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Abstract. Algorithmic mutual information is a central concept in algorithmic information theory and may 
be measured as the difference between independent and joint minimal encoding lengths of objects; it is also a 
central concept in Chaitin's fascinating mathematical definition of life. We explore applicability of algorithmic 
mutual information as a tool for discovering dependencies in biology. In order to determine significance of 
discovered dependencies, we extend the newly proposed algorithmic significance method. The main theorem of 
the extended method states that d bits of algorithmic mutual information imply dependency at the significance 
level 2 -d+°(1)  . We apply a heuristic version of the method to one of the main problems in DNA and protein 
sequence comparisons: the problem of deciding whether observed similarity between sequences should be 
explained by their relatedness or by the mere presence of some shared internal structure, e.g., shared internal 
repetitive patterns. We take advantage of the fact that mutual information factors out sequence similarity that is 
due to shared internal structure and thus enables discovery of truly related sequences. In addition to providing 
a general framework for sequence comparisons, we also propose an efficient way to compare sequences based 
on their subword composition that does not require any a priori assumptions about k-triple length. 

Keywords: Minimal length encoding, DNA sequence analysis, Machine discovery, Algorithmic mutual infor- 
mation, Algorithmic significance 

1. In troduc t ion  

Algor i thmic  mutual  informat ion  is a central  concept  in Chai t in ' s  fascinat ing mathemat ica l  

definit ion of  life (Chaitin, 1979). The  defini t ion indicates that this abstract concept  

f rom algor i thmic informat ion theory (Chaitin, 1987b; Li  & Vit~inyi, 1993) captures the 

deepest  propert ies of  the structure o f  b io logica l  knowledge.  In this paper  we  explore  

applicabil i ty of  a lgor i thmic mutual  informat ion as a tool for d iscovery  in biology. In 

order  to de termine  s ignif icance o f  a lgor i thmic  mutual  information,  we extend the newly  

proposed a lgor i thmic s ignif icance method.  The  main  theorem of  the extended method  

states that d bits of  a lgor i thmic  mutual  informat ion imply dependence  at the s ignif icance 

level  2 - a + ° ( 1 ) .  We apply the me thod  to one o f  the main problems in D N A  and protein 

sequence comparisons:  the p rob lem of  dec id ing  whether  observed similar i ty be tween  

sequences  should be expla ined by their  relatedness or by the mere  presence  o f  some  

shared internal structure, e.g., shared internal repet i t ive  patterns. In addition, we employ  
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Chaitin's mathematical definition of life to demonstrate that the same method can be 
applied to discover large-scale dependencies that are characteristic for living systems. 

It is becoming increasingly apparent that many DNA sequences exhibit internal struc- 
ture: either a simple bias in sequence composition, or repetitions of certain words within 
the sequence. (While in this paper we focus on DNA sequences, this statement holds for 
amino acid sequences of proteins as well.) A common internal structure may cause two 
sequences to appear similar even though they are not related: for example, two DNA 
sequences that contain many repetitions of a tetramer T C A G  may appear similar, even 
though independent multiplication of the tetramer may be a preferred explanation for 
their similarity. 

To avoid the spurious similarities, "masking" procedures are proposed (Claverie & 
States, 1993; Wootton & Federhen, 1993; Altschul, Boguski, Gish, & Wootton, 1994). 
These procedures simply eliminate sequences of lower complexity from comparisons. 
The main drawback of these methods is that they cannot discover related sequences 
of lower complexity, even though the sequences themselves frequently carry enough 
information about their relatedness. 

The problem can clearly be phrased in terms of the parsimony (Occam's razor) prin- 
ciple: is it more parsimonious to explain similarity of two sequences by postulating 
relatedness or independence? To formulate the question more precisely, we measure 
parsimony of the two competing hypotheses in terms of encoding lengths. We define 
two sequences, one target t and the other source s. Let I(t)  denote the number of bits 
needed to encode t by taking advantage of its internal structure (as in Milosavljevid & 
Jurka, 1993a) and let I(tls) be the number of bits needed to encode t relative to s by 
taking advantage of their mutual similarity (as in Milosavljevid, 1993). The difference 
I ( t ;  s )  = I ( t )  - I(tls) between the first and the second encoding length is an approxi- 
mation of the algorithmic mutual information between the two sequences. Any internal 
structure would lead to the decrease of I(t), and, if the structure is also present in s, 
to the decrease of I(t ls  ) as well. Thus, any shared internal structure would not affect 
I(t; s) and its contribution to the similarity between the sequences would be factored 
out. In addition to this desirable property, we will show that d bits of mutual information 
imply dependency between individual objects at the significance level of 2 -a+°O).  This 
general method of proving dependencies represents an extension of the recently proposed 
algorithmic significance method (Milosavljevid & Jurka, 1993a). 

In the following we present in parallel both the general method and its practical appli- 
cation to DNA sequence comparisons. The practical application will be used both as a 
motivation and as a test-case for the general method. We start with an encoding method 
for DNA sequences. 

2. Encoding Length and Similarity 

In this section we review methods for concisely encoding sequences by taking advantage 
of repeated subwords. A target sequence t can be encoded in I(tls) bits by replac- 
ing some words in it by pointers to the occurrences of the same words in the source 
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sequence s. This is a standard technique in data compression (Storer, 1988). Consider 
an example where the target sequence is 

GATTACCGATGAGCTAAT 

and the source sequence is 

ATTACATGAGCATAAT. 

The occurrences of  some words in the target may be replaced by pointers indicating the 
beginning and the length of the occurrences of the same words in the source. In the 
following, a pointer is denoted by a pair of integers in parentheses, the first indicating 
the position of occurrence in the source and the second the length of the common word; 
for example, 

G(I,4)CCG(6,6) (13,4). 

One can think of the encoded sequence as being parsed into words that are replaced by 
pointers and into the letters that do not belong to such words. One may then represent 
the encoding of  a sequence by inserting dashes to indicate the parsing; for example, 

G-ATTA - C - C- G- ATGAGC - TAAT. 

To calculate the exact number of  bits needed to encode letters and pointers, we assume 
that the encoding of a sequence consists of units, each of which corresponds either to a 
letter or to a pointer. Every unit contains a (log 5)-bit field that either indicates a letter 
or announces a pointer (throughout the paper, logarithms are base 2). A unit representing 
a pointer contains two additional fields with positive integers indicating the position and 
length of a word. These two integers do not exceed n, the length of  the source sequence. 
Thus, a unit can be encoded in log 5 bits in case of a letter or in log 5 + 2 log n bits in 
case of a pointer. 

If it takes more bits to encode a pointer then to encode the word letter by letter, then 
it does not pay to use the pointer. Thus, the encoding length of  a pointer determines the 
minimum length of common words replaced by pointers. In order to take advantage of 
shorter common words, we must encode the pointers more concisely. 

Pointers can be encoded more concisely under two plausible assumptions. The first 
assumption is that the common words occur in similar order in both the target and in 
the source, in which case the position of a common word in the source can be indicated 
relative to the previous common word; this relative distance may fall into a smaller 
range than the absolute position and thus it may be represented in fewer bits. The 
second assumption is that the lengths of the common words fall into a smaller range. 
Under these two assumptions, one may encode a pointer in much less than log 5 + 2  log n 
bits. 

If a word to be replaced by a pointer occurs more than once in the source, then the 
information about the particular occurrence contained in the pointer may be more than is 
necessary. The pointer could specify only the set of  occurrences and not any particular 
occurrence, and thus the pointer itself would require fewer bits. 
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So far we have discussed only encoding of t relative to s and the number of bits 
[(t[s). A sequence t can be similarly self-encoded in I( t)  bits by replacing a repeated 
occurrence of a word by a pointer to its previous occurrence within the same sequence. 
If there is enough repetition within a sequence, I ( t )  will be small. We omit the details 
here because they have been discussed elsewhere (Milosavljevi6 & Jurka, 1993a). 

3. Extended Algorithmic Significance Method 

In the following we extend the recently proposed algorithmic significance method (Milosavl- 
jevi6 & Jurka, 1993a) by showing a high level of mutual information is unlikely to occur 
by chance. The method itself is very general and is also applicable to a wide variety of 
problems that may not be related to sequence analysis, as discussed in Section 6. The 
theorems presented below are applicable not only to sequences of finite length, but also 
to objects from any other countable domain. The particular problem of sequence com- 
parison is here used as a motivation for the development of theorems that form the basis 
of the general method. The derivations below require some background in information 
theory (e.g., Cover & Thomas, 1991; Li & Vit~inyi, 1993); if you wish to avoid technical 
details, you may skip to Theorem 2. 

In the following derivations we start from the fact that high likelihood ratios are unlikely 
to occur by chance and then we switch from probabilities to encoding lengths to show 
that high algorithmic mutual information is unlikely to occur by chance as well. 

Let P0 and PA be probability distributions over sequences (or any other kinds of 
objects from a countable domain) that correspond to the null and alternative hypotheses 
respectively; by po(t) and PA (t) we denote the probabilities assigned to a sequence t by 

the respective distributions. The likelihood ratio for sequence t is pa(t) The following p--~y. 
elementary inequality states that high likelihood ratios are unlikely to occur by chance 

LEMMA 1 For any null hypothesis Po such that po(t) > O for every t and for every 
alternative hypothesis PA, 

Po{log pA(t) 2_ d 
,- iFy -> a ) -  < 

Proof: Lemma 1 is a direct consequence of the Markov inequality applied to the 
E rpA(t) l PA(t) Since the expected value 0tp--~3- J by the null hypothesis equals likelihood ratio p---ff~. 

1, by Markov inequality, 

pofPA(t) 1 
p--j  >- <- - 

After taking logarithms, 

Po{log pA(t) p-7(6 _> d) _< 
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where d = log c. • 

In our specific application, the null hypothesis Po will be the distribution of probabilities 
under the assumption that the target sequence is independent from the source. For 
example, if we assume that every letter is generated independently with probability Px, 
where x E {A, G, C, T} denotes the letter, then the probability of a target sequence t 

is po(t) = I-[zpr~ ~(t), where nx(t)  is the number of occurrences of letter x in t. The 
alternative hypothesis PA will be the distribution under assumption that the sequences 
are related. 

We now define the alternative hypothesis PA in terms of encoding length. Let A denote 
a decoding algorithm that can reconstruct the target t based on its encoding relative to 
the source s. By IA(tls) we denote the length of the encoding. We make the standard 
assumption that encodings are prefix-free, i.e., that none of the encodings represented in 
binary is a prefix of another (for a detailed discussion of the prefix-free property, see 
Cover & Thomas, 1991; Li & Viuinyi, 1993). We expect that the targets that are similar 
to the source will have short encodings. The following theorem states that a target t is 
unlikely to have an encoding much shorter than - log p0 (t). 

THEOREM 1 For any distribution of probabilities Po, decoding algorithm A, and source 
S, 

To{-  log po(t) - IA(tls) >_ d} < 2 -d 

Proof: Since algorithm A specifies a uniquely decodable code, by Kraft-McMillan 
inequality, ~ t  2--IA(tls) < 1. Thus, there is a normalizing constant b > 1 such that 
~ t  b 2 -1A(tls) = 1, and we can now define the alternative hypothesis as the distribution 
PA that assigns probability pA(tls ) = b 2 -IA(tls) to target t. By substituting b 2 -1A (tls) 
for pA(tls ) in Lemma 1 we obtain 

P o { -  log po(t) - IA(tts) + log b >_ d} _< 2 -d. 

Finally, since log b > 0, we obtain 
P 0{ -  log po(t) - IA(tls) >_ d} < 2 -n. 

Similar theorems have been proven in the context of competitive encoding (Cover & 
Thomas, 1991) and testing theory (for a review of testing theory, see Li & Vit~nyi, 
1993). The theorem is the basis for the algorithmic significance method where'presence 
of patterns is proven by exhibiting significantly shorter encodings of the observed data 
than expected by the null hypothesis; the method has been applied to discover simple 
DNA sequences (Milosavljevid & Jurka, 1993a). 

Invariance theorem (for a review see Li & Vit~inyi, 1993) states that there exists a uni- 
versal encoding method that gives encodings that are as short as the encodings produced 
by any other method, up to an additive constant. The decoder for the universal method 
is a universal prefix-free Turing machine: the shortest encoding is the shortest program 
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for the machine that outputs target t; in case of relative encoding, the machine may also 
have access to a source s. We now assume that A is one such universal machine and 
that IA(tls ) is the length of the shortest program. 

A universal encoding method can also be used to define a null hypothesis. Let Ao 
denote a universal machine and let IP] denote the length of a program p. Halting prob- 
ability f~ (for a detailed study of f~, see Chaitin, 1987a) is the probability that A0 halts 
when p is constructed bit by bit by random flips of a coin. That is, 

= E 2-tPl 
p: Ao ha l t s  on p 

The probability PAo (t) that a halting program outputs t is computed as follows: 

1 

p: A o ( p ) = t  

Probability distribution PAo, discovered by Solomonoff (for a review of history, see 
(Li & Vit~inyi, 1993)), has a remarkable property: it cannot be refuted at an arbitrary 
significance level by any other computable distribution. However, since our alternative 
hypothesis is conditional on s, We still have a chance. We now assume that Po = PAo. 
The universal coding theorem (Li & Vit~inyi, 1993) tells us that - l o g  PAo (t) = IAo ( t )+  
O(1), where IAo(t) denotes the length of the shortest program for Ao that outputs t. By 
substituting IAo(t) for --log po(t) in Theorem 1, and by moving the additive constant 
O(1) into the exponent on the right-hand side, we obtain the following: 

Po{IAo(t) -- IA(tls ) >_ d} ~_ 2 -d+O(1). 

Algorithmic mutual information I(s; t) is defined as the difference IAo(t) - -IA(t ls  ), 
so that the inequality above can now be rewritten in the following compact form: 

THEOREM 2 

Po{I(s; t) >_ d} <_ 2 -d+°(1). 

This theorem is the basis for the extended algorithmic significance method, which 
enables discovery of significant dependencies in observed data via algorithmic mutual 
information. This is an ultimate, albeit impractical, method for deciding relatedness of 
two sequences: algorithmic mutual information I(s;t)  = I A o ( t ) -  [A(tls ) takes into 
account both sequence complexity, measured by IAo(t), and similarity, measured by 
Ia(tls). 

In order to make this method practical, we need to apply encoding schemes for which 
encoding lengths are easy to compute. Thus, we approximately estimate the universal 
encoding lengths Iao (t) and IA(tls ) by I(t) and I(tts ), which are the encoding lengths 
obtained by applying the self-encoding and relative-encoding schemes from the previous 
section. 
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The introduction of specific encoding schemes introduces certain bias in the process 
of inference (which is absent in case of the universal, albeit non-computable, encoding 
scheme). This bias may in principle be also expressed in terms of a probability distribu- 
tion. Since the encoding schemes presented in the previous section capture the kind of 
patterns that indeed occur in the data, they may be thought of as adequate approxima- 
tions of the encoding by universal machines. In the next section we present an efficient 
encoding algorithm for our specific encoding scheme. 

4. Minimal Length Encoding Algorithms 

Not surprisingly, the algorithms for computing minimal encoding lengths I ( t )  and I ( t l s )  
are very similar. A standard algorithm for computing I ( t )  has already been presented 
elsewhere (Milosavljevid & Jurka, 1993a). In this section we present a slight variant of 
the same algorithm that can be used for computing I ( t l s ) .  The only difference between 
the two algorithms is that in the former pointers point to the occurrences of words within 
the same sequence while in the latter they point to the occurrences of words in the source 
sequence. 

The algorithm for computing I ( t [ s )  takes as an input a target sequence t, a source 
sequence s, and the encoding length p >_ 1 of a pointer. Since it is only the ratio 
between the pointer length and the encoding length of a letter that matters, we linearly 
scale the two values so that the encoding length of a letter becomes 1. 

Let n be the length of sequence t and let tk denote the (n - k + 1)-letter suffix of t 
that starts in the ]¢th position. Using a suffix notation, we can write tl  instead of t. By 
I ( t k l s )  we denote the minimal encoding length of the suffix tk. Finally, let l(i), where 
1 < i < n, denote the length of the longest word that starts at the i th position in target 
t and that also occurs in the source s. If  the letter at position i does not occur in the 
source, then l(i) = 0. Using this notation, we may now state the main recurrence: 

I ( t i l  s) = rain(1 + [(~i+l[S) ,p + I(ti+l(i) ls)) 

Proof of this recurrence can be found in (Storer, 1988). 
Based on this recurrence, the minimal encoding length can now be computed in linear 

time by the following two-step algorithm. In the first step, the values l(i), 1 < i < n 
are computed in linear time by using a directed acyclic word graph data structure that 
contains the source s (Blumer, Blumer, Haussler, Ehrenfeucht, Chen, & Seiferas, 1985). 
In the second step, the minimal encoding length I ( t l s )  = I ( t l l s )  is computed in linear 
time in a right-to left pass using the recurrence above. 

5. Experiments 

The algorithm for pairwise comparisons using mutual information I (s;  t) = I ( s )  - I(s l t )  
was implemented in C++ on a Sun Sparcstation under UNIX as part of a larger suite of 
programs for analysis of repetitive DNA sequences (Milosavljevid, to appear) (to obtain 
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information about the availability of the programs, send "software" in Subject-line to 
pythia@anl.gov). We present two experiments that illustrate the potential of the method. 

5.1. Experiment 1 

In the first experiment, the program was applied to identify occurrences of repetitive pat- 
terns in a 4-kbp segment of the human tissue plasminogen activator (TPA) gene (Friezner- 
Degen, Rajput, & Reich, 1986). The segment 22,001-26,000 that was extracted from 
the GenBank (Bilofsky & Burks, 1988) entry under accession number K03021, is il- 
lustrated in Figure 1. The segment was split into consecutive windows of length 200 
with an overlap of 100 basepairs. Every pair of nonoverlapping windows was compared 
using mutual information I(s; t) in order to identify pairs of windows that contain related 
sequences. 

An encoding length threshold of 31 > 7 + 2 * log 4000 bits was chosen so that the 
probability of any pair of windows having mutual information beyond the threshold would 
be guaranteed not to exceed the value of 0.01; one should note that the additive constant 
from Theorem 2 has been ignored in this calculation, so that the significance value has 
mostly a heuristic value. A pointer length of 6 bits was chosen for self-encoding and of 
12 bits for encoding one sequence relative to the other (that is, it was assumed that that 
the distance between consecutive common words and common word length can each be 
encoded in 3 bits on average in case of self-encoding and in 6 bits in case of relative 
encoding). 

As indicated in Figure 1, the segment was known to contain occurrences of two Alu 
sequences, one between positions 253 and 545 and the other between positions 3620 and 
3911, as well as an imperfect ( T G A T A G A )  • N run between positions 1888 and 2458. 
The idea was to show that the windows containing the two occurrences of Alus would 
be identified while the windows containing different parts of the long ( T G A T A G A )  * N 
segment would not be considered similar because of their internal structure and despite 
their mutual similarity in terms of subword composition. 

The following three pairs of windows exhibited mutual information above the threshold: 

pair I(s;t) window 1 window 2 

1 51 201-400 3601-3800 
2 37 1901-2100 2201-2400 
3 32 301-500 3601-3800 

Alu (TGATAGA)*N 

I I I I 

Alu 
I* 

1 1000 2000 3000 4000 

Figure 1. Segment 22,001 - 26,000 from the TPA gene. 
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Self-parsed window 201-400 from the 4-kbp fragment of the TPA gene: 

G - T - G - C - A - A - C - A - G - T - G - G - C - A - G - G - G - C - A C A G T G - C - C - A - C - T - C A G T G C C - T - G - T - C - A  

- A - A - A - G - T - A - T - G T G C - T - G - A - G - G C T G - G - A - A - G - G - T - G - G T G C A - T G C C T G T - G - A - T - C - C  

- C - A - G C A C - T - T -  T - A - G - G A G G C -  C - A A G G T G G - G A G G - G -  T - C - G C T G G A - G - C -  C - C - G G G A G - T -  

TCAA-G-A- CCAA-T-C-T-GGGCA-AACA-T-AGCA-A- G-T- C-C-CCTGTC-T- C-T-A- CAAAA-A 

-A- T -A-AAAAAAT- TAGC- C-AGACC- T 

Local alignment of windows 201-400 (top) and 3601-3800 (bottom): 

@60 @70 @80 @90 @i00 @Ii0 @120 

GGCTGG--AAGGTGGTGCATGCCTGTGATCCCAGCACTTTAGGAGGCCAAGGTGGGAGGGTCGCTGGAGC 

GGCTGGGCGTGGTGGCTCACGC--GTAATCCCAGCACTTTGGGAAGCCAAGGCAGGTGGATCACCTGAGG 

@30 @40 850 @60 @70 @80 

@130 8140 @150 @160 @170 @180 @190 

CCGGGAGTTCAAGACCAATCTGGGCAAACATAGCAAGTCCCCTGTCTCTACAAAAAATAAAAAAATTAGC 
********************* ********:~::*: ********************* .~.~*****~ 

TCAGGAGTTCAAGACCAGCCT-GGCCAACATGGTGAA-ACCCTGTCTCTACTAAAAATACAAAAATTAGC 

@90 @i00 @Ii0 @120 @130 @140 @150 

0 2 0 0  

CAGACCT 
***:*.* 

CAGGCAT 

@160 

Figure 2. Parsing of window 201-400 and its local alignment with window 3 6 0 1 - 3 8 0 0 .  

Pairs 1 and 3 correspond to the two occurrences of  Alu sequences. Figure 2 contains 
the self-parsing of the window 201-400, exhibiting the internal structure of the Alu 
sequence, as well as a local alignment with the window 3601-3800. 

Pair 2 consists of two windows within the (TGATAGA) • N region. Figure 3 con- 
tains the self-parsing of the window 1901-2100, exhibiting the internal structure of the 
( T G A T A G A ) .  N sequence, as well as a local alignment with the window 2201-2400. 

The local alignment indicates that the two windows indeed share more structure than 
merely due to the presence of the (TGATAGA) • N internal repeat: note that if we 
denote TGA by :r and TAGA by y, then the segment between positions 80 and 115 in 
window 1901-2100 and the segment between positions 70 and 104 in window 2201-2400 
can both be approximately represented as A A A y z y y z y y z T A A A .  This indicates that, 
in addition to the simple multiplication of the TGATAGA repeat, larger units of DNA 
have multiplied as well, increasing the mutual information beyond the threshold. Indeed, 
a closer inspection of other segments of DNA within the (TGATAGA) * N region 
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indicates that the same large unit occurs in a slightly more decayed form in several 
copies, which Were not detected. 

5.2. Experiment 2 

In the second experiment, the program was applied to identify related sequences between 
the TPA segment from the previous subsection and the segment 11,001-15,000 of the 
human C-FMS proto-oncogene for CSF-1 receptor (PO) gene, GenBank (Bilofsky & 
Burks, 1988) entry under accession number X14720. The PO segment, illustrated in 
Figure 4, was split into consecutive windows of length 200 with an overlap of 100 
basepairs. Every window was compared using mutual information I(s; t) to all the 
windows from the TPA segment (Figure 1) in order to identify related sequences between 
the PO and TPA segments. The thresholds and pointer lengths were set the same way 
as in the previous experiment. 

As indicated in Figure 4, the segment was known to contain an Alu fragment between 
positions 2861 and 3016 as well as a ( T A G A )  * N run between positions 938 and 
1012. It was expected that the Alu fragment would be identified as similar with the Alu 
sequences from the TPA segment, while the (TAGA)  * N would not be identified as 
similar to the ( T G A T A G A )  • N region, because their overall similarity is exclusively 
due to the similarity in their internal structure. 

The output of the program fully met the expectations. The only pairs of windows 
with similarity scores above the significance threshold were the ones corresponding to 
the Alu regions. Because of their internal structure, and despite their similar subword 
composition, the ( T G A T A G A )  • N and ( T A G A )  • N regions were not considered 
similar. Figure 5 contains the self-parsing of the window 901-1100 from the PO segment 

Self-parsed window 1901-2100 from the 4-kbp fragment of the TPA gene: 

A-T-A-G-A-T-G-ATAGA-C-AGAT-A-ATAGATGATAG-G-T-G-ATAGATGATAGA-T-TGATAGAT 

GATAGAT-GATAGGTGATAGAT-TAGAT-A-AATAGATGATA-C-ATACAT-GATAGAT-AGATGATA-A 

ATAGA-C-G-G-TAGATG-GATGA-C-AGATAGA-C-AGATGATAGGTGATAGAT-AGATGATAGATTGA 

TAGATGAT-T-G-A-TAGATAAATAGATGAI 

Local alignment of windows 1901-2100 (top) and 2201-2400 (bottom): 

@80 890 @i00 @ii0 @120 8130 @140 

AGATTAGATAAATAGATGATACATACATGATAGATAGATGATA/kATAGACGGTAGATGGATGACAGATAG 

AGATGA-TTAAATAGATGATACATAGATGATAGATA-ATGATAAATAGATGATAGAT ............ G 

@70 @80 @90 @i00 @ii0 

Figure 3. Parsing of window 1901-2100 and its local alignment with window 2201-2400. 
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(TAGA)*N Alu 

I I I I I 
1 1000 2000 3000 4000 

Figure 4. Segment 1 1 , 0 0 1  - 1 5 , 0 0 0  from the PO gene. 

Self-parsed window 901-1100 from the 4-kbp fragment of the PO gene: 

T-C-C-T-A-C-C-T-G-T-A-A-A-A-T-G-A-A-G-A-T-A-T-T-A-A-C-A-GTAA-C-T-G-C-C 

- T- T - C -A - T-AGATA -GAAGATA- GATAGAT- TAGATAGAT-AGATAGATAGATAGATAGATAGATAGA 

TAGATAGATAGATAG-GAAG-T-A- C-TTAGA-ACAG-G-G-T- C- T-G-A- C-ACAGG-AAATG-CTGT 

- C- C -AAGT - G - T- G - C -A- C - CAGGA - GATAG- T -A -TCTGA - GAAG - G - C- T- C-A-GTCTG- GCACC 

A-T 

Local alignment of windows 901-1100 PO (top) and 2001-2200 TPA (bottom): 

@i0 820 @30 @40 @50 @60 @70 

TAAAATGAAGAT--ATTAACAGTAACTGCCTTCATAGATAGA-AGATAGATAGATTAGATAGATAGATAG 

TAGATAGATGATAAATAGACGGTAGATG-GATGACAGATAGACAGAT-GATAGGT--GATAGATAGAT-G 

810 820 830 @40 @50 @60 

@80 @90 @i00 @ii0 @120 

ATAGATAGATAGATAGATAGATAGATAGATAGATAGGAAGTACTTAGA 

ATAGATTGATAGAT-GATTGATAGATAAATAGATGATAGATACATAGA 

@70 @80 @90 @i00 @ii0 

Figure 5. Parsing of PO window 901-1100 and its local alignment with TPA window 2 0 0 1 - 2 2 0 0 .  

including the (TAGA)* N structure, as well as an alignment of  the same window with the 
window 2001-2201 from the TPA segment including the (TGATAGA) • N structure. 
The alignment clearly indicates high similarity that is exclusively due to the shared 
internal structure. 

6. Discovering life 

The extended algorithmic significance method can be used for discovery of  a wide variety 
of  dependencies. The domain of  applications includes, but is not restricted to D N A  
sequence analysis. As we will demonstrate shortly, the method is particularly well suited 
for applications in biology. 

Before we proceed further, we should mention that the definition of  mutual information 
I(s; ~) can be slightly modified so that it becomes symmetrical in s and t; the technical 
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details involved in are reviewed elsewhere (e.g., Li & Vitfinyi, 1993), so we omit them 
here. We will use the fact that symmetrical version of mutual information can alterna- 
tively be defined as the difference between the sum of individual encoding lengths and 
their joint encoding legth. More precisely, 

I(s;  t) = I( t)  + I ( s )  - I (s ,  t), 

where I(s ,  t) denotes the joint encoding length. By substituting I(s;  t) into Theorem 2, 
we obtain 

P o U ( t )  + - t) > d} _< 2 

In other words, d bits of difference between the sum of individual encoding lengths 
and the joint encoding length implies dependence at the significance level 2 -a+°(1). 

Chaitin (1979) considers the case where a domain of observations t is split into subseg- 
ments t l , . . . ,  tk and then considers algorithmic mutual information, which is computed 
as the difference between the sum of individual encoding lengths of t l , . . . , t k ,  plus 
some overhead, and the joint encoding length. As an example, Chaitin considers multi- 
dimensional patterns of squares, as illustrated in Figure 6. If the sum of the encoding 
lengths of individual "windows" significantly exceeds the encoding length of the whole 
then mutual information is significantly high. This occurs precisely in case when the 
individual windows of observation are too small to capture a pattern, as illustrated in 
Figure 6: the whole pattern can be encoded more concisely by taking advantage of its 
regularity, which is invisible when only small pieces of the pattern are observed. 

Chaitin then goes on to consider mutual information as a function of diameter D of 
windows: if the patterns are small, mutual information becomes negligible even for small 
D, while high mutual information for large D implies presence of even larger patterns 
that cannot be observed through windows of diameter D. Chaitin convincingly argues 
that the living world can be distinguished from the non-living by the following abstract 
property: algorithmic mutual information in the non-living world becomes negligible 
even for small diameters D while in case of the living world it remains high even for 
large D. 

It is interesting to point out that the extended algorithmic significance method can 
be used to discover life, as defined by Chaitin. For a prespecified significance level 
2 -d+°(1) and for a sufficiently large diameter D (to remove "interference" from the 
patterns in the non-living world, e.g., physical laws) one simply has to show that mutual 
information exceeds d bits. 

Most interestingly, when constructing artificial examples of life, in his Theorem 5 
Chaitin (1979) constructs hierarchical structures that resemble repetitive DNA sequences 
studied in this paper. Chaitin argues that if replication occurs at different hierarchical 
levels (e.g., tandem repeats of small segments vs. repetitions of larger segments that 
include many small segments), then the resulting pattern cannot be fully observed unless 
repetitions on the largest scale fit within a window. That is precisely the choice that 
we are implicitly making in sequence comparisons: a smaller window accommodates 
a single sequence while a larger one accommodates both sequences, and the problem 
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IIII 
i , l l  

l l l l  
l l l l  

III: i t l l  

r i l l  

Figure 6. A pattern that does not fit within any of the four small windows. The presence of the global pattern 
implies high algorithmic mutual information between individual windows. This example is patterned after the 
one that appears on the cover of Chaitin's book (1987b). 
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is to decide on the size of the window. If small windows suffice for most concise 
encoding then sequences are unrelated, i.e., patterns are local; if larger windows give 
shorter encodings then sequences are related, i.e., the pattern is global. 

An interesting recent example illustrating the need for large diameters of observation 
is the reconstruction of the evolution of Alu sequences (Jurka & Milosavljevid, 1991; 
Milosavljevi6 & Jurka, 1993b). The standard "bottom-up" methods for evolutionary re- 
construction that are based on pairwise sequence comparisons have failed in this case: the 
global evolutionary pattern of Alu sequences was invisible when only two Alu sequences 
were considered at a time, as in Bains (t986). The evolutionary pattern becomes visible 
only through a "top-down" approach where a large number of sequences are considered 
simultaneously, as in Milosavljevid and Jurka (1993b). 

7. Conclusion 

Repetitive patterns in DNA sequences may be complex and hard to discover. When 
comparisons are made by subword similarity alone, the DNA segments that share com- 
mon internal repetitive patterns consisting of repetitions of very short words turn out to 
be most similar, even though they are not related, because different occurrences of short 
words tend to multiply independently. We have shown how the concept of algorithmic 
mutual information can be used to discover similarities that are due to relatedness and 
not due to shared internal structure. 

Mutual information is in effect the difference between the complexities of two alterna- 
tive hypotheses about the observed similarity between two sequences: one hypothesis is 
based on internal structure (minimal length encoding based on internal structure) while 
the other is based on pairwise similarity (minimal length encoding based on pairwise 
similarity). In that sense, we resolve the two competing hypotheses by applying the 
parsimony principle. 

Perhaps the most important contribution of this paper is the extension of the algorithmic 
significance method. The extended method is based on Theorem 2, which states that d bits 
of algorithmic mutual information imply dependence between s and t at the significance 
level 2 - a + ° 0 ) .  The method is general in the sense that by applying specific encoding 
schemes we may discover dependencies of different kinds, while still relying on the 
same method for establishing significance. DNA sequence comparison is only one of 
many possible applications of this method; new applications in the context of massive 
hybridization experiments and alternative sequence representations are currently under 
development. 

An additional contribution of this paper is a new approach to sequence comparison 
based on subword composition. Current methods (reviewed in Pevzner, 1992) typically 
require two arbitrary assumptions to be made for each similarity search: one about 
the length of the longest common word that is to be considered and the other about 
the threshold of similarity for significant matches. The method proposed in this paper 
removes the need for any restrictions on word length while keeping the computation 
time linear, and it also provides a bound on significance, thus removing need for any 
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arbitrary thresholds. Experiments indicate that this systematic approach can eliminate 
false positive matches. 

Mutual information can also be applied to discover similarity based on sequence align- 
ment. In case of alignments, the target sequence would have to be encoded using a set 
of edit operations. A minimal length encoding approach to sequence alignment has been 
discussed in Allison and Yee (1990). 
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