
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 2430–2442

August 1–6, 2021. ©2021 Association for Computational Linguistics

2430

Discovering Dialogue Slots with Weak Supervision

Vojtěch Hudeček,1 Ondřej Dušek1 and Zhou Yu2

1Charles University, Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics
2 Columbia University, Department of Computer Science

{hudecek,odusek}@ufal.mff.cuni.cz, zy2461@columbia.edu

Abstract

Task-oriented dialogue systems typically re-

quire manual annotation of dialogue slots in

training data, which is costly to obtain. We

propose a method that eliminates this require-

ment: We use weak supervision from existing

linguistic annotation models to identify poten-

tial slot candidates, then automatically identify

domain-relevant slots by using clustering algo-

rithms. Furthermore, we use the resulting slot

annotation to train a neural-network-based tag-

ger that is able to perform slot tagging with

no human intervention. This tagger is trained

solely on the outputs of our method and thus

does not rely on any labeled data.

Our model demonstrates state-of-the-art per-

formance in slot tagging without labeled train-

ing data on four different dialogue domains.

Moreover, we find that slot annotations dis-

covered by our model significantly improve

the performance of an end-to-end dialogue re-

sponse generation model, compared to using

no slot annotation at all.

1 Introduction

Task-oriented dialogue systems typically use anno-

tation based on slots to represent the meaning of

user utterances (Young et al., 2013). Slots are at-

tributes relevant to completing the task (e.g., price,

food type, area). The sets of slots and their val-

ues typically need to be designed in advance by

domain experts. Slots and their values are tracked

over the course of the dialogue, forming dialogue

state, which allows a dialogue system to plan the

next actions effectively (Williams et al., 2013).

Getting raw data for dialogue system training

is not difficult, especially if we restrict the tar-

get domain. A requirement for dialogue state la-

bels makes this process much more costly. How-

ever, both traditional pipeline systems (Young et al.,

2013) and end-to-end task-oriented architectures

(Wen et al., 2017) typically require such annotation.

While some systems use implicit, latent state rep-

resentation and do not require annotation (Serban

et al., 2016), the behavior of such systems is hard to

interpret or control. There are several works aiming

at keeping interpretability and reducing the anno-

tation needs by automating it (Chen et al., 2014,

2015) or transferring annotation across domains

(Zhao and Eskenazi, 2018; Coope et al., 2020), but

they still require significant manual effort.

In this paper, we present a novel approach to

discovering a set of domain-relevant dialogue slots

and their values given a set of dialogues in the

target domain (such as transcripts from a call cen-

ter). Our approach requires no manual annotation

at all in order to tag slots in dialogue data. This

substantially simplifies dialogue system design and

training process, as the developer no longer needs

to design a set of slots and annotate their occur-

rences in training data. We discover slots by using

unsupervised clustering on top of annotation ob-

tained by domain-independent generic models such

as a semantic frame parser or a named entity rec-

ognizer (NER). To illustrate our approach, let us

consider an example given in Figure 1.

Find a chinese restaurant that's cheap.
Origin ExpensivenessLocale

Figure 1: An utterance from the restaurant recommen-

dation domain tagged with off-the-shelf frame seman-

tic parser. Some tags are domain-relevant (shown in

blue), but some are not (shown in gray).

Although the annotation is descriptive, it con-

tains concepts irrelevant for the domain under con-

sideration. Our method selects only relevant slot

candidates (depicted in blue). Slots discovered by

our approach can then be used to design or adapt

the database backend for the target domain.

Our contributions can be summarized as follows:

2431

NER

Frame parser

...

Merging & Selection

Merging

Selection

Tagger training
Unlabeled

Corpus

Weak supervision

Labeled
Corpus

Figure 2: Illustration of our pipeline. First, we analyze an unlabeled in-domain corpus with supplied domain-

agnostic linguistic annotation models, such as a frame-semantic parser or NER (Section 3.1). This results in

slot candidates. Next, we iteratively merge and select slot candidates to obtain domain-relevant slots (Sec-

tions 3.2.2, 3.2.1). Finally, we use the resulting slot labels in the corpus to train a neural slot tagger (Section 3.3).

1. Selecting domain-relevant slots from candi-

dates provided by weak supervision from

domain-generic linguistic annotation tools.

We use FrameNet-style (Fillmore, 1976) se-

mantic frames as our main source of weak

supervision.1 We also explore named entity

recognition (NER).

2. Training a standalone slot tagger for the se-

lected slots. Based on the discovered slots,

we train a slot tagger to annotate in-domain

utterances. After it is trained, the slot tagger

can be used as a standalone component – it

does not need the original annotation tools

for prediction, and is able to improve on their

results.

3. Evaluation on multiple domains. We show

that our approach is domain-independent. We

achieve state-of-the-art results for slot tagging

without manual supervision in four different

domains, with a 6-16% absolute F1 score in-

crease over the previous benchmark.

4. Downstream task application. We evaluate

our approach in a full dialogue response gen-

eration task. Our slots can be directly used

to perform dialogue state tracking by merg-

ing annotations from consecutive turns. We

train an end-to-end neural dialogue system us-

ing our automatically discovered slots in the

restaurant domain and demonstrate that our

approach improves performance over an unsu-

pervised model, finding the correct venue in

5% more cases (35% more when no restaurant

ontology is provided).

Our experimental code is available on GitHub.2

1See http://framenet.icsi.berkeley.edu/
2https://github.com/vojtsek/

joint-induction

2 Related Work

The idea of using weak supervision to perform fine-

grained language understanding based on domain-

relevant (slot-like) attributes was proposed by Heck

and Hakkani-Tür (2012), who construct a triple-

based database of entity relations based on web

search. They exploit the structure of in-domain web

pages to obtain semantic annotations. There are

also similar works on relation detection (Hakkani-

Tür et al., 2013) or entity extraction (Wang et al.,

2014). This approach is, however, limited by re-

quiring structured web pages as underlying data.

Chen et al. (2014) combine semantic frame pars-

ing with word embeddings for weakly supervised

semantic slot induction. Chen et al. (2015) also

use semantic frames, construct lexical knowledge

graphs and perform a random walk to get slot can-

didates. However, both approaches only output

a ranking of potential slot candidates based on

frames. Since frame annotation is very fine-grained,

this produces a huge number of candidates, requir-

ing their manual merging into slots for any practi-

cal use. In contrast, we determine domain-relevant

slots automatically. Coope et al. (2020) focus on a

few-shot setting and perform span extraction of slot

values using pretrained models. Their approach,

however, still requires some expert annotation. An-

other direction of research focuses on zero-shot

slot filling. Bapna et al. (2017)’s recurrent-neural-

network-based slot tagger is pretrained on multiple

domains and takes a textual description of the target

slot on the input in addition to the user utterance.

This way, adapting to a new domain only involves

providing new slot descriptions. Further works

extend this idea with more complex architectures

(Shah et al., 2019; Liu et al., 2020).

Unsupervised and semi-supervised methods

were also investigated for predicting intents (user

http://framenet.icsi.berkeley.edu/
https://github.com/vojtsek/joint-induction
https://github.com/vojtsek/joint-induction

2432

Original annotation:

Original annotation:

 User input 1: I would like an expensive restaurant that serves Afghan food.

 Our annotation:

 User input 2: How about Asian oriental food.

 Our annotation:

Expensiveness
slot-0

Locale
slot-1

Origin Food
slot-1

Figure 3: A sample of a dialogue from CamRest676 data, with labels from a frame-semantic parser (middle)

and our slot tagger (bottom). Although “Afghan” food is not in the frame parser output, our tagger was able to

recognize it. The change in value for slot-1 (corresponding to food type) is successfully captured in the second

utterance. This shows that our model can categorize entities (both “Afghan” and “Asian” relate to the same slot).

input sentence types). Yang et al. (2014) use semi-

supervised intent clustering, with manual annota-

tion to seed and interpret the clusters. Chen et al.

(2016) introduced a model for zero-shot intent em-

bedding prediction based on similarity to known

intents. Shi et al. (2018) proposed a fully unsuper-

vised intent detection model with the use of sen-

tence clustering based on sentence-level features.

Most applications of unsupervised or semi-

supervised methods to end-to-end dialogue re-

sponse generation avoid explicit dialogue state

modeling (e.g., Serban et al., 2016; Li et al., 2016;

Gao et al., 2019). They aim at a non-task-oriented

setting, where state interpretability or response con-

trollability are less of a concern. Other works in

task-oriented dialogues use transfer learning for

adapting to low-resourced target domains (Zhao

and Eskenazi, 2018; Shalyminov et al., 2019), but

also keep the dialogue state representation latent.

In contrast, Jin et al. (2018) propose to model the

dialogue state explicitly, in a semi-supervised way.

They extend the end-to-end encoder-decoder Se-

quicity model of Lei et al. (2018, cf. Section 4) by

introducing an additional decoder that has access

to posterior information about the system response.

This allows them to train a state representation with

a reconstruction loss on unsupervised examples,

using the state as a limited memory for essential

concepts (roughly corresponding to slots). Their

method can be applied in fully unsupervised way,

but it still requires some amount of in-domain an-

notations to achieve good performance. Our work

aims at explicit dialogue state modeling without

the need for any in-domain supervision.

3 Method

Our slot discovery method has three main stages:

(1) We obtain weak supervision labels from auto-

matic domain-generic annotation. (2) We identify

domain-relevant slots based on the annotation la-

bels by iteratively (a) merging and (b) ranking and

selecting most viable candidates (Section 3.2). (3)

we use the discovered slots to train an independent

slot tagger (Section 3.3).

3.1 Acquiring labels

Figure 2 shows the overall data flow of our slot

annotation pipeline. The data are first labeled

with domain-generic linguistic annotation models,

which we consider weak supervision. For our ex-

periments, we use a frame semantic parser and

NER, but other models, such as semantic role la-

beling (SRL; e.g., Palmer et al., 2010) or keyword

extraction (e.g., Hulth, 2003) can be used in gen-

eral. We use a simple union of labels provided by

all annotation models.3

3.2 Discovering Slots: Merging and Ranking

Subsequent steps identify domain-relevant slots

based on candidates provided by the automatic an-

notation. The slot discovery process is iterative –

in each iteration, it: (1) merges similar candidates,

(2) ranks candidates’ relevance and eliminates ir-

relevant ones. Once no more frames are eliminated,

the process stops and we obtain slot labels, which

are used to train a slot tagger (see Section 3.3).

We refer to the automatically tagged tokens as

(slot) fillers, and the tags are considered slot can-

didates. We use generic precomputed word em-

beddings as word representation in both steps. We

further compute slot embeddings 4(B:) for each

distinct slot B: as word embedding averages over

3If the same token is labeled multiple times by different
annotation sources, both labels are considered candidates and
are very likely to be merged. If multiple labels remain after
the merging and ranking process, only the first label is kept,
the rest are discarded.

2433

all respective slot fillers, weighted proportionally

by filler frequency. The slot embeddings need to be

re-computed after each iteration due to the merging

step. We will now describe the individual steps.

3.2.1 Candidate Merging

Since automatic annotation may have a very fine

granularity,4 entities/objects of the same type are

often captured by multiple slot candidates. With

a frame parser, for instance, the frames Direction

and Location both relate to the concept of area. We

thus need to merge similar B1 . . . B= under a single

candidate. We measure similarity of slots B1, B2 as:

sim(B1, B2) = sim4 (4(B1), 4(B2)) + simctx(B1, B2)

where sim4 is a cosine similarity and simctx(B1, B2)

is a normalized number of occurrences of B1 and B2

with the same dependency relation. If the similarity

exceeds a pre-set threshold)sim, the candidates are

merged into one.

3.2.2 Candidate Ranking and Selection

The main goal of this step is to remove irrelevant

slot candidates and select the viable ones only. We

hypothesize that different slots are likely to occur

in different contexts (e.g., addresses are requested

more often than stated by the user). To preserve

relevant slots that only occur in rarer contexts, we

cluster the data according to verb-slot pairs. We

then rank candidates within each cluster (see de-

tails below). We consider candidates with a score

higher than U-fraction of a given cluster mean to

be relevant and select them for the next rounds. If

a slot candidate is selected in at least one of the

clusters, it is considered viable overall.

Clustering the data We process the data with a

generic SRL tagger. Each occurrence of a filler is

thus associated with a head verb whose semantic

argument the corresponding word is, if such ex-

ists. We then compute embeddings of the formed

verb-filler pairs as average of the respective token

embeddings. The pairs are then clustered using

agglomerative (bottom-up) hierarchical clustering

with average linkage according to cosine distance

of their embeddings.5 The process stops when a

predetermined number of clusters is reached.

4This is indeed the case for frame-semantic annotation,
which we mostly use in our experiments in Section 5. An-
notation types that have fewer label types could be further
distinguished by e.g. adding the head verb from syntactic
parsing, or using word classes/word clustering over the fillers.

5Note that fillers for the same slot candidate may end up
in multiple clusters. This does not mean that the respective

Candidate Ranking criteria We use the follow-

ing metrics to compute the ranking score:6

• Frequency frq(B) is used since candidates that

occur frequently in the data are likely important.

• Coherence coh(B) is the average pairwise simi-

larity of all fillers’ embeddings:

coh(B) =

∑

(E,F) ∈�2
B

3cos(4(E), 4(F))

|�2
B |

(1)

where �2
B is a set of all pairs of fillers for the

slot candidate s. We follow Chen et al. (2014)’s

assumption that fillers with high coherence, i.e.,

focused on one topic, are good slot candidates.

• TextRank (Mihalcea and Tarau, 2004) is a key-

word extraction algorithm. It constructs a graph

where nodes represent words and edges represent

their co-occurrence. The dominant eigenvector

of the adjacency matrix of this graph then gives

the individual words’ scores. We replace fillers

with candidate labels when computing the score,

so we obtain results related to slots rather than

to particular values.

The final score is a simple sum of rankings with

respect to all three scores.

3.3 Slot Tagger Model Training

Our method described in Section 3.2 can give us

a good set of dialogue slots. However, using the

merged and filtered slots directly may result in low

recall since the original annotation models used as

weak supervision are not adapted to our specific

domain. Therefore, we use the obtained labels to

train a new, domain-specific slot tagger to improve

performance. The tagger has no access to better la-

bels than those derived by our method; however, it

has a simpler task, as the set of target labels is now

much smaller and the domain is much narrower.

We model the slot tagging task as sequence tag-

ging, using a convolutional neural network that

takes word- and character-based embeddings of the

tokens as the input and produces a sequence of re-

spective tags (Lample et al., 2016).7 The output

layer of the tagger network gives softmax proba-

bility distributions over possible tags. To further

increase recall, we add an inference-time rule – if

slot candidate is split – it is just ranked for relevance multiple
times (with respect to multiple contexts).

6Usefulness of the individual metrics is confirmed in an
ablation study in Section 6.

7https://github.com/deepmipt/ner

https://github.com/deepmipt/ner

2434

the most probable predicted tag is ‘O’ (i.e., no slot)

and the second most probable tag has a probability

higher than a preset threshold)tag, the second tag

is chosen as a prediction instead. As we discuss

in Section 6, this threshold is crucial for achieving

substantial recall improvement.

To improve the robustness of our model, we only

use 10% of the original in-domain training set (with

labels from Section 3.1) to train the slot tagger

model. The rest of the training set is used for a grid

search to determine model hyperparameters (hid-

den layer size, dropout rate and)tag threshold). We

choose the parameters that yield the best F1 score

when compared against the automatic slot discov-

ery results (i.e., no manual annotation is needed

here, the aim is at good generalization).

4 Application in Dialogue Response

Generation

To verify the usefulness of the labels discovered

by our method, we use them to train and evaluate

an end-to-end task-oriented dialogue system. We

choose Sequicity (Lei et al., 2018) for our exper-

iments, an LSTM-based encoder-decoder model

that uses a system of copy nets and two-stage de-

coding. First, it decodes the dialogue state, so the

database can be queried externally. In the subse-

quent step, Sequicity generates the system response

conditioned on the belief state and database results.

This architecture works with a flat representation

of the dialogue state, i.e. the state is represented as

a sequence of tokens – slot values.

The default Sequicity model uses gold-standard

dialogue state annotation. However, a compatible

state representation is directly obtainable from our

labels, simply by concatenating the labels aggre-

gated in each turn from user utterances. Whenever

a new value for a slot is found in user input by our

tagger, it is either appended to the state represen-

tation, or it replaces a previous value of the same

slot. This artificial supervision thus allows us to

provide a learning signal to the Sequicity model

even without manually labeled examples.

5 Experiments

We evaluate our approach to slot discovery by com-

paring the resulting slot labels to gold-standard

supervised slot annotation. Additionally, we eval-

uate the structure of clusters created during the

selection process (Section 3.2.2) by comparing it

to gold-standard user intents. We also test the use-

fulness of our labels in a full dialogue response

generation setup (Section 4), where we compare to

gold-standard dialogue tracking labels.

5.1 Datasets and Experimental Setup

We use the following datasets for our experiments:

• CamRest676 (CR) (Wen et al., 2017) has 676

dialogues, 2,744 user utterances, 4 tracked slots

and 2 intents in the restaurant domain.

• MultiWOZ (Budzianowski et al., 2018; Eric

et al., 2020) is a multi-domain corpus; we picked

two domains – hotel reservation and attraction

recommendation – to form WOZ-hotel (WH)

with 14,435 utterances, 9 slots, 3 intents and

WOZ-attr (WA) with 7524 utterances, 8 slots

and 3 intents respectively.8

• Cambridge SLU (Henderson et al., 2012) (CS)

contains 10,569 utterances and tracks 5 slots with

5 intents in the restaurant domain.

• ATIS (AT) (Hemphill et al., 1990) contains

4,978 utterances with 79 slots and 17 intents in

the flights domain.9

As sources of weak supervision providing slot can-

didates, we mainly use the frame semantic parsers

SEMAFOR (Das et al., 2010) and open-sesame

(Swayamdipta et al., 2017) – a union of labels pro-

vided by both parsers is used in all our setups. In ad-

dition, to explore combined sources on the named-

entity-heavy ATIS dataset, we include a generic

convolutional NER model provided by SpaCy.10

To provide features for slot candidate merging and

selection, we use AllenNLP (Gardner et al., 2017)

for SRL and FastText (Bojanowski et al., 2017) as

pretrained word embeddings.

Slot merging and selection parameters were set

heuristically in an initial trial run on the Cam-

Rest676 data and proved stable across domains.

Slot tagger hyperparameters are chosen according

to grid search on a portion of the training data, as

described in Section 3.3.11

5.2 System Variants and Baselines

We test multiple ablation variants of our method:

• Ours-full is the full version of our method (full

annotation setup and trained slot tagger).

8MultiWOZ contains more domains such as restaurant,
train search, bus search. However, we decided to not include
these as they are nearly identical to the other domains we use.

9We used the ATIS data version from
https://www.kaggle.com/siddhadev/

atis-dataset-from-ms-cntk.
10https://spacy.io
11Training details are included in Appendix C.

https://www.kaggle.com/siddhadev/atis-dataset-from-ms-cntk
https://www.kaggle.com/siddhadev/atis-dataset-from-ms-cntk
https://spacy.io

2435

method ↓ / dataset→ CR CS WH WA AT

Tag-supervised∗ 0.7780.7780.778 ± .004 0.724 ± .003 0.7420.7420.742 ± .008 0.7310.7310.731 ± .002 0.8480.8480.848 ± .003

Dict-supervised∗ 0.705 ± .005 0.7530.7530.753 ± .005 0.7500.7500.750 ± .018 0.665 ± .003 0.678 ± .002

weak supervision → frames frames frames frames frames frames & NER

Chen et al. 0.535 ± .002 0.590 ± .001 0.382 ± .001 0.375 ± .001 0.616 ± .001 –

Ours-nocl 0.311 ± .006 0.393 ± .011 0.122 ± .001 0.266 ± .008 0.631 ± .002 0.677 ± .002

Ours-notag 0.552 ± .008 0.664 ± .007 0.388 ± .002 0.383 ± .002 0.627 ± .002 0.648 ± .003

Ours-nothr 0.586 ± .024 0.569 ± .031 0.485 ± .032 0.435 ± .002 0.671 ± .005 0.698 ± .004

Ours-full 0.6650.6650.665 ± .012 0.6920.6920.692 ± .008 0.5480.5480.548 ± .004 0.4390.4390.439 ± .001 0.678 ± .002 0.7100.7100.710 ± .002

Table 1: F1 score values with 95% confidence intervals for slot tagging performance comparison among different

methods (see Section 5.2). The respective precision and recall values are presented in the Appendix (Table 7).

The measures are evaluated using a manual slot mapping to the datasets’ annotation, which is not needed for the

methods themselves (see Section 5.3). ∗Note that supervised setups are not directly comparable to our approach.

• Ours-nothr does not use the recall-increasing

second-candidate rule in the slot tagger (cf. Sec-

tion 3.3).

• Ours-notag excludes the slot tagger, directly us-

ing the output of our merging and selection step.

• Ours-nocl further excludes the clustering step;

slot candidate ranking and selection is performed

over all candidates together (cf. Section 3.2.2).

We also compare to previous work of Chen et al.

(2014),12 which is similar to Ours-nocl, but it does

not merge similar frames and uses different ranking

criteria. To put our results into perspective, we

also include two supervised models for comparison:

Tag-supervised is the same model that we use as

our slot tagger (see Section 3.3), but it is trained

on supervised data. Dict-supervised uses a simple

dictionary of labels obtained from the training data.

As an intrinsic evaluation of the verb-slot pair

clusters formed for slot ranking in Section 3.2.2,

we compare to gold-standard intent annotation with

respect to the following baselines: (1) a major-

ity baseline (assigning the most frequent intent

class to all instances), and (2) a simple method

that represents the utterances as averages of respec-

tive word embeddings and performs sentence-level

intent clustering. All the slots in a given utterance

are then assumed to have the same intent.

The dialogue generation task is evaluated by

comparing to Jin et al. (2018)’s approach intro-

duced in Section 2. We run their model in a fully

unsupervised way, i.e. we provide no labeled ex-

amples during the training phase, to give a fair

comparison against our model. To provide more

perspective, we also show a supervised variant of

Jin et al. (2018)’s model, where gold-standard slot

labels are provided.

12We use our own reimplementation of their approach.

5.3 Evaluation Metrics

For evaluation, we construct a handcrafted refer-

ence mapping between our discovered slots and

the respective ground-truth slots and intents. The

mapping is domain-specific, but it is very easy to

construct even for an untrained person – the process

takes less than 10 minutes for each of our domains.

It amounts to matching slots from the domain on-

tology against slots output by our approach, which

are represented by FrameNet labels. Most impor-

tantly, the mapping is only needed for evaluation,

not by our method itself. We provide an example

mapping in Appendix B.

We use the following evaluation metrics:

• Slot F1 score: To reflect slot tagging perfor-

mance, we measure precision, recall, and F1 for

every slot individually. An average is then com-

puted from slot-level scores, weighted by the

number of slot occurrences in the data. We mea-

sure slot F1 both on standalone user utterances

(slot tagging) and in the context of a dialogue

system (dialogue tracking).

• Slot-level Average Precision (AP). The slot

candidates picking task is a ranking problem and

we use the average precision metric following

Chen et al. (2014). Considering a ranked list of

discovered slots ; = B1, . . . , B: , . . . , B= we com-

pute AP:

�%(;) =

∑=
:=1

%@: (;)✶:

mapped slots
(2)

where ✶: is an indicator function that equals one

if slot : has a reference mapping defined and

%@: (;) is precision at : of the ranked list ;.

• Slot Rand Index (RI) is a clustering metric,

used to evaluate slot candidate merging. RI is

the proportion of pairs of slot candidates that are

correctly assigned into the same or into different

2436

method CR CS WH WA AT

Chen et al.
0.315 0.272 0.269 0.393 0.2670.2670.267

±.002 ±.001 ±.001 ±.002 ±.003

Ours-nocl
0.5190.5190.519 0.376 0.069 0.176 0.069

±.003 ±.003 ±.074 ±.016 ±.008

Ours-full
0.5200.5200.520 0.4000.4000.400 0.3170.3170.317 0.4030.4030.403 0.208

±.004 ±.003 ±.008 ±.006 ±.018

Table 2: Slot candidate ranking average precision for

all datasets (see Sections 5.2 and 5.3 for details).

method CR CS WH WA AT

RI
Rnd 0.466 0.268 0.155 0.153 0.178

Ours 0.587 0.319 0.168 0.188 0.171

NMI
Rnd 0.212 0.137 0.061 0.128 0.171

Ours 0.359 0.207 0.101 0.117 0.194

Table 3: Slot merging evaluation using RI and NMI

(cf. Section 5.3) on selected datasets, comparing our

approach (Ours) with a random baseline (Rnd).

slots (following the reference mapping).13

• Normalized Mutual Information (NMI) is the

mutual information between two clusterings nor-

malized into the (0, 1) interval. Thanks to the

normalization, it is suitable for comparing two

clusterings with different numbers of clusters.

• Intent Accuracy is the percentage of slot oc-

currences assigned into the correct intent cluster

under the reference mapping (see Section 5.2).

• Dialogue Joint Goal Accuracy calculates the

proportion of dialogue turns where all user con-

straints (i.e., dialogue state summarizing slot val-

ues) are captured correctly (Mrkšić et al., 2017).

• Dialogue Entity Match Rate calculates the last

turn’s entity in each dialogue. It verifies if a cor-

rect entity would be retrieved from the database

using the final constraints (Wen et al., 2017).

For slot tagging and ranking evaluation, we sam-

pled a random data order 50 times and performed

5-fold cross-validation for each permutation. For

the dialogue generation evaluation, we trained the

models 100 times and used averaged results. All

results are given with 95% confidence intervals.

6 Results and Discussion

We first evaluate the main task of slot tagging and

include a manual error analysis, then present de-

tailed results for subtasks (slot candidate ranking

and merging) and additional tasks (intent clustering

and full response generation).

13We compute RI on a union of labels that have a ground-
truth slot mapping and all labels selected by our method. La-
bels without ground-truth mapping are assumed to form single-
item “pseudo-slots”.

Slot tagging is evaluated in Table 1. Ours-full

(slot selection + trained tagger) outperforms all

other approaches by a large margin, especially in

terms of recall. The performance cannot match the

supervised models, but it is not far off in some

domains.14 Chen et al. (2014)’s method has a

slightly higher precision, but our recall is much

higher than theirs (see Appendix A.1). Note that

Chen et al. (2014) do not reduce the set of candi-

dates, they only rank them so that a manual cut-

off can be made. In contrast, our method reduces

the set of candidates significantly. A compari-

son between Ours-notag and Ours-full shows that

applying the slot tagger improves both precision

and recall. Tagger without the threshold decision

rule (Ours-nothr) mostly performs better than the

parser; however, using the threshold is essential to

improve recall. Experiments on ATIS with NER as

an additional source of annotation proved that our

method can benefit from it. As discussed above,

the use of the trained tagging model is crucial to

improve the recall of our method. In Figure 4, we

compare the results with and without the tagger.

We change the value of prediction threshold and

measure the number of cases in which the tagging

model encounters more true positives, false posi-

tives or false negatives, respectively. As the results

show, lowering the threshold increases the num-

ber of cases in which the tagger finds more correct

slot values (and therefore improves recall), while it

does not affect the number of false positives much

(and therefore retains precision).

Error analysis: We conducted a manual error

analysis of slot tagging to gain more insight about

the output quality and sources of errors. In general,

we found that the tagger can generalize and capture

unseen values (cf. Figure 3).

One source of errors is the relatively low recall

of the frame-semantic parsers used. We success-

fully address this issue by introducing the slot tag-

ger, however, many slot values remain untagged.

This is expected as our method’s performance is

inherently limited by the input linguistic annotation

quality. Another type of errors is caused by the can-

14Note that our measurements of slot F1 only consider the
‘O’ tag as negative (the average is computed over slots only).
This results in lower numbers than those reported in literature
(cf. e.g. Goo et al., 2018), but we believe that this reflects the
actual performance more accurately.

15We present results taken in unsupervised setting, i.e. when
no ontology is available. However, since Jin et al. (2018)
consider only slot values that are known from the ontology by
default, we provide the extended results in Appendix A.2.

2437

method Slot F1 Joint Goal Accuracy Entity Match Rate

Jin et al. supervised 0.967 ± .001 0.897 ± .002 0.869 ± .004

Jin et al. unsupervised 0.719 ± .002 0.385 ± .003 0.019 ± .002

Jin et al. weak-labels 0.709 ± .011 0.335 ± .008 0.269 ± .012

Ours-full (unsupervised) 0.7560.7560.756 ± .004 0.4650.4650.465 ± .007 0.3680.3680.368 ± .008

Table 4: Evaluation on the downstream task of dialogue generation on CamRest676 data. We evaluate with respect

to three state tracking metrics (see Section 5.3). The best results in an unsupervised setting are presented in bold.15

method CR CS WH WA AT

Majority 0.592 0.530 0.883 0.612 0.7270.7270.727

Embedding 0.535 0.551 0.873 0.595 0.705

Ours 0.7050.7050.705 0.6130.6130.613 0.8820.8820.882 0.6990.6990.699 0.677

Table 5: Cluster assignment accuracy of our methods

if we interpret the clustering as user intent detection.

Majority is a majority baseline and Embedding refers

to an average sentence embedding clustering approach.

configuration F1 score

Ours-full 0.663 ± 0.012

Ours -frq 0.600 ± 0.008

Ours -coh 0.582 ± 0.012

Ours -TextRank 0.514 ± 0.006

Table 6: Ablation study of slot ranking features on

CamRest676. The full model is compared to variants

leaving out of the scores described in Section 3.2.2.

didate merging procedure (see also below). Due to

frequent co-occurrence, it might happen that two

semantically unrelated candidates are merged and

therefore some tokens are wrongly included as re-

spective slot fillers. Nevertheless, the merging step

is required in order to obtain a reasonable number

of slots for a dialogue domain.

Our approach does leave some room for improve-

ments, especially regarding the consistency of re-

sults across different slots, which can be imbal-

anced. For instance, on the WOZ-hotel data, we

observe a difference of up to 0.5 F1 score among

individual slots (see Appendix A.2).

Slot candidate ranking results are given in Ta-

ble 2. Our pipeline significantly outperforms Chen

et al. (2014)’s approach on 4 out of 5 datasets. We

can also see that the slot-verb pairs clustering step

is important – in the ablation experiment where

we do not perform clustering (Ours-nocl), perfor-

mance falls dramatically on the WOZ-hotel, WOZ-

attr and ATIS data. This is because without the

clustering step, a large number of context-irrelevant

slot candidates is considered, hurting performance.

In addition, we include a detailed evaluation of

the contribution of the individual slot candidate

ranking scores described in Section 3.2.2. Results

in Table 6 suggest that all of our proposed scores

improve the performance.

Slot merging evaluation is shown in Table 3. Al-

though candidates in the CamRest676 data are

merged into slots reasonably well, other datasets

show a relatively low performance. The low RI

scores are a result of errors in candidate ranking,

which wrongly assigned high ranks to some rare,

irrelevant candidates. These candidates do not ap-

pear in the reference mapping and are assumed to

form singular “pseudo-slots”. However, they are

typically joined with similar candidates in the merg-

ing process. This leads to many pairs of candidates

that are merged into one slot by our approach but

appear separately in the reference mapping. Never-

theless, this behavior barely influences slot tagging

performance as the candidates are rare.

Clustering evaluation: Table 5 suggests that our

clustering performs better than simple baselines

and can potentially yield useful results if used for

intent detection. Nevertheless, intent detection is

more complex and presumably requires more fea-

tures and information about the dialogue context,

which we reserve for future work. The complexity

is also suggested by the fact that the naive embed-

ding clustering performs worse than the majority

baseline in 4 out of 5 cases.

Dialogue response generation: We explore the

influence that our labels have on sequence-to-

sequence dialogue response generation in an ex-

periment on the CamRest676 data (see Table 4).

We can see that our method provides helpful slot

labels that improve dialogue state tracking perfor-

mance. Compared to Jin et al. (2018)’s system

used in a fully unsupervised setting, our approach

shows significant improvements in all metrics. We

achieve better results than Jin et al. (2018)’s sys-

tem especially with respect to entity match rate,

suggesting that our model can provide consistent

labels throughout the whole dialogue. To make

a fair comparison, we further evaluate Jin et al.

(2018)’s system in a setting in which it can learn

2438

Figure 4: The comparison of outputs of our tagger and

the parser. The plots show a number of cases in which

the respective approach encounters more TPs, FPs or

FNs than the other.

from the labels provided directly by weak super-

vision (i.e., the frame-semantic parser, not filtered

by our pipeline). We observe an improvement in

terms of entity match rate, but it does not match

the improvement achieved with our filtered labels.

Surprisingly, slot F1 and joint goal accuracy even

decrease slightly, which suggests that label quality

is important and the noisy labels obtained directly

from weak supervision are not useful enough.

7 Conclusion

We present a novel approach for weakly supervised

natural language understanding in dialogue systems

that discovers domain-relevant slots and tags them

in a standalone fashion. Our method removes the

need for annotated training data by using off-the-

shelf linguistic annotation models. Experiments

on five datasets in four domains mark a signifi-

cant improvement in intrinsic NLU performance

over previous weakly supervised approaches; in

particular, we vastly improve the slot recall. The

usefulness of slots discovered by our method is

further confirmed in a full dialogue response gener-

ation application. Code used for our experiments

is available on GitHub.16

A drawback of our approach is the reliance on

existing linguistic annotation models. We show

that the method is able to combine multiple anno-

tation sources and create a tagger that functions as

a standalone component, generalizing better than

the original annotation and thus lowering this de-

pendency. Nevertheless, the results are still some-

what limited by the input annotation structure and

quality. In future, we plan to further improve the

model by unsupervised selection of slot candidates

via keyword extraction and clustering, as well as

by taking context information from preceding di-

alogue turns into account. We also want to focus

more on the intent detection aspect of our work.

Acknowledgements

This work was supported by Charles University

grants PRIMUS 19/SCI/10, GAUK 302120, and

SVV 260 575. We also want to thank Jindřich Li-

bovický and David Mareček for helpful comments

on the draft, and the anonymous reviewers for their

remarks that helped us further improve the paper.

References

Ankur Bapna, Gokhan Tür, Dilek Hakkani-Tür, and
Larry Heck. 2017. Towards Zero-Shot Frame Se-
mantic Parsing for Domain Scaling. In Proceedings
of Interspeech 2017, pages 2476–2480.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the ACL,
5:135–146.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ – a
large-scale multi-domain Wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
EMNLP.

Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong
He. 2016. Zero-shot learning of intent embeddings
for expansion by convolutional deep structured se-
mantic models. In Proceedings of IEEE ICASSP,
pages 6045–6049.

16https://github.com/vojtsek/

joint-induction

https://doi.org/10.21437/Interspeech.2017-518
https://doi.org/10.21437/Interspeech.2017-518
https://www.aclweb.org/anthology/Q17-1010/
https://www.aclweb.org/anthology/Q17-1010/
https://www.aclweb.org/anthology/D18-1547
https://www.aclweb.org/anthology/D18-1547
https://www.aclweb.org/anthology/D18-1547
https://doi.org/10.1109/ICASSP.2016.7472838
https://doi.org/10.1109/ICASSP.2016.7472838
https://doi.org/10.1109/ICASSP.2016.7472838
https://github.com/vojtsek/joint-induction
https://github.com/vojtsek/joint-induction

2439

Yun-Nung Chen, William Yang Wang, and Alexander
Rudnicky. 2015. Jointly modeling inter-slot rela-
tions by random walk on knowledge graphs for un-
supervised spoken language understanding. In Pro-
ceedings of NAACL, pages 619–629.

Yun-Nung Chen, William Yang Wang, and Alexander I
Rudnicky. 2014. Leveraging frame semantics and
distributional semantics for unsupervised semantic
slot induction in spoken dialogue systems. In Pro-
ceedings of IEEE SLT, pages 584–589.

Samuel Coope, Tyler Farghly, Daniela Gerz, Ivan Vulić,
and Matthew Henderson. 2020. Span-ConveRT:
Few-shot Span Extraction for Dialog with Pretrained
Conversational Representations. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 107–121, Online.

Dipanjan Das, Nathan Schneider, Desai Chen, and
Noah A. Smith. 2010. Probabilistic frame-semantic
parsing. In Proceedings of NAACL-HLT, pages 948–
956, Los Angeles, California.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar,
Anuj Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020.
MultiWOZ 2.1: A Consolidated Multi-Domain Di-
alogue Dataset with State Corrections and State
Tracking Baselines. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
422–428, Marseille, France.

Charles J Fillmore. 1976. Frame semantics and the na-
ture of language. Annals of the New York Academy
of Sciences, 280(1):20–32.

Xiang Gao, Sungjin Lee, Yizhe Zhang, Chris Brockett,
Michel Galley, Jianfeng Gao, and Bill Dolan. 2019.
Jointly Optimizing Diversity and Relevance in Neu-
ral Response Generation. In Proceedings of NAACL,
Minneapolis, MN, USA.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. AllenNLP: A deep semantic natural language
processing platform. In Proceedings of ACL Work-
shop for NLP Open Source Software (NLP-OSS).

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li
Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-
Nung Chen. 2018. Slot-Gated Modeling for Joint
Slot Filling and Intent Prediction. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 753–757, New Orleans, Louisiana.

Dilek Hakkani-Tür, Larry Heck, and Gokhan Tur. 2013.
Using a knowledge graph and query click logs for
unsupervised learning of relation detection. In Pro-
ceedings of IEEE ICASSP, pages 8327–8331.

Larry Heck and Dilek Hakkani-Tür. 2012. Exploiting
the semantic web for unsupervised spoken language
understanding. In Proceedings of IEEE SLT, pages
228–233.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The ATIS spoken language sys-
tems pilot corpus. In Proceedings of the workshop
on Speech and Natural Language - HLT ’90, pages
96–101, Hidden Valley, Pennsylvania.

Matthew Henderson, Milica Gašić, Blaise Thomson,
Pirros Tsiakoulis, Kai Yu, and Steve Young. 2012.
Discriminative spoken language understanding us-
ing word confusion networks. In Proceedings of
IEEE SLT, pages 176–181.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of EMNLP, pages 216–223.

Xisen Jin, Wenqiang Lei, Zhaochun Ren, Hongshen
Chen, Shangsong Liang, Yihong Zhao, and Dawei
Yin. 2018. Explicit state tracking with semi-
supervision for neural dialogue generation. In Pro-
ceedings of ACM CIKM, pages 1403–1412.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of NAACL, pages 260–270.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequicity:
Simplifying task-oriented dialogue systems with sin-
gle sequence-to-sequence architectures. In Proceed-
ings of ACL, pages 1437–1447.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A Diversity-Promoting Objec-
tive Function for Neural Conversation Models. In
Proceedings of the 15th Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 110–119, San Diego, CA, USA.

Zihan Liu, Genta Indra Winata, Peng Xu, and Pascale
Fung. 2020. Coach: A Coarse-to-Fine Approach for
Cross-domain Slot Filling. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 19–25, Online.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of EMNLP, pages
404–411.

Nikola Mrkšić, Diarmuid O Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017. Neu-
ral belief tracker: Data-driven dialogue state track-
ing. In Proceedings of ACL, pages 1777–1788.

Martha Palmer, Daniel Gildea, and Nianwen Xue. 2010.
Semantic role labeling. Synthesis Lectures on Hu-
man Language Technologies, 3(1):1–103.

http://aclweb.org/anthology/N15-1064
http://aclweb.org/anthology/N15-1064
http://aclweb.org/anthology/N15-1064
https://doi.org/10.1109/SLT.2014.7078639
https://doi.org/10.1109/SLT.2014.7078639
https://doi.org/10.1109/SLT.2014.7078639
https://www.aclweb.org/anthology/2020.acl-main.11
https://www.aclweb.org/anthology/2020.acl-main.11
https://www.aclweb.org/anthology/2020.acl-main.11
https://www.aclweb.org/anthology/N10-1138
https://www.aclweb.org/anthology/N10-1138
https://www.aclweb.org/anthology/2020.lrec-1.53
https://www.aclweb.org/anthology/2020.lrec-1.53
https://www.aclweb.org/anthology/2020.lrec-1.53
https://doi.org/10.1111/j.1749-6632.1976.tb25467.x
https://doi.org/10.1111/j.1749-6632.1976.tb25467.x
https://www.aclweb.org/anthology/N19-1125/
https://www.aclweb.org/anthology/N19-1125/
https://www.aclweb.org/anthology/W18-2501/
https://www.aclweb.org/anthology/W18-2501/
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.1109/ICASSP.2013.6639289
https://doi.org/10.1109/ICASSP.2013.6639289
https://doi.org/10.1109/SLT.2012.6424227
https://doi.org/10.1109/SLT.2012.6424227
https://doi.org/10.1109/SLT.2012.6424227
https://doi.org/10.3115/116580.116613
https://doi.org/10.3115/116580.116613
https://doi.org/10.1109/SLT.2012.6424218
https://doi.org/10.1109/SLT.2012.6424218
https://www.aclweb.org/anthology/W03-1028/
https://www.aclweb.org/anthology/W03-1028/
https://doi.org/10.1145/3269206.3271683
https://doi.org/10.1145/3269206.3271683
https://www.aclweb.org/anthology/N16-1030/
https://www.aclweb.org/anthology/P18-1133
https://www.aclweb.org/anthology/P18-1133
https://www.aclweb.org/anthology/P18-1133
https://www.aclweb.org/anthology/N16-1014
https://www.aclweb.org/anthology/N16-1014
https://www.aclweb.org/anthology/2020.acl-main.3
https://www.aclweb.org/anthology/2020.acl-main.3
https://www.aclweb.org/anthology/W04-3252
https://www.aclweb.org/anthology/W04-3252
https://www.aclweb.org/anthology/P17-1163
https://www.aclweb.org/anthology/P17-1163
https://www.aclweb.org/anthology/P17-1163

2440

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Proceedings of
AAAI, pages 3776–3783.

Darsh Shah, Raghav Gupta, Amir Fayazi, and Dilek
Hakkani-Tur. 2019. Robust Zero-Shot Cross-
Domain Slot Filling with Example Values. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5484–
5490, Florence, Italy.

Igor Shalyminov, Sungjin Lee, Arash Eshghi, and
Oliver Lemon. 2019. Few-shot dialogue genera-
tion without annotated data: A transfer learning ap-
proach. In Proceedings of SIGDIAL, Stockholm,
Sweden.

Chen Shi, Qi Chen, Lei Sha, Sujian Li, Xu Sun,
Houfeng Wang, and Lintao Zhang. 2018. Auto-
Dialabel: Labeling dialogue data with unsupervised
learning. In Proceedings of EMNLP, pages 684–
689.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and
Noah A Smith. 2017. Frame-semantic parsing with
softmax-margin segmental RNNs and a syntactic
scaffold. arXiv:1706.09528.

Lu Wang, Larry Heck, and Dilek Hakkani-Tür. 2014.
Leveraging semantic web search and browse ses-
sions for multi-turn spoken dialog systems. In Pro-
ceedings of IEEE ICASSP, pages 4082–4086.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksić,
Milica Gašić, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of EACL, pages 438–449.

Jason Williams, Antoine Raux, Deepak Ramachandran,
and Alan Black. 2013. The dialog state tracking
challenge. In Proceedings of SIGDIAL, pages 404–
413.

Xiaohao Yang, Jia Liu, Zhenfeng Chen, and Weilan
Wu. 2014. Semi-supervised learning of dialogue
acts using sentence similarity based on word embed-
dings. In Proceedings of ICALIP, pages 882–886.

S. Young, M. Gasic, B. Thomson, and J.D. Williams.
2013. POMDP-based statistical spoken dialog
systems: A review. Proceedings of the IEEE,
101(5):1160–1179.

Tiancheng Zhao and Maxine Eskenazi. 2018. Zero-
shot dialog generation with cross-domain latent ac-
tions. In Proceedings of SIGDIAL, pages 1–10.

http://arxiv.org/abs/1507.04808
http://arxiv.org/abs/1507.04808
http://arxiv.org/abs/1507.04808
https://doi.org/10.18653/v1/P19-1547
https://doi.org/10.18653/v1/P19-1547
http://arxiv.org/abs/1908.05854
http://arxiv.org/abs/1908.05854
http://arxiv.org/abs/1908.05854
https://www.aclweb.org/anthology/D18-1072/
https://www.aclweb.org/anthology/D18-1072/
https://www.aclweb.org/anthology/D18-1072/
https://arxiv.org/abs/1706.09528
https://arxiv.org/abs/1706.09528
https://arxiv.org/abs/1706.09528
https://doi.org/10.1109/ICASSP.2014.6854369
https://doi.org/10.1109/ICASSP.2014.6854369
https://www.aclweb.org/anthology/E17-1042
https://www.aclweb.org/anthology/E17-1042
https://www.aclweb.org/anthology/E17-1042
https://www.aclweb.org/anthology/W13-4065/
https://www.aclweb.org/anthology/W13-4065/
https://doi.org/10.1109/ICALIP.2014.7009921
https://doi.org/10.1109/ICALIP.2014.7009921
https://doi.org/10.1109/ICALIP.2014.7009921
https://doi.org/10.1109/JPROC.2012.2225812
https://doi.org/10.1109/JPROC.2012.2225812
http://aclweb.org/anthology/W18-5001
http://aclweb.org/anthology/W18-5001
http://aclweb.org/anthology/W18-5001

2441

A Additional Results

A.1 Slot tagging precision and recall

method
CR CS WH WA AT AT(+NER)

P R P R P R P R P R P R

Tag-supervised∗ 0.794 0.814 0.823 0.696 0.880 0.683 0.802 0.715 0.772 0.913 – –
Dict-supervised∗ 0.793 0.710 0.831 0.752 0.869 0.710 0.669 0.859 0.546 0.990 – –

Chen et al. 0.771 0.486 0.813 0.529 0.384 0.579 0.362 0.462 0.701 0.583 – –

Ours-nocl 0.537 0.347 0.616 0.371 0.101 0.218 0.244 0.340 0.634 0.595 0.662 0.704

Ours-notag 0.561 0.586 0.690 0.688 0.369 0.607 0.335 0.575 0.715 0.642 0.685 0.623

Ours-nothr 0.636 0.549 0.585 0.566 0.458 0.575 0.394 0.561 0.701 0.687 0.710 0.697

Ours-full 0.752 0.643 0.718 0.703 0.494 0.750 0.373 0.606 0.684 0.672 0.703 0.725

Table 7: Precision (P) and recall (R) values slot tagging performance comparison among different methods (see

Section 5.2; frames are used as weak supervision in all setups, the rightmost column on ATIS additionally uses

NER). We can see consistent recall improvement when using our slot tagger. The measures are evaluated using a

manually designed slot mapping to the datasets’ annotation, which is not needed for the methods themselves (see

Section 5.3). ∗Note that supervised setups are not directly comparable to our approach.

A.2 Individual slot performance

dataset price area request type food day people stars stay

CR 0.543 0.764 0.759 – 0.590 – – – –
CS 0.629 0.835 0.480 0.813 0.642 – – – –
WH 0.208 0.524 0.107 0.125 – 0.146 0.822 0.821 0.341

Table 8: Per-slot F1 scores of the Ours-full method evaluated on selected datasets with slot intersection. For some

slots the performance varies a lot among datasets due to different ranges of values and contexts. The measures are

evaluated using a manually designed slot mapping to the datasets’ annotation, which is not needed for the methods

themselves (see Section 5.3).

method
Slot F1 Joint Goal Accuracy Entity Match Rate

onto no-onto onto no-onto onto no-onto

Jin et al. supervised 0.969 ± .001 0.967 ± .001 0.911 ± .002 0.897 ± .002 0.892 ± .004 0.869 ± .004

Jin et al. unsupervised 0.8730.8730.873 ± .003 0.719 ± .002 0.6320.6320.632 ± .009 0.385 ± .003 0.398 ± .010 0.019 ± .002

Ours-full (unsupervised) 0.821 ± .004 0.7560.7560.756 ± .004 0.533 ± .007 0.4650.4650.465 ± .007 0.4450.4450.445 ± .009 0.3680.3680.368 ± .008

Table 9: Evaluation on the downstream task of dialogue generation on CamRest676 data. We evaluate with re-

spect to three distinct metrics of state tracking performance. Two variations of metrics are included: onto takes

only slot values present in ontology into account, no-onto does not require ontology information and thus fits the

unsupervised setting better (cf. Section 5.3). In bold we present the best results in unsupervised setting.

B Reference mapping

Ours-full output CambridgeSLU ontology

Expensiveness ↦→ Pricerange
Origin + People_by_origin ↦→ Food

Direction + Part_orientational ↦→ Area
Contacting + Artifact ↦→ Phone

Locale_by_use ↦→ Type

Table 10: An example of reference mapping between the output of Ours-full represented by FrameNet labels (left)

and ground-truth CambridgeSLU ontology (right). Frames merged by our method are shown on a single line,

separated by “+”.

2442

C Training details

Here we provide details about training process and

model sizes:

• Since the models are rather small with regards

to number of parameters, it is sufficient to use

a regular desktop PC. In our experiments, we

require about 4 GB of RAM, and we use Intel

Xeon E5-2630 v4 CPUs.

• Our slot candidate selection step takes roughly

1 hour. The tagger model is lightweight, with

only 150k parameters. Its training requires

10-30 minutes, depending on the exact config-

uration and data size.

• The evaluation scripts are attached and de-

scribed in the README file.

• We conduct hyperparameter search using a

basic grid search algorithm. We tested hidden

size values ∈ [50, 200], dropout ∈ [0.5, 0.85]

and the threshold)tag ∈ [0.05, 0.3]. There-

fore, we ran 4 × 8 × 6 = 192 search trials.

• The best parameters were determined by

tagger accuracy on the validation set: hid-

den_size = 250, dropout = 0.7,)tag = 0.3,

)sim = 0.9.

• Links to the data are included in the README

file, we use train:validation:split ratio equal

to 8:1:1.

