but they can also come from other sources. Given such
execution logs, Daikon discovers invariants consisting of linear expressions with
up to three variables as well as expressions involving arrays.

The technique described in [5] uses Daikon as an oracle to discover conditions
that, given a decision point (e.g., XOR-split), discriminates between the cases
where one branch of the decision point is taken and those where the other branch
is taken. In a nutshell, this technique works as follows: given a set of traces S, a
process model M discovered from S and a task T in this process model, Daikon is
used to discover invariants that hold true before each execution of task T . Given a
decision point between a branch starting with task T1 and a branch starting with
task T2, the invariants discovered for branch T1 and those discovered for branch
T2 are combined in order to discover a conjunctive expression that discriminates
between T1 and T2. In order to discover disjunctive expressions, decision tree
learning is employed to first partition the observation instances where T1 (or T2)
are executed into disjoint subsets. One conjunctive expression is then discovered
for each subset.

In this paper, this technique is employed to discover conditions that discrimi-
nate between violations and fulfillments of a constraint as detailed in Section 3.2.

3 Discovering Data-Aware Declare Models

In this section, we first define a semantics to enrich Declare constraints with
data conditions based on First-Order Linear Temporal Logic (LTL-FO). Then,
we present an algorithm for discovering Declare models with data.

3.1 LTL-FO Semantics for Declare

We now define a semantics to extend the standard Declare constraints with data
conditions. To do this, we use First-Order Linear Temporal Logic (LTL-FO),
which is the first-order extension of propositional LTL. While many reasoning
tasks are clearly undecidable for LTL-FO, this logic is appropriate to unam-
biguously describe the semantics of the data-aware Declare constraints we can
generate by using our algorithm.

The defined semantics (shown in Table 1) is quite straightforward. In partic-
ular, the original LTL semantics of a Declare constraint is extended by requiring
an additional condition on data, Cond, to hold when the constraint is activated.

5



Table 1: LTL-FO semantics and graphical representation for some Declare con-
straints extended with data conditions.
constraint description formalization notation

responded existence(A,B,Cond) if A occurs and Cond holds, B
must occur before or after A

♦(A ∧ Cond) → ♦B A
Cond•−−−− B

response(A,B,Cond) if A occurs and Cond holds, B
must occur afterwards

!((A ∧ Cond) → ♦B) A
Cond
•−−−# B

precedence(A,B,Cond) if B occurs and Cond holds, A
must have occurred before

(¬(B ∧ Cond) $A) ∨!(¬(B ∧ Cond)) A
Cond
−−−#• B

alternate response(A,B,Cond) if A occurs and Cond holds, B
must occur afterwards, without
further As in between

!((A ∧ Cond) → ©(¬A $B)) A
Cond
•===# B

alternate precedence(A,B,Cond) if B occurs and Cond holds,
A must have occurred before,
without other Bs in between

((¬(B ∧Cond)$A)∨!(¬(B ∧Cond)))
∧!((B ∧ Cond) → ©(¬B $A))

A
Cond
===#• B

chain response(A,B,Cond) if A occurs and Cond holds, B
must occur next

!((A ∧ Cond) → ©B) A
Cond
•=−=−=−# B

chain precedence(A,B,Cond) if B occurs and Cond holds,
A must have occurred immedi-
ately before

!(©(B ∧ Cond) → A) A
Cond
=−=−=−#• B

not resp. existence(A,B,Cond) if A occurs and Cond holds, B
can never occur

♦(A ∧ Cond) → ¬♦B A
Cond•−−−−‖ B

not response(A,B,Cond) if A occurs and Cond holds, B
cannot occur afterwards

!((A ∧ Cond) → ¬♦B) A
Cond
•−−−#‖ B

not precedence(A,B,Cond) if B occurs and Cond holds, A
cannot have occurred before

!(A → ¬♦(B ∧ Cond)) A
Cond
−−−#•‖ B

not chain response(A,B,Cond) if A occurs and Cond holds, B
cannot be executed next

!((A ∧ Cond) → ¬©B) A
Cond
•=−=−=−#‖ B

not chain precedence(A,B,Cond) if B occurs and Cond holds, A
cannot have occurred immedi-
ately before

!(©(B ∧ Cond) → ¬A) A
Cond
=−=−=−#•‖ B

Cond is a closed first-order formula with the following structure: ∃x1, . . . , xn.
curState(x1, . . . , xn)∧Φ(x1, . . . , xn), where curState/n is a relation storing the
n data available in the system (considering both case attributes and event at-
tributes in the log) and Φ/n is a first-order formula constraining such data by
means of conjunctions, disjunctions and relational operators.

For example, response(A,B,Cond) specifies that whenever A occurs and
condition Cond holds true, then a corresponding occurrence of B is expected to
eventually happen. Constraint precedence(A,B,Cond) indicates that whenever
B occurs and Cond holds, then an occurrence of A must have been executed
beforehand. The semantics for negative relations is also very intuitive. For ex-
ample, not responded existence(A,B,Cond) indicates that if an instance of A
occurs and Cond holds, then no occurrence of B can happen before or after A.
Note that some Declare constraints derive from the conjunction of other con-
straints. For example, the succession constraint is the conjunction of response
and precedence. In this case, we have a condition on the attribute values of A
and a condition on the attribute values of B. These two conditions can be, in
principle, different.

Based on this semantics, the notion of constraint activation changes. Ac-
tivations of data-aware Declare constraints are all those constraint activations

6



(according to the standard definition) for which Cond is true. For example,
response(A,B,Cond) is activated when A occurs and, also, Cond is valid. On
the other hand, precedence(A,B,Cond) is activated when B occurs and Cond is
valid. The definitions of fulfillments and violations are also adapted accordingly.

3.2 Discovery Algorithm

In a nutshell, our approach aims at discovering data-aware Declare constraints
with fulfillment ratio close to 1 from an event log. We thus start from event
logs where the process execution traces and their events are equipped with data,
modeled as attribute-value pairs.

More specifically, the algorithm takes as input an event log, which is a set
of execution traces. Each execution trace represents, as usual, the sequence of
events characterizing a specific instantiation of the process. Our focus is on
case data, i.e., we consider data to be attached to the case and their values
to be manipulated by the corresponding events. For this reason, a case can be
associated to a set of key-value pairs defining the initial values for some of the
data. These can be extracted by applying the caseAtts/1 function to a trace. The
other data mentioned in the events of the log are implicitly considered to have
an initial null value.

Events are meant to manipulate such case data. Specifically, each event ev
is associated to: (i) a class that represents the task to which the event refers
to and that can be extracted with evClass(ev); (ii) a timestamp; (iii) a set of
attribute-value pairs that denotes the impact of the event in terms of case data
and that can be extracted with evAtts(ev). We follow the classical commonsense
law of inertia: given a data attribute a, its value remains constant until it is
explicitly overridden by an event that provides a new value for a.

The discovery of data-aware Declare constraints is based on a supervised
learning approach. Before discussing the details of the algorithm, we introduce a
short example that summarizes its key aspects. The algorithm requires the user
to choose the constraint types she is interested in. In the following, we assume
that response is selected. Consider an event log constituted by the following
execution traces (we use triples to represent the events):

{(A, 1, {x = 1, y = 1}), (B, 5, {x = 2, y = 2}), (C, 8, {x = 3, y = 3})}
{(A, 1, {x = 1, y = 2}), (B, 3, {x = 1, y = 2})}
{(A, 1, {x = 2, y = 1}), (C, 7, {x = 2, y = 4})}

The event log contains three event classes: A, B and C. Therefore, in principle, all
possible pairs of event classes could be involved in response constraints: response
from A to B, from A to C, from B to A, from B to C, from C to A and
from C to B. Among all these possibilities, only those that are “relevant” are
considered to be candidate constraints. Relevance is measured in terms of number
of activations, which, in the case of response, correspond to the execution of the
source activity.

For example, response constraints with source A are activated once in each
trace present in the log above, whereas response constraints with source B or

7



C are activated in only two traces out from three. Assuming to filter away
those constraints with number of activations < 3, only response constraints with
source A are kept. For each of those, the activations are classified as fulfillments
or violations, depending on whether there is an event that refers to the target
activity and occurs after it.

In the case of response(A,B), the activations in the first two traces are
marked as fulfilled, whereas the one for the third trace is not (in fact, no B is
present in the third trace). This means that this constraint is not fully supported
by the log. The classification of activations into fulfillments and violations is used
as input of the approach discussed in Section 2.2. With this approach, we try to
improve the support of a constraint by discovering finer-grained data conditions,
used to restrict the context of application for the constraint. For example, we
could learn that response(A,B) is fully supported by the log whenever at the
time A is executed, the value for attribute x is 1.

The full algorithm is shown in Fig. 1. It takes as input an event log, a set of
constraint types userTypes previously selected by the user, a threshold minRatio
representing the minimum expected fulfillment ratio for a constraint to be dis-
covered and a threshold minActivations representing the minimum number of
activations for a constraint to be considered as a candidate.

All the information needed for the discovery is collected by traversing the log
twice. In the first iteration, the event classes and the (event and case) attributes
with their types are collected (lines 2-9). To start the second iteration, we invoke
function generateConstraints to generate the set of possible candidate constraints
given the required minimum level of activation support, minActivations (line 10).
This function produces all possible constraints of the form Constr(A,B), where
Constr is one of the constraint types in userTypes and A and B are event classes
in eClasses (the one corresponding to the constraint activation with at least
minActivations occurrences).

In the second iteration (lines 14-28), we process each event in the log with a
twofold purpose: constructing a snapshot that tracks the values of data obtained
after the event execution and classifying constraint activations into fulfillments
and violations. These two sources of information are used to select the final
constraints and decorate them with data-aware conditions. In particular, when
we start replaying a trace trace, we create a set state0 of pairs (attribute,value),
where each event/case attribute is firstly initialized to null (line 15) and each
case attribute present in trace is then associated to the corresponding value (line
16). Given a trace/event x and an attribute a, we use function value(x,a) to
extract the corresponding value. When an event occur at position p, the value
of each event attribute is replaced by the new value attached to the event just
occurred (through the update of curState, line 20), so as to reconstruct the
effect of the event in terms of data values update. In this way, we associate each
event occurring in trace at position p to snapshot[p], calculated by updating the
previous state with the contribution of that event (line 21).

In parallel with the construction of snapshots, constraint activations are clas-
sified into fulfillments and violations. For every trace, each candidate constraint

8



Algorithm Discovery
Input: log, an event log

userTypes, a set of Declare constraint types
minRatio, the minimum expected fulfillment ratio for a constraint to be discovered
minActivations, the minimum number of activations for a constraint to be considered as a candidate

1: eClasses = ∅; cAtts = ∅; model = ∅; prunedModel = ∅;
2: for each trace in log do
3: cAtts = cAtts ∪ caseAtts(trace);
4: for each trace in log do
5: for each ev in trace do
6: cAtts = cAtts ∪ evAtts(ev); eClasses = eClasses ∪ evClass(ev);
7: end
8: end
9: end
10: constraints = generateConstraints(userTypes,eClasses,minActivations);
11: for each c in constraints do
12: fulfSnapshots(c) = ∅; violSnapshots(c) = ∅;
13: end
14: for each trace in log do
15: state0 = {(a, null) | a ∈ cAtts};
16: for each a in caseAtts(trace) do state0 = (state0 \ {(a, null)}) ∪ {(a, value(trace, a))};
17: curState = state0;
18: snapshot = new Array(length(trace));
19: for (p=0; p < length(trace); p++) do
20: for each a in evAtts(trace[p]) do curState = (curState \ {(a, )}) ∪ {(a, value(trace[p], a))};
21: snapshot[p] = curState;
22: for each c in constraints do classifyActivations(candidate, id(trace), p);
23: end
24: for each c in constraints do
25: for each fp in getFulfPositions(c) do fulfSnapshots(c) = fulfSnapshots(c) ∪ snapshot[fp];
26: for each vp in getViolPositions(c) do violSnapshots(c) = violSnapshots(c) ∪ snapshot[vp];
27: end
28: end
29: for each c in constraints do
30: if (min{|fulfSnapshots(c)|, |violSnapshots(c)|} ≥ 10 × |cAtts|)
31: dataCondition= callDaikon(fulfSnapshots(c),violSnapshots(c));
32: model= model ∪ (c, dataCondition);
33: end
34: end
35: for each c in model do complianceCount(c) = 0;
36: for each trace in log do
37: for each c in model do
38: if (checkCompliance(trace, c)) complianceCount(c)++;
39: end
40: end
41: for each c in model do

42: if ( complianceCount(c)
|log| ≥ minRatio) prunedModel = prunedModel ∪ c; 42

43: end
44: return prunedModel;

Fig. 1: Discovery algorithm for data-aware Declare.

is associated to a set of activations. Internally, every activation is a quadruple
(candidate, id(trace), p, curState) indicating that in position p of the trace identi-
fied by id(trace), an event occurs activating constraint candidate and that snap-
shot(id(trace), p) = curState in the same position. These quadruples are classified
into fulfillments and violations by leveraging on function classifyActivations (line
22). This function depends on the constraint type.

In particular, there is a difference when we are processing an event for a
constraint looking at the past (e.g., precedence) and for constraints looking at
the future (e.g., response). For constraints looking at the past, we store each
scanned event as possible target in a sorted list. The same event will be an

9



activation for some candidate constraints. In particular, it will be a fulfillment if
the list of the events already occurred contains a possible target and a violation if
the list does not contain such an event. For constraints looking at the future, we
process an event by considering it as a “pending” activation waiting for a possible
target to be classified as a fulfillment. The same event can be, on the other hand,
a target for a pending activation. All the activations that are still pending when
the trace has been completely replayed are classified as violations (indeed, no
further events can occur to fulfill them). Note that undirected constraints (e.g.,
responded existence) use an hybrid approach. Furthermore, for each negative
constraint the same algorithm used for the corresponding positive constraint is
adopted, by substituting fulfillments with violations and vice-versa.

As an example, consider constraint (response, A, B). Activation ((response,A,B),
123, 4, curState) is added to the list of pending activations whenever in trace 123
at position 4, activity A is executed. This activation is pending, since it expects
a consequent execution of B. If B occurs in 123 at a later position, say, 12, then
the activation at position 4 is classified as a fulfillment. On the other hand, if we
evaluate constraint (not response, A, B) on the same trace, ((not response,A,B),
123, 4, curState) would be classified as a violation (indeed, not response would
forbid the presence of B after A).

When the processing of a trace is completed, the aforementioned functions
have calculated, for each constraint c, the set of positions at which an activation
for c was classified as a fulfillment or as a violation. These two sets can then
be retrieved by respectively calling function getFulfPositions(c) and getViolPosi-
tions(c). Starting from these positions, we can in turn obtain the corresponding
snapshots, globally accumulating them into two sets fulfSnapshots(c) and viol-
Snapshots(c) (lines 24-27).

With the information collected in fulfSnapshots(c) and violSnapshots(c), we
proceed with the discovery of data-aware conditions using the approach discussed
in Section 2.2 (lines 29-34). It is well known that the quality of decision trees is
sensible to the amount of the observations for each class being considered and
so is the method used for discovering data conditions. To filter cases with not
enough observations, we use a common heuristic as described in [10]. According
to this heuristic, the number of samples for classifier learning should be at least
10 times the number of features. Hence, we filter out candidate constraints that
have a number of fulfillments and a number of violations (i.e., number of positive
and negative samples) lower than 10 times the number of attributes in the log.

Finally, the resulting data-aware Declare model can be further pruned by
means of threshold minRatio, i.e., the minimum expected fulfillment ratio for a
discovered data-aware constraint. Function checkCompliance/2 is called to check
whether the aforementioned ratio is above minRatio or not. If so, the constraint
is maintained in the final model and discarded otherwise (lines 41-43).

10



Table 2: Discovered response constraints.
A B data condition

Milk acid dehydrogenase squamous cell (((Diagnosis code == “M13”) || (Diagnosis code == “822”))
LDH kinetic carcinoma using eia || (Diagnosis code == “M12”))

(((org:group == “Radiotherapy”) || (Treatment code == “113”)) ||
First outpatient teletherapy - megavolt ((Diagnosis == “Gynaecologische tumoren”) ||
consultation photons bestrali (Diagnosis == “Maligne neoplasma cervix uteri”) ||

(Diagnosis == “maligniteit cervix”)))
bilirubin- squamous cell ((Diagnosis code == “M13”) ||

total carcinoma using eia (Diagnosis code == “822”))
gammaglutamyl- squamous cell (((Diagnosis code == “M13”) || (Diagnosis code == “822”))
transpeptidase carcinoma using eia || (Diagnosis code == “M12”))
unconjugated squamous cell (((Diagnosis code == “M13”) || (Diagnosis code == “822”))||

bilirubin carcinoma using eia (Diagnosis code == “M12”))
outpatient follow-up differential

(Specialism code == “13”)
consultation count automatically

(((((Diagnosis == “Maligne neoplasma cervix uteri”) ||
CEA - tumor squamous cell (Diagnosis == “maligniteit cervix”)) || (Diagnosis code == “M13”)) ||

marker using meia carcinoma using eia ((Diagnosis == “Plaveiselcelca. vagina st II”) || (Diagnosis == “maligniteit vagina”))) ||
((Diagnosis == “Plav.celcarc. vulva: st II”) || (Diagnosis == “maligne melanoom van de vulva”)))

Table 3: No. of activations, fulfillments and fulfillment ratio (response).

A B
# activ # activ # fulf. # fulf. fulf. ratio fulf. ratio
no data data no data data no data data

Milk acid dehydrogenase squamous cell
1282 474 420 315 0.32 0.66

LDH kinetic carcinoma using eia
First outpatient teletherapy - megavolt

1200 646 530 452 0.44 0.69
consultation photons bestrali
bilirubin- squamous cell

1253 499 419 321 0.33 0.64
total carcinoma using eia

gammaglutamyl- squamous cell
1442 595 479 372 0.33 0.62

transpeptidase carcinoma using eia
unconjugated squamous cell

967 406 361 284 0.37 0.69
bilirubin carcinoma using eia

outpatient follow-up differential
6860 2575 2096 1345 0.30 0.52

consultation count automatically
CEA - tumor squamous cell

465 132 145 103 0.31 0.78
marker using meia carcinoma using eia

Table 4: Discovered not response constraints.
A B data condition

rhesus factor d - ABO blood group antigens
(Age >= 46)

Centrifuge method - email other than rhesu
rhesus factor d - cde

(Age >= 46)
Centrifuge method - email phenotyping

((((((Diagnosis code == “M16”) || (Diagnosis code == “821”)) ||
((Diagnosis == “Maligne neoplasma adnexa uteri”) ||

Milk acid dehydrogenase teletherapy - megavolt (Diagnosis == “Maligne neoplasma vulva”) ||
LDH kinetic photons bestrali (Diagnosis == “maligniteit vulva”))) || (Diagnosis code == “823”)) ||

((Diagnosis == “Plaveiselcelca. vagina st II”) ||
(Diagnosis == “maligniteit vagina”))) || (Diagnosis code == “M11”))

((((((Diagnosis code == “M16”) || (Diagnosis code == “821”)) ||
bilirubin - teletherapy - megavolt ((Diagnosis == “Maligne neoplasma adnexa uteri”) || (Diagnosis == “Maligne neoplasma vulva”) ||

total photons bestrali (Diagnosis == “maligniteit vulva”))) || (Diagnosis code == “823”)) ||
(Diagnosis code == “M11”)) || (Diagnosis == “maligniteit myometrium”))

((((((Diagnosis code == “M16”) || (Diagnosis code == “821”)) ||
unconjugated teletherapy - megavolt (Diagnosis code == “M11”)) ||

bilirubin photons bestrali ((Diagnosis code == “M13”) && (Diagnosis == “maligniteit cervix”))) ||
(Diagnosis code == “839”)) || (Treatment code == “503”))

(((((Diagnosis code == “M16”) || (Diagnosis code == “821”)) ||
alkaline teletherapy - megavolt ((Diagnosis == “Maligne neoplasma adnexa uteri”) || (Diagnosis == “Maligne neoplasma vulva”) ||

phosphatase-kinetic- photons bestrali (Diagnosis == “maligniteit vulva”))) ||
(Diagnosis code == “823”)) || (Diagnosis code == “M11”))

ABO blood group ABO blood group antigens
(Age >= 46)

and rhesus factor other than rhesu
ABO blood group cde

(Age >= 46)
and rhesus factor phenotyping

11



Table 5: No. of activations, fulfillments and fulfillment ratio (not response).

A B
# activ # activ # fulf. # fulf. fulf. ratio fulf. ratio
no data data no data data no data data

rhesus factor d - ABO blood group antigens
1558 1071 1271 1041 0.81 0.97

Centrifuge method - email other than rhesu
rhesus factor d - cde

1558 1071 1273 1043 0.81 0.97
Centrifuge method - email phenotyping
Milk acid dehydrogenase teletherapy - megavolt

1191 541 908 528 0.76 0.97
LDH kinetic photons bestrali
bilirubin - teletherapy - megavolt

1166 518 880 504 0.75 0.97
total photons bestrali

unconjugated teletherapy - megavolt
909 457 676 441 0.74 0.96

bilirubin photons bestrali
alkaline teletherapy - megavolt

1326 557 1001 544 0.75 0.97
phosphatase-kinetic- photons bestrali
ABO blood group ABO blood group antigens

1558 1071 1271 1041 0.81 0.97
and rhesus factor other than rhesu
ABO blood group cde

1558 1071 1273 1043 0.81 0.97
and rhesus factor phenotyping

4 Validation

We implemented the approach as a plug-in of the process mining tool ProM.4 As
a proof of concept, we validated the approach with the event log used in the BPI
challenge 2011 [1] that records the treatment of patients diagnosed with cancer
from a large Dutch hospital. The event log contains 1143 cases and 150, 291
events distributed across 623 event classes. Moreover, the event log contains a
total of 13 domain specific attributes, e.g., Age, Diagnosis Code, Treatment code,
in addition to the standard XES attributes, i.e., concept:name, lifecycle:transition,
time:timestamp and org:group. In our experiments, we take into consideration
only the domain specific attributes.

In a first experiment,5 we discovered data-aware response constraints from
the event log, with a fulfillment ratio of at least 0.5. Since the log contains 13 data
attributes, the candidate constraints must have at least 130 fulfillments and 130
violations (i.e., 10 times the number of attributes, as explained in Section 3.2).
The execution time for this experiment was 9.6 minutes for the first traversal
of the log (gathering of data snapshots, fulfillments and violations for each can-
didate constraint) and 15.3 minutes for the discovery of data-aware conditions.
The constraints discovered are summarized in Table 2.

In Table 3, we compare the number of activations and fulfillments for the
discovered constraints, first without considering the data conditions and then
considering the data conditions (in bold). As expected, both the number of
activations and the number of fulfillments decrease when the data conditions are
considered. However, the decrease in the number of fulfillments is less pronounced
than the decrease in the number of activations. If we interpret the fulfillment
ratio as a measure of goodness of a constraint, we obtain better results when
considering the data conditions (see the last two columns of Table 3).

4 www.processmining.org
5 The experiments were performed on a standard, 2.6 GHz dual-core processor laptop.

12



Fig. 2: Some of the discovered not response constraints in ProM.

In a second experiment, we considered the discovery of not response con-
straints. It is worth noting that negative constraints are interesting because
they specify forbidden scenarios that usually result in extremely complex repre-
sentations when using procedural modeling languages. For this experiment, we
decided to discover data-aware not response constraints with a fulfillment ratio
of at least 0.95. The execution time for this experiment was 13.3 minutes for
the first traversal of the log (to collect data snapshots and fulfillments and vio-
lations for each candidate constraint) and 14.1 minutes for the discovery of data
conditions. The not response constraints discovered are summarized in Table 4.
Interestingly, in this experiment we discovered more complex data conditions.
For instance, the not response constraint between unconjugated bilirubin and
teletherapy - megavolt photons bestrali has a data condition associated with a
combination of conjunctions and disjunctions.

In Table 5, we compare the number of activations and the number of ful-
fillments for the constraints discovered in the second experiment. Similarly to
the results obtained in the first experiment, we can clearly observe a lift in the
fulfillment ratio when the data conditions are considered. In Fig. 2, we present a
screenshot of ProM with the data-aware Declare model discovered in the second
experiment. For example, the not response constraint between rhesus factor d
- Centrifuge method - email and ABO blood group antigens other than rhesu
indicates that, if the age of the patient is greater than or equal to 46, when rhe-

13



sus factor d - Centrifuge method - email occurs, then ABO blood group antigens
other than rhesu can no longer occur.

5 Related Work

Several algorithms have been proposed to discover declarative process models.
Some of these algorithms [12, 8, 4] assume that every trace in the input log is
labeled as a “positive” or a “negative” case, where a negative case is one that
should not occur. The problem of mining a declarative model is mapped to
one of discriminating between positive and negative cases. The assumption of
a pre-existing labeling of positive and negative cases enables the separation of
constraint fulfillments and violations. However, this assumption often does not
hold as negative cases are generally not explicitly present in a real-life event
log. In [16, 14], LTL model checking techniques are used to classify negative and
positive cases (i.e., constraint violations and fulfillments), thus avoiding the need
for a preprocessing step to explicitly label the traces. The approach presented in
this paper extends the one in [16, 14] by using data attributes in order to enrich
candidate control-flow constraints with data conditions. We have shown in the
case study that this enrichment leads to constraints with higher fulfillment ratio.

The work reported in [6] provides an alternative approach to declarative pro-
cess mining that does not assume explicit labeling of positive and negative cases.
In this approach, each Declare constraint is mapped to a regular expression. The
regular expressions are used to generate a set of matrices of fulfillments and these
matrices are used to generate a Declare model. It would be worth investigating
the combination of this approach with our data enrichment algorithm. To this
end, the approach in [6] would first have to be extended to reconstruct the con-
straint activations and the corresponding fulfillments and violations.

Automated discovery of behavioral models enhanced with data conditions
has been addressed recently in [13, 22, 5]. In [13], a technique is presented to
mine finite state machines extended with data. This work builds on top of a
well-known technique to mine finite state machines that incrementally merges
states based on automata equivalence notions (e.g., trace equivalence). How-
ever, this approach is not suitable for discovering business process models, as
automata do not capture concurrency and concurrency is common in business
processes. ProM’s decision miner [22] embodies a technique to discover data-
aware procedural process models, based on existing techniques for discovering
“control-flow” process models (e.g., Petri nets) and decision trees. [5] extends
ProM’s decision miner in order to discover more general conditions as discussed
in Section 2.2.

6 Conclusion and Future Work

This paper has presented a technique to automatically discover data-aware declar-
ative models consisting of LTL-FO rules from event logs. A validation on real-life

14



logs from a cancer treatment process demonstrates that the technique can dis-
cover more precise rules (higher fulfillment ratio) compared to a technique for
discovering declarative models without data conditions.

As future work, we will carry out a more extensive experimentation with new
datasets. Furthermore, some optimizations of the presented technique are war-
ranted. For example, it may be possible to prune the discovered models through
transitive reduction. In [15], the authors use an algorithm for transitive reduction
of cyclic graphs to prune a Declare model discovered from a log. This approach,
however, can be used when the model only includes Declare constraints without
data conditions. For data-aware Declare models different reduction algorithms
should be used. For example, approaches for transitive reduction of weighted
graphs like the one presented in [2] could be adopted.

Another avenue for future work is to optimize the performance of the pro-
posed technique, for example by reducing the number of invocations made to
Daikon. This could be achieved by caching some of the invariants discovered by
Daikon for a given constraint and reusing them for other constraints. Such opti-
mization should be based however on a case-by-case analysis of which invariants
can be reused for a given constraint type.

Finally, we plan to extend the technique so that it can discover a larger
set of LTL-FO rule templates such as the existence templates and the non-
binary relation templates in Declare as well as templates beyond the standard
set included in Declare.

Acknowledgment. This research is supported by the EU’s FP7 Programme
(ACSI Project).

References

1. 3TU Data Center. BPI Challenge 2011 Event Log, 2011.
doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.

2. D. Bonaki, M. R. Odenbrett, A. Wijs, W.P.A. Ligtenberg, and P.A.J. Hilbers.
Efficient reconstruction of biological networks via transitive reduction on general
purpose graphics processors. BMC Bioinformatics, 13:281, 2012.

3. A. Burattin, F.M. Maggi, W.M.P. van der Aalst, and A. Sperduti. Techniques for
a Posteriori Analysis of Declarative Processes. In EDOC, pages 41–50, 2012.

4. F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari. Ex-
ploiting Inductive Logic Programming Techniques for Declarative Process Mining.
ToPNoC, 5460:278–295, 2009.

5. M. de Leoni, M. Dumas, and L. Garćıa-Bañuelos. Discovering Branching Condi-
tions from Business Process Execution Logs. In Proc. of FASE, volume 7793 of
LNCS, pages 114–129. Springer, 2013.

6. C. Di Ciccio and M. Mecella. Mining constraints for artful processes. In Proc. of
BIS, LNBIP, pages 11–23. Springer, 2012.

7. M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Software
Eng., 27(2):99–123, 2001.

8. S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens. Robust process discov-
ery with artificial negative events. JMLR, 10:1305–1340, 2009.

15



9. IEEE Task Force on Process Mining. Process Mining Manifesto. In BPM 2011
Workshops, volume 99 of LNBIP, pages 169–194. Springer-Verlag, 2011.

10. A.K. Jain, R.P.W. Duin, and J. Mao. Statistical pattern recognition: A review.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.

11. O. Kupferman and M.Y. Vardi. Vacuity Detection in Temporal Model Checking.
Int. Journal on Software Tools for Technology Transfer, pages 224–233, 2003.

12. E. Lamma, P. Mello, F. Riguzzi, and S. Storari. Applying Inductive Logic Pro-
gramming to Process Mining. In ILP, volume 4894, pages 132–146, 2008.

13. D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software behav-
ioral models. In Proc. of ICSE, pages 501–510. IEEE, 2008.

14. F.M. Maggi, J.C. Bose, and W.M.P. van der Aalst. Efficient discovery of under-
standable declarative models from event logs. In Proc. of CAiSE, volume 7328 of
LNCS, pages 270–285. Springer, 2012.

15. F.M. Maggi, R.P.J.C. Bose, and W.M.P. van der Aalst. A knowledge-based inte-
grated approach for discovering and repairing declare maps. In Proc. of CAiSE,
2013. to appear.

16. F.M. Maggi, A.J. Mooij, and W.M.P. van der Aalst. User-guided discovery of
declarative process models. In Proc. of CIDM, pages 192–199. IEEE, 2011.

17. M. Pesic, H. Schonenberg, and W.M.P. van der Aalst. DECLARE: Full Support
for Loosely-Structured Processes. In Proc. of EDOC, pages 287–300. IEEE, 2007.

18. M. Pesic and W.M.P. van der Aalst. A Declarative Approach for Flexible Business
Processes Management. In J. Eder and S. Dustdar, editors, Proceedings of the
BPM 2006 Workshops, volume 4103 of LNCS, pages 169–180. Springer, 2006.

19. Maja Pesic. Constraint-Based Workflow Management Systems: Shifting Controls
to Users. PhD thesis, Beta Research School for Operations Management and
Logistics, Eindhoven, 2008.

20. Paul Pichler, Barbara Weber, Stefan Zugal, Jakob Pinggera, Jan Mendling, and
Hajo A. Reijers. Imperative versus declarative process modeling languages: An
empirical investigation. In BPM Workshops, pages 383–394, 2011.

21. A. Rebuge and D.R. Ferreira. Business process analysis in healthcare environments:
A methodology based on process mining. Inf. Syst., 37(2):99–116, 2012.

22. A. Rozinat and W.M.P. van der Aalst. Decision mining in ProM. In Proc. of BPM,
pages 420–425. Springer, 2006.

23. W.M.P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative Workflows:
Balancing Between Flexibility and Support. Computer Science - R&D, pages 99–
113, 2009.

24. S. Zugal, J. Pinggera, and B. Weber. The impact of testcases on the maintainability
of declarative process models. In BMMDS/EMMSAD, pages 163–177, 2011.

16


