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Discovering Data-Aware Mode Switching
Constraints to Monitor Mode Switching Decisions

in Supervisory Control
Mukhtar Hussain, Colin Fidge, Ernest Foo, and Zahra Jadidi

Abstract—In a multimode industrial control system (ICS),
mode switching decisions have to follow standard operating
procedures which are set for the safety of the system based on the
operating limitations of equipment. A rich literature can be found
on monitoring multimode systems. However, that work is mainly
focused on mode identification and monitoring anomalies in the
process running under each mode. Instead, we present a data-
driven method for monitoring the modes’ switching constraints.
This work is based on state-transition matrix and decision-
tree methods to discover data-driven mode switching conditions.
Moreover, our approach is not limited to only threshold based
condition learning. To capture data trajectory based conditions
we adopt a functional data descriptors method. In practical ex-
periments, we showed that our approach can discover anomalous
mode switching decisions which can’t be discovered by previous
multimode process monitoring methods.

Index Terms—industrial control systems, multimode process-
ing, mode switching constraints

I. INTRODUCTION

AN Industrial Control System (ICS) can be described as a
multilayer architecture of cyber and physical components

to automate an industrial process [1]. The automatic control
layer is responsible for the automation of the physical layer
process (e.g., water treatment, or power generation and dis-
tribution) by reading sensors’ data and sending commands to
actuators. Meanwhile, the supervisory control (SC) layer is
responsible for monitoring the ICS’s operation by interacting
with the control layer, i.e., gathering data and switching
into different modes (e.g., start-up, shutdown, fail-safe) [1].
However, mode switching decisions are restricted based on
equipment constraints, or working conditions [2]. For example,
a nuclear power plant can’t be switched directly to refuelling
mode from operation mode, since switching to refuelling mode
must be done through the cold shutdown mode. Moreover,
switching from the power operation mode to either cold
shutdown or the hot shutdown mode is conditional based on
the coolant temperature [3]. Monitoring these mode switching
constraints is essential because human error or a cyber-attack
at the SC layer may switch the system to a constrained mode
which can have serious negative consequences. For instance,
the BlackEnergy malware penetrated into the SC layer of a
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Ukrainian power system and switched it to the shutdown mode
[4].

In this paper, we present a method to discover and monitor
the mode switching conditions at the SC layer of a multimode
system. Over the years, tremendous attention has been paid to
assist plant operators to monitor for any anomalous behaviour
[5]. The anomaly detection methods for multimode systems
can be broadly divided into two categories, data-based and
knowledge-based. Data-based multimode monitoring methods
are mainly concentrated on mode identification or finding
anomalous behaviour in a process which consider the sequence
of mode changes but does not take into consideration the
mode switching constraints [6]. On the other hand building a
model solely on experts’ knowledge is labour intensive, time
consuming, and prone to error [7]. The major bottleneck in
building knowledge based monitoring methods is that experts
don’t explain their approach objectively; instead they provide
a “why a specific decision was right” explanation [7].

Afzal et al. [2] were the first who have considered the
problem of discovering a multimode process model with
mode-reachability constraints and they proposed a method to
incorporate those constraints in discovering a Hidden Markov
Model. Recently, Saez et al. [8] proposed a method to model
multimode processing systems as hybrid automata in which
states represents a mode of operation. Both of the above
mentioned methods consider mode-reachability constraints,
i.e., switching to the refuelling mode is not allowed from the
power operation mode in a nuclear power plant. However,
these methods ignore the external environmental conditions
under which a system can switch to a reachable mode, e.g., the
cold shutdown or the hot shutdown modes are both reachable
via the power operation mode but switching to either mode is
conditioned based on the coolant temperature [3].

Learning mode switching conditions from data is an in-
ductive inference problem, which includes identifying what
decisions have been taken (reachable modes) and what data is
used in making the mode switching decisions. The decision
mining method [9] addresses a similar problem for workflow
management systems. However, it is assumed there that the
data recorded in logs contains complete information about
events/transitions and data attributes which lead to a specific
choice.

Our work applies a decision mining approach [9] for SC
layer process monitoring with the following contributions.
• The first contribution is to annotate the ICS device logs

for decision mining. We employed a functional data
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description (FDD) approach [10] to incorporate a human
factor in decision making based on data trajectories.

• The second contribution is to show how we can iden-
tify anomalies in mode switching decisions using the
discovered model that cannot be discovered by other
approaches.

II. BACKGROUND

This section provides a brief discussion on the selected for-
malism used in this paper and related work. The assumptions
we made in the context of available literature on multimode
process systems are also explained.

A. Modelling Formalism

A modelling formalism can be seen as the semantics of a
system’s operation. ICSs have been commonly modelled using
diverse classes of finite state automata and Petri Nets (PNs)
[11]. The selection of a specific formalism depends on the
application such as simulation or validation and verification
of control logic. For our approach it does not matter funda-
mentally if either a finite state automaton or PN is adopted
because mode logic assumes the system is only in one mode
at a time.

In this paper, we use a Data-interpreted Petri Net (DPN)
formalism which is an extended PN formalism also referred
to as high level PN or predicate/transition PN [12]. A DPN
can be defined as a tuple H = (P, T, F, Y,G), where:
• P = {p1, p2, . . . , p|P |} is a finite set of places;
• T = {t1, t2, . . . , t|T |} is a finite set of transitions;
• F ⊆ (P × T ) ∪ (T × P ) is the mapping describing the

arcs from places to transitions and vice versa;
• Y = {y1, y2, . . . , yk} is a finite set of k state variables

such that y ∈ R;
• G : T → GY is a guard function that assigns a guard
g ∈ GY to each transition t ∈ T .

In our definition of DPN, a guard is g ∈ GY a logical
expression of variables y ∈ Y (e.g., y ≥ 10) such that
assigning values to variables in the expression, the expression
either evaluates to be either true or false. The state of DPN
is reflected by tokens in a place p ∈ P . A token is expressed as
a pair (M,A), where M is a marking function M : P → N for
PN (P, T, F ) which represents the number of tokens residing
inside each place and A represent values assigned the state
variables Y . As stated earlier, that a system can only be in
one mode at a time. Therefore, the PN structure is 1-bounded
or safe, i.e., M : P → {0, 1}. Moreover, a transition firing
is valid if the transition’s input place contains a token, and
the assigned guard G(t) evaluates true based on the values
assigned (A) to variables Y .

The DPN structure discussed above does not contain greater
expressive power over PNs [11]. The reason for the selection
of this extended PN formalism (DPN) is it provides mod-
elling convenience such that the underlying place/transition net
(P, T, F ) can capture the mode reachability constraints such
that each state represents a mode. Meanwhile, a guard G(t)
adds an extra condition for firing a transition t ∈ T which

captures the mode switching constraints based on continuous
state variables. Moreover, existing methods from the system
identification field can be employed for model discovery.

B. Assumptions

Based on the processing type, multimode systems can be
described as either continuous processing or batch processing
[6]. The SC process in continuous processing systems such
as a nuclear power plant can be described as a sequence of
transitions from one mode to another. There is no transition
back to the same mode, i.e., a process under the same mode is
not repeated again until the whole process is restarted. On the
other hand, states of a process executing under the same mode
can be repeated in a batch processing system. For example,
in an automated paint shop multiple modes are defined for
different paint applications, such as base-coat paint and clear-
coat paint modes. A painting process under the same painting
mode can be repeated for multiple batches.

Batch information is recorded with the logs for quality
control purposes [13]. Mode information can also be recorded
with the ICS device log using an appropriate data acquisition
method [14]. Moreover, extensive research in the literature
can be found on mode identification [6]. Therefore, to limit
the scope of this paper to discover conditions for switching
modes in multimode systems (continuous processing or batch
processing) we assumed that the mode and batch information
is available within the recorded logs as shown in Table I.

III. MODEL DISCOVERY METHOD

This section explains our approach for discovering mode
switching constraints in an ICS. First, basic discrete struc-
ture notations are provided. Then we explain our ICS log
processing method such that the annotated logs can be used
for decision mining. Finally, the method for mining mode
switching constraints is explained.

A. Preliminaries

In this section, formal notations are provided that are used
to explain our device log annotation method for discovering a
model of mode switching constraints.

For a set X , Let PX be the powerset of X , i.e., the set
of all the subsets of X . Let H = 〈h1, . . . ,hn〉 be a sequence
of n values. The notation #H denotes the length of sequence
H , function head(H) returns the first element of sequence H ,
tail(H) returns sequence H less its first element, and last(H)
returns the last element of sequence H . The operation S � H
restricts sequence H to those items whose index is in the set
S, where S ∈ P(N\{0}) is a finite, non-empty set of positive
integers. Let 〈〉 and {} represent an empty sequence and an
empty set. Let H1

_ H2 denote concatenation of sequences
H1 and H2. Let A ∪B denote union of sets A and B.

B. Pre-processing

This section explains our method of processing ICS logs
to enable their use for discovering a PN model and its
transition enabling conditions (guards). Let the unprocessed
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TABLE I: A snippet of ICS device logs

Time I1 I2 I3 O1 O2 O3 Batch Mode
8/07/2020 12:01:37 PM 35.405 0.245 0.041 1 0.170 0 0 1
8/07/2020 12:01:38 PM 35.169 0.106 -0.098 1 0.213 0 0 1
8/07/2020 12:01:39 PM 35.294 60.983 34.748 0 0.206 0 1 2
8/07/2020 12:01:40 PM 35.326 60.804 34.644 0 0.192 0 1 2

...
8/07/2020 12:21:37 PM 35.239 66.700 27.770 0 0.000 0 1 2
8/07/2020 12:21:38 PM 35.219 67.025 27.753 0 0.000 0 1 2
8/07/2020 12:21:39 PM 35.070 67.246 27.629 0 0.215 0 2 2
8/07/2020 12:21:40 PM 35.080 67.376 27.637 0 0.202 0 2 2

...
8/07/2020 1:44:12 PM 35.140 61.673 13.823 0 0.203 0 6 2
8/07/2020 1:44:13 PM 34.967 61.493 13.679 0 0.207 0 6 2
8/07/2020 1:44:14 PM 35.091 78.303 13.783 0 0.216 0 6 3
8/07/2020 1:44:15 PM 35.120 76.346 13.807 0 0.212 0 6 3

...
8/07/2020 1:44:31 PM 35.035 58.864 13.889 0 0.000 0 6 3
8/07/2020 1:44:32 PM 35.223 57.490 13.626 0 0.000 0 6 2
8/07/2020 1:44:33 PM 35.027 62.449 13.679 0 0.000 0 6 2

...
8/07/2020 4:32:18 PM 21.784 61.720 26.800 0 0.283 0 14 2
8/07/2020 4:32:19 PM 21.900 61.629 26.788 0 0.271 0 14 2
8/07/2020 4:32:20 PM 21.899 61.433 26.777 0 0.300 0 14 3
8/07/2020 4:32:21 PM 21.793 61.370 26.759 0 0.269 0 14 3

...
8/07/2020 4:35:11 PM 21.621 67.445 26.766 0 0.305 0 14 3
8/07/2020 4:35:12 PM 21.585 67.625 26.499 0 0.293 0 14 2
8/07/2020 4:35:13 PM 21.707 67.931 26.347 0 0.311 0 14 2

...
8/07/2020 6:21:37 PM 10.676 65.228 21.280 0 0.301 0 20 2
8/07/2020 6:21:38 PM 10.549 65.360 21.174 0 0.340 0 20 2
8/07/2020 6:21:39 PM 10.511 0.836 -0.126 0 0.323 1 21 4
8/07/2020 6:21:40 PM 10.719 0.887 0.031 0 0.353 1 21 4

device log as shown in Table I be a series of finite sequences
L = 〈D1, . . . , Dm〉, where each Di | 1 ≤ i ≤ m equal
〈d1, . . . , dn〉 represents a sequence (column in Table I) of n
values. Let the first sequence D1 represent timestamps for each
record, then each sequence D2, . . . , Dm−2 represents an ICS
physical device’s (sensors and actuators) status records, Dm−1
represents the batch/process instance information, and Dm

represents mode information. Let us suppose that sequences
D2, . . . , Dl+1 represent the status of input devices (sensors)
and Dl+2, . . . , Dm−2 represent the status of output devices
(actuators). In the following paragraphs we explain two custom
functions which are used in Algorithm 1 for ICS device logs
annotation.

1) Extract Mode Transition Information): The device logs
as shown in Table I contains system’s mode information at any

time instance. The first step is to identify the change in mode
or batch process from the given sequences in the device logs,
we define a custom function F(V, κ, i) as per Definition 1
below. Here V denote a sequence of discrete numbered data
and κ denote the initial information. This function returns the
set of indices i where a change of value occurred in V .

The second step is to extract mode transition event from
the ‘mode’ sequence of device logs (Table I) as event pair
as shown in Table. II such that its first element of a pair
represents previous mode and the second element of pair
represents current mode at an index i. A formal procedure
for the extraction of mode transition information is provided
in Algorithm 1.

2) Extract Data Attributes: Decision at the SC of an ICS
varies, it can be based on the certain threshold value or trend

F(V, κ, i) def
=


{} if V = 〈〉
F(tail(V ), head(V ), i+ 1) if κ = head(V )

{i} ∪ F(tail(V ), head(V ), i+ 1) otherwise
(1)

FDD(V,U, δ)
def
=


〈〉 if U = 〈〉
〈NAN〉 _ FDD(V, tail(U), δ) if head(U)− δ ≤ 0

〈(V (head(U))− V (head(U)− δ))/δ〉 _ FDD(V, tail(U), δ) otherwise
(2)
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TABLE II: An example event log derived from ICS logs for discovering mode switching conditions

Time Events Data Attributes
I1 I2 I3 O1 O2 O3 FDD I1 FDD I2 FDD I3

8/07/2020 12:01:39 PM (1,2) 35.294 60.983 34.748 0 0.206 0 0.001 0.000 -0.260
8/07/2020 12:21:39 PM (2,2) 35.070 67.246 27.629 0 0.215 0 -0.005 0.002 -0.270

...
8/07/2020 1:44:14 PM (2,3) 35.091 78.303 13.783 0 0.216 0 -0.017 1.623 -0.278
8/07/2020 1:44:32 PM (3,2) 35.223 57.490 13.626 0 0.000 0 0.021 -1.283 -0.279

...
8/07/2020 4:32:20 PM (2,3) 21.899 61.433 26.777 0 0.300 0 0.012 0.001 -0.131
8/07/2020 4:35:12 PM (3,2) 21.585 67.625 26.499 0 0.293 0 0.018 0.000 -0.254

...
8/07/2020 6:21:39 PM (2,4) 10.511 0.836 -0.126 0 0.323 1 -0.019 -6.525 -0.269

in sensors’ data [15]. ICS devices’ status at the mode transition
instances are only useful to mine threshold based conditions
using decision mining approach. Therefore, a FDD approach
[10] is used to capture the data trajectory or trend as a discrete
observation for decision mining. The selection of FDD method
is a challenge because of the presence of noise in the data.
The aim is to neither overfit nor underfit the data for the
classification method. We use the ‘slope’ FDD method in our
approach. However, another challenge is to estimate the time
taken by an operator to decide on an action which can vary
from a few seconds to a few minutes [16]. Thus, the related
information can be extracted in the data recorded few seconds
prior to decision making moment. We selected a 10 seconds
interval of information prior to each mode transition instance
in the device log as the window for processing.

Let V be a sensor’s data sequence from the device logs
and U denote a sequence of mode transition indices (from
Function 1). We define a custom function FDD(V,U, δ) as per
Definition 2 on page 3, which returns a sequence of sensor’s
FDD values prior to mode transition instances. Here, δ is the
window size (time duration × sampling rate) for processing
information prior to the mode transition.

Algorithm 1 (Transform Device Logs into Event Logs):
In Algorithm 1, variable E and R is initialised on line 1
to contain sequence of events and series of processed data
attribute sequences. The processing starts from line 2 by
getting the size of device logs. The ‘Mode’ and ‘Batch’
sequences are extracted from device logs on lines 3 and
4 respectively. On line 5, Definition 1 is applied on the
‘Mode’ sequence V1 to extract set of indices U1 that represents
changes in mode, for instance, row numbers 3, 11, and 14 in
Table I (see page 3). Similarly, on line 6, a set of indices U2

that represents processing of new batch process is extracted
using Definition 1, for instance, row numbers 3 and 7 in
Table I. On line 7, a set of indices U is formed which is
the union of U1 and U2, which combines indices represents
change in batch and mode such that no index is repeated
(U = {3, 7, 11, 14, . . .}).

On line 9, a tuple of mode transition events is formed such
that its first element represents the previous mode and the
second element represents the current mode at index u ∈ U .
For example, event (1,2) in Table II refers mode change at row
number 3 of the ‘Mode’ sequence in Table I. This procedure is

repeated for all indices of set U using a ‘for’ loop on line 8 of
Algorithm 1 to make a sequence of events as shown in Table II.
On line 12, a device’s data record at the mode transition
event is extracted by restricting the data sequence Di from
device logs to those items whose indices are in U and a series
of sequences is formed by concatenating the sequences. The
process in line 12 is repeated for each device using a ‘for’ loop
in line 11. On line 15, FDD are evaluated using Definition 2.
The process in line 15 is repeated for each sensor/input device
using a ‘for’ loop in line 14 (columns 2 to 4 in Table. I). On
line 17, a ‘Time’ sequence for the event logs is extracted by
restricting the ‘Time’ sequence from device logs to those items
whose indices are in U . Finally, an event log LE as shown in
Table II is formed in line 18 by concatenating the extracted
information, i.e., the timestamp sequence, events sequence and
series of data attributes.

Algorithm 1: Processing Device Logs for PN and
Guards Discovery
Input: Device Logs L
Output: Event Logs LE

// initialisation
1 E,R← 〈〉
// processing

2 m← #L
3 V1 ← L(m)
4 V2 ← L(m− 1)
5 U1 ← F(V1, head(V1), 0)
6 U2 ← F(V2, head(V2), 0)
7 U ← U1 ∪ U2

8 foreach u ∈ U do
9 E← E _ 〈(V1(u− 1), V1(u))〉

10 end
11 foreach Di ∈ L | i ∈ {2, . . . ,m− 2} do
12 R← R _ 〈U � Di〉
13 end
14 foreach Dx ∈ L | x ∈ {2, . . . , k + 1} do
15 R← R _ 〈FDD(Dx, U, δ)〉
16 end
17 T ← U � head(L)
18 LE ← 〈T〉 _ 〈E〉 _ R
19 return(LE)
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In the event log as shown in Table II, the first column
represents a timestamp for each mode transition event in the
second column. The remaining columns represent status of
ICS physical devices at mode transition instances. The first
event (1,2) in Table II refers mode transition observed in
the third and fourth row of Table I. Here columns I1, I2,
and I3 represent the inputs, i.e., sensor readings and columns
O1, O2, and O3 represent outputs from the controller to the
actuators. Columns FDD I1, FDD I2, and FDD I3 represent
sensors’ data trajectories at the mode transition instant. The
data attribute columns of Table II or R can be referred to
as the system’s state variables represented by Y in our DPN
model such that each row of Table II of data attribute columns
represent the values assigned (A) to system’s state variables
at a particular state-transition instance.

Having created the event logs in this way, the next step
is to discover the conditions for switching modes, which is
described in the following section.

C. Model Discovery

This section explains our approach for discovering data-
aware mode switching constraints.

1) Mode Transition Model: The aim of discovering
mode/state transition model is two fold. The first aim is
to capture mode-reachability, i.e., whether a transition from
one mode to another mode is possible or not. The second
aim is to capture mutually exclusive modes, i.e., choices of
transitions from a certain mode to mine data-driven conditions
using decision trees. An existing PN model discovery method
[17] from the system identification field can be adopted to
discover a PN model from the sequence of events derived in
the previous section. In this paper, we use a simple approach
to discover the PN model which is based on a state-transition
matrix [18]. A brief overview of state transition matrix method
is provided as follows.

S =


0 1 0 0
0 1 1 1
0 1 0 0
0 0 0 0

 (3)

A state transition matrix S is an M ×M matrix where M
represents the number of modes. Each element sij of matrix
S can either be 0 or 1. If sij is 0, it represents no transition is
allowed from mode i to mode j and if sij is 1, the transition is
allowed. Let us suppose that a given system has four operating
modes. Based on the recorded behaviour in Table II following
mode transitions are allowed, a) from mode 1 (start-up) to
mode 2 (processing), b) from mode 2 to mode 3 (fail-safe) and
4 (shutdown), c) from mode 3 to mode 2, and d) a transition
back to the same mode is allowed only for mode 2, which
represents that the production process is restarted for a new
batch. The state transition matrix which explains the above
mode transition constraints can be expressed in equation 3,
and a corresponding PN model is shown in Fig. 1.

The algorithm for extracting such a state transition matrix
from event logs (Table II) is provided in Sec. III-C3.

M1 S12 M2 S22

S23

S24

M3

M4

S32

Fig. 1: A Petri Net mode transition model

2) Mode Switching Conditions: Provided the mode-
reachability model (discussed in Sec. III-C1), learn-
ing mode switching conditions is similar to the deci-
sion mining approach [9] discussed in the process min-
ing field. Therefore, we abstracted such a function as
generateTransitionGuards(Mdl,LE) which takes a PN
model and event logs, and returns a guard function G.
Let us assume that the guard function G is an M × M
matix of guards, such that an element G(i, j) (also de-
noted by gij) is a guard for transition sij . We summarise
the guards discovery method performed by the function
generateTransitionGuards in the following paragraphs.

For Mutually Exclusive Transitions: The decision min-
ing approach employs the C4.5 algorithm [19] to discover
conditions for transitions linked to a decision instance in a
PN model. For example, if there is a token in place M2 in
Fig. 1 then any one of the transitions S22, S23 or S24 can fire.
The C4.5 algorithm classifies the categorical response variable
(events) based on the predictor variables (data attributes) as
shown in Fig. 2. A subset of event logs which contains
only required events (S22, S23 and S24) information and
corresponding data attributes is fed to the decision tree algo-
rithm. The discovered guards conditions for each transition are
mutually exclusive, thus only one of the reachable transitions
(S22, S23, and S24) can be fired. This procedure is repeated
for all the decision instances in a PN model in the function
generateTransitionGuards.

S24

O
3
>

0

S23

I 2
>

70

S23

F
D
D

I 3
>

−
0.
2

S22

F
D
D

I
3 ≤

−
0.2

I
2 ≤

70

O
3 ≤

0

Fig. 2: An example of a decision tree for mutually exclusive
transitions
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A decision tree such as shown in Fig. 2 represents the
conditions for a possible outcome, being a disjunction of
the conjunction of expressions in general. The conjunction
of expressions along the path descending from the root to a
leaf node must evaluate to true for an outcome to occur. For
example, all the conditions for the occurrence of transition
S22 must be satisfied, i.e., g22 =⇒ (O3 ≤ 0 ∧ I2 ≤
70 ∧ FDD I3 ≤ −0.2). A disjunction of expressions is
possible for an outcome on the alternative path. For example,
switching to mode 3, i.e., firing transition S23 is possible if
conditions on either path are satisfied which is disjunction
of the conjunction of expressions, i.e., g23 =⇒ (O3 ≤
0 ∧ (I2 > 70 ∨ (I2 ≤ 70 ∧ FDD I3 > −0.2))). Whereas,
the condition for the occurrence of transition S24 is simple,
i.e., g24 =⇒ (O3 > 0).

For Independent Transitions: The decision tree algorithm
is only useful for mining conditions of mutually exclusive
transitions. Hence, the guard condition for a valid independent
transition is set to be true. For example, if there is a token
in place M1 in Fig. 1 then only S12 can be fired. Therefore,
enabling condition of transition S12 is set to be true, i.e.,
g12 =⇒ true

Our algorithm for discovering a model of modes’ switching
conditions is given as follows.

Algorithm 2: Formulation of mode switching condi-
tions
Input: Event Logs (LE)
Output: Petri Net Model (Mdl), Guard Function (G)
// initialisation

1 S ← 0M×M
// processing

2 L← LE(2)

3 L̃← unique(L)

4 foreach l ∈ L̃ do
5 S(l)← 1
6 end
7 Mdl← buildPNmodel(S)
8 G← generateTransitionGuards(Mdl,LE)
9 return(Mdl, G)

3) Algorithm 2 (Discovering Mode Switching Constrains):
In Algorithm 2, an M×M matrix is generated whose elements
all contain ‘0’ on line 1. Here M represents the number
of modes. On line 2, the event/mode transition information
sequence from the series of event logs is extracted, i.e., column
2 of Table. II. Each pair in the mode transition sequence
represents the initial and subsequent mode. On line 3, the
set of unique pairs are extracted. This information is used
to generate a state transition matrix from line 4 to 6. For
example, the first pair (1,2) of event sequence in Table II
represents the transition from mode 1 to mode 2. The element
S(1, 2) (also represented as s12) of the state transition matrix
S that represents a transition from mode 1 to mode 2 is set
as 1. This procedure on line 5 is repeated for each element of
the event sequence using a ‘for’ loop in line 4. On line 7, a
corresponding PN model is generated and passed to function

generateTransitionGuards(Mdl,LE) with event logs to
discover guard conditions on line 8.

IV. MONITORING MODE SWITCHING DECISIONS

In this section we present our method for identifying vio-
lations in mode switching decisions as an illustration of one
possible application of the discovered models.

Let an event log as shown in Table II be a series of finite
sequences LE = 〈F1, . . . , Fp〉, where Fi | 1 ≤ i ≤ p
equal 〈f1, . . . , fq〉, represents a sequence (column) of q values.
The first sequence F1 represents the timestamp for each
event (mode transition) in the second sequence F2, then the
remaining sequences F3, . . . , Fp represent data attributes. Let
j, where 1 ≤ j ≤ q, be the index of a specific value in each
column Fi of an event log, such that the corresponding value
is denoted Fij . Then we define the sequence all such values
from the event logs as a “row” which represents the value of
system’s state variables at that transition’s instant:

Rj = 〈v : Fij |3 ≤ i ≤ p〉.

Algorithm 3: Conformance analysis to identify mode
switching violations
Input: Event Logs (LE), Transition Matrix (S),

Guards Function (G)
Output: Violations C
// initialisation

1 C ← 〈〉
// processing

2 E ← LE(2)
3 foreach Rj ∈ LE | j ∈ {1, . . . ,#E} do
4 if S(E(j)) = 0 then
5 C ← C _ 〈2〉
6 else
7 if gE(j)(Rj) then
8 C ← C _ 〈0〉
9 else

10 C ← C _ 〈1〉
11 end
12 end
13 end

Algorithm 3 (Conformance Analysis): Algorithm 3 de-
scribes our procedure for monitoring mode switching condi-
tions by labelling them as one of the following cases. Label
‘0’ represents that a transition is valid based on the discovered
PN model and the guard for the transition is also evaluated
to be true, ‘1’ represents that a transition from one mode to
another mode is possible based on the PN model, however, the
guard condition is evaluated to false, and ‘2’ represents that
transition is not allowed from previous mode to new mode.

Algorithm 3 takes ICS logs processed using Algorithm 1,
and the transition matrix and the guards discovered in Algo-
rithm 2 as the basis for deciding correctness of new logs. On
line 1, a labelling sequence C is initialised to monitor the
violations. The procedure starts by extracting the information
of mode switching events in line 2. In line 4, it is evaluated if



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3120020, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTION ON INDUSTRIAL INFORMATICS 7

C
o

n
ve

yo
r

MV101

MV102

MV302

MV201

T101

P202

P203P204

LIT101

LIT102

PIT101

PIT201

P101

Entry

Reject

PS302

CS301

Exit

MV303 LG301

LG302

Sensors & Actuators
P – Pump 
MV – Motorised Valve
LIT – Level Indicator
PIT – Pressure Indicator
PS – Proximity Sensor
CS – Colour Sensor
LG – Lever Gate

T101 & T102 Paint Reservoir Tank
C101 Air Chamber

ReturnReturn

Reservoir Tank

Reservoir Tank

Air Chamber

T102

C101

Modes
Startup/Shutdown
Processing Mode 1 or Mode 2
Halt before mode switch and empty 
the tank 

Automated Paint Shop 

MV202

Pressure Relief Valve

Pressure Regulator

PS301

P201

LIT201

Paint Booth

Oven

H/C

Fig. 3: Automated Paint Shop Schematic Diagram

the transition to that mode is allowed using an ‘if’ condition
based on the mode transition matrix. If the transition is
allowed, then on line 7 the guard expression is evaluated
for that mode transition using the processed data against that
transition in the event log. In the case of no violation line 8
will be executed, otherwise line 10 will be executed to report
a violation of the guard expression. This process is repeated
for all the mode transitions using the ‘for’ loop in line 3. The
result is a list of “violations” C noting transitions recorded in
the event log which occurred when the corresponding Boolean
guard in our discovered model was false. Although such
transitions would be considered acceptable in a simple model
reachable model [2], [8], our analysis is thus shows when such
transitions have occurred with data values outside their usual
ranges.

V. CASE STUDY

This section shows how our method can be used to create
DPN model of an ICS. The industrial process considered for
evaluation is explained first. The discovered model is then
evaluated based on its ability to identify anomalous behaviour.

A. Experimental Setup

Our case study is based on an automated paint shop (APS).
We simulated the functionality of the paint shop based on the
features outlined by Hlupic and Paul [20] in SIMULINK using
the Simscape tool. An APS is a part of many manufacturing
industries, such as, the automotive and furniture industries.
Components for each product are produced in flexible manu-
facturing cells, and after paint coating are assembled to create
a final product.

The overall schematic of the system is shown in Fig. 3. A
large overhead conveyor chain is used to transport parts to
different processing areas. The first stage is the entry where
parts are loaded to be painted. Parts are first loaded on the

conveyor belt which leads them to the paint booth. The paint-
coated parts are then transported to the oven, where they are
baked in order to preserve the coating. After this, the parts go
to the unloading area, where they are first checked for quality
control and sorted accordingly.

There are two paint reservoir tanks T101 and T102 that
contain white and black coloured paint. The air chamber C101
holds compressed air to atomise the paint. The paint booth
has a small container T201 to hold paint for processing. A
pressure regulator valve maintains the pressure in the pipeline
for smooth paint distribution. A component can be either
painted white or black. Two processing modes M3 and M4 are
defined based on the colour to be painted. Before switching
from one processing mode to another processing mode, or
the ‘off’ mode M1, the system undergoes temporary halt or
emergency mode M5 for cleaning paint residue in the spraying
gun. Production is also halted if the air pressure in the pipeline
increases above the normal limit or the spraying nozzle is
broken. A ‘standby’ mode M2 represents that sensors are
calibrated and processing can be started.

For simulation it is assumed that the company produces 20
components in a day. Normally, the first 10 components are
painted white and the other 10 are painted black. However, all
the produced components can be painted either white or black
based on demand. Each component is treated as a different
batch and the information is logged in a variable named NoC
(number of component). An operator can override the normal
routine and this information is recorded in a variable named
‘override’ in the logs. The simulation starts with the system
in off mode M1. It takes 50 seconds to transition from off
mode to standby mode. A transition from standby mode M2

to one of the processing modes, i.e., M3 and M4, is allowed.
In normal processing the first batch of components must be
processed under mode M3. However, transitions from mode
M3 to M4 and vice versa are not allowed because the system
can’t change paint colour without first cleaning the spraying
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nozzle. Therefore, a transition from M3 to M4 is possible
through temporary halt mode M5 to clean any residue paint
in the spray gun or tank T201. M5 is a fail-safe mode to halt
production if anything goes wrong. For simulation we set two
conditions to switch from production modes M3 and M4 to
fail-safe mode. The first condition was if the pressure in the
pipelines (PIT201) is higher than a certain range in which
case it should be switched to the emergency mode and halt
the production until the pressure is released using a pressure
relief valve. The second condition for switching to halt mode
was set for if the nozzle of the spraying gun is broken, which
is based on the rate of flow out from tank T201 based on the
trend in the level sensor’s reading, i.e., FDD LIT201.

B. Dataset

The data recorded from the SIMULINK model of the APS
imitates device logs recorded in a real ICS. The sampling rate
for recording the dataset was set to be 1 sample/sec, a common
criterion used in most of the publicly available datasets [21].
The physical system consists of sensors and actuators as shown
in Fig. 3. Here sensors “LIT”, “PIT”, “PS”, and “CS” represent
“level indicator”, “pressure indicator”, “proximity sensor”, and
“colour sensor” respectively. Moreover, actuators “MV”, “P”
and “LG” represent “motorised valve”, “pump”, and “lever
gate” respectively. We generated two dataset files from the
SIMULINK model. The first file contains the normal be-
haviour of the system and the second file contains anomalous
mode switching.

In the normal training dataset file simulation a separate
simulation was conducted 30 times. In these 30 simulations,
10 instances included both processing modes M3 and M4

and 20 instances included for only one processing mode, half
for each mode M3 and M4. Moreover, the probability of the
spraying gun nozzle being broken and pressure PIT201 in the
pipes exceeding the set limit during a simulation process was
derived from a Beroulli distribution such that the probability
was set to be ‘0.5’. On the other hand, six anomalous mode
switching instances were recorded during the simulation of the
anomalous (test) dataset. The detail of simulated anomalous
behaviours at the SC layer is provided in Table III.

TABLE III: Description of anomalous behaviours simulated

No. Anomalous Decision Behaviour
1. Switch the system from mode M3 to M4.
2. Switch the system from mode M3 to M2.
3. Turning off the system (switch to mode M1 from M5) before

processing all the components, i.e., (NoC=15).
4. Turning off the system (switch to mode M1 from M5) without

emptying the paint tank T201, i.e., LIT201≥2.
5. Switching to emergency mode M5 from M4 under normal

conditions, i.e., PIT201≤60 and FDD LIT201≥-0.2
6. Keep processing in M1 with a broken paint gun nozzle.

C. Model of Expected Behaviour

We developed MATLAB scripts to implement the data
processing, model generation, and conformance analysis, i.e.,
Algorithms 1, 2, and 3. Both dataset files (normal and anoma-
lous) were processed using the same Algorithm 1. The mode

switching constraints model was discovered using annotated
normal logs which was then used for conformance analysis
with the processed anomalous logs. The model discovered
from the logs is shown in Fig. 4.

For guard discovery, to avoid overfitting and underfitting
the model, the tuning parameters of the C4.5 algorithm in
the decision mining phase were set as follows. Minimum
instances per leaf for a node split were set to be 4 because
any transition from one mode to another in our dataset was
recorded at least times 10 times. The confidence level was set
to be 95%. Moreover, the significance of the predictor variable
or data sequence were set as follows. The most significant
variables were set to be the inputs to automated control layer,
i.e., sensors’ readings from the plant and FDD of input data,
and the least significant variables were set to be the inputs
to the actuators. This was done to reflect the assumption that
mode changes in an ICS are primarily triggered by operator
actions based on monitoring sensors and production plan [5].
The selection of above mentioned parameters was based on
the theoretical construct of estimating satisfactory accuracy
in the presence of noise as discussed by Breiman et al. [22,
Chapter 3].
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Fig. 4: Discovered DPN mode switching model

D. Conformance Checking Results

We performed conformance analysis using Algorithm 3 to
identify which mode switching decision in new logs doesn’t
align with the discovered model (shown in Fig. 4). Based on
the description of anomalous behaviour provided in Table III,
first and second mode switching decisions were found to
violate the mode-reachability constraints, i.e., transition S34

from mode M3 to mode M4 transition S32 from mode M3

to mode M2. Both transition were invalidated based on the
place/transition net system of the discovered DPN model as
shown in Fig. 4.

The anomalous decision numbers 3, 5, and 6 were identified
as anomalous based on the guard conditions for the transitions.
Anomalous decision number 4 remained unidentified by our
discovered model because accurate guard conditions were not
discovered for the transition S51. Decision trees extract the
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TABLE IV: Designed vs Discovered Mode Transition Conditions

Transitions Guard Conditions
Designed Discovered

S12 – true

S23 Override = 0 ∧ NoC ≤ 20 Override = 0

S24 Override = 1 ∧ NoC ≤ 20 Override = 1

S33 PIT201 ≤ 70 ∧ FDD LIT201 > −0.2 ∧ ((NoC ≤ 10∧ PIT201 ≤ 66.0100 ∧ FDD LIT > −0.3181 ∧ ((NoC ≤ 10
Override = 0) ∨ (NoC > 10 ∧ NoC ≤ 20 ∧ Override = 1)) ∧Override = 0) ∨ (NoC > 10 ∧ NoC ≤ 20 ∧ Override = 1))

S35 PIT201 > 70 ∨ FDD LIT201 ≤ −0.2 ∨ (NoC > 10 PIT201 > 66.0100 ∨ (PIT201 ≤ 66.0100 ∧ FDD LIT201 ≤ −0.3181)
∧Override = 0) ∨ (NoC > 20 ∧ Override = 1)) ∨((PIT201 ≤ 66.0100 ∧ FDD LIT201 > −0.3181)∧

((NoC > 10 ∧ Override = 0) ∨ (NoC > 20 ∧ Override = 1)))

S44 PIT201 ≤ 70 ∧ FDD LIT > −0.2((NoC ≤ 10∧ PIT201 ≤ 67.1606 ∧ FDD LIT201 > −0.3181 ∧ ((NoC ≤ 10∧
Override = 1) ∨ (NoC ≥ 10 ∧ NoC ≤ 20 ∧ Override = 0)) Override = 1) ∨ (NoC > 10 ∧ NoC ≤ 20 ∧ Override = 0))

S45 PIT201 > 70 ∨ FDD LIT201 ≤ −0.2 ∨ NoC > 20 PIT201 > 67.1606 ∨ (PIT201 ≤ 67.1606 ∧ FDD LIT201 ≤ −0.3181)
∨(PIT201 ≤ 67.1606 ∧ FDD LIT201 > −0.3181 ∧ NoC > 20)

S51 NoC > 21 ∧ PIT101 < 0.5 ∧ LIT201 < 0.5 NoC > 20

S53 (PIT201 < 70 ∧ Override = 0 ∧ NoC ≤ 10) NoC ≤ 20 ∧ ((Override = 0 ∧ NoC ≤ 10)
∨(Override = 1 ∧ NoC > 10 ∧ NoC ≤ 20) ∨(Override = 1 ∧ NoC > 10))

S54 (PIT201 < 70 ∧ Override = 1 ∧ NoC ≤ 10) NoC ≤ 20 ∧ ((Override = 1 ∧ NoC ≤ 10)
∨(Override = 0 ∧ NoC > 10 ∧ NoC ≤ 20) ∨Override = 0 ∧ NoC > 10))

conditions as a “disjunction of conjunctions of expressions”.
The limitations of using decision trees for discovering the data-
driven conditions is that the approach is not useful for learning
conjunctions of multiple expressions. On the other hand other
classification methods such as k-nearest neighbour can’t be
used to infer the data-driven rules. That is why anomalous
decision number 4 remained unidentified. This limitation is
inherited to our work with the use of decision trees which we
acknowledge.

Multimode process monitoring with mode-reachability con-
straints method [2] can detect only anomalous decisions num-
bers 1 and 2. On the other hand, dynamic principal component
analysis-based multimode process monitoring method [6] was
unable to detect any anomalous mode switching conditions.

E. Discussion

This section provides a brief discussion on the precision of
our discovered models. The precision of our devised method
of discovering mode switching constraints is provided based
on a comparison with the designed system which serves as an
oracle. The mode reachability constraints (i.e., transition from
one mode to another) were discovered accurately (as designed)
by the state transition matrix approach as represented by
the place/transition net of DPN model shown in Fig. 4.
A comparison of the designed and discovered guards, i.e.,
transition enabling conditions is provided in Table IV.

The first transition S12 shows the system is turned on.
There was no condition set for this transition. On the other
hand, it can be observed for transitions S23, S24, and S51 that
only one condition expression is discovered. This is due to
the limitation of decision tree algorithms. The decision tree
algorithm populates the tree from the root to the leaf node
as a disjunction of the conjunction of expressions. Therefore,
only one conjunct can be discovered from the data if there is
a conjunction of two or more expressions.

Another noticeable difference can be observed in the de-
signed versus discovered guards of transitions S53 and S54.
The designed guard include the condition to make sure the

pressure in the pipelines (PIT201) is released and now in
a allowed range before switching to operating modes M3

or M4. However, this condition (PIT201 < 70) was not
discovered by our approach. The reason being that a decision
tree algorithm splits a continuous variable’s range into disjoint
subsets based on the discrete outcomes, e.g., in Fig. 2 where
S24 occurs when O3> 0 and other outcomes occur (S23 and
S22) when O3≤0. However, no disjoint subsets identified in
the recorded values of PIT201 based on the outcomes (S51,
S53, and S54) because all three transitions S51, S53, and S54

occurred for PIT201 < 70. Our approach inherits the above
mentioned limitations from the decision tree algorithms which
we acknowledge.

Other differences in the discovered versus designed guards
are of the threshold values. For instance, one of the conditions
for transition S35 from mode M3 to M5 was set in the actual
system to be if the pressure in the pipeline increases above
a certain threshold, i.e., PIT201 > 70. However, the guard
for transition S35 was discovered to be PIT201> 66.0100 as
shown in Table IV. As discussed earlier, the discovery methods
are unbiased of any perception. Thus, the discovered rules
only reflect what values are recorded in the dataset used to
build the model. We found that this difference was caused by
sensor noise and the values being logged in the dataset at a
rate slower than the conditions evaluated by the controller so
that the values in the log were behind those used to make the
decisions. This difference could be minimised by logging ICS
data at a higher sampling rate.

VI. CONCLUSION

In this paper we have presented a method to automatically
monitor the modes switching conditions at the SC layer
process in ICSs. We showed that our approach is able to
discover condition rules from the logs generated during a
system’s operation and to use these for checking the validation
of mode switching transitions taken in subsequent executions.
The aim of our approach is that the discovered model for mode
switching conditions is not biased by an expert’s perception but
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is extracted from actual observed behaviours. We have showed
that our approach can discover mode switching violations
which can’t be discovered by previously proposed multimode
process monitoring methods. However, just like machine learn-
ing algorithms, the accuracy of the models produced using our
approach depends on the quality of the available dataset.
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