
Discovering distributed processes in supply chains 

Laura Maruster, J.C. (Hans) Wortmann, A.J.M.M. (Ton) Weijters and W.M.P. (Wil) 

van der Aalst 
Eindhoven University of Technology, Faculty of Technology Management, I&T Department, 

5600MB Eindhoven, The Netherlands. 

Abstract 
Processes such as tendering, ordering, delivery, and paying are executed by several parties in 

almost all supply chains. However, none of these parties has a proper overview over the 

whole set of activities executed. Therefore, none of the parties can take the lead in business 

process redesign. Business processes are often not described in an explicit manner, and 

therefore they are not available for analysis. However, in the information system of each 

supply chain party, partial information about the business process are recorded. We claim that 

the overall distributed process can be induced, by using this partial information of all involved 

parties. 

In this paper we present an overview of methods available to discover processes across 

supply chains, based on the assumption that there is a common point of reference at all 

involved parties, e.g. an order number. Such an induced or discovered process enables 

analysis across the supply chain, and can become an important tool to facilitate business 

process redesign in networked organizations. 

Keywords 
Supply chain, workflow management systems, process mining, Petri nets. 

INTRODUCTION 

Despite of the wide use of the term "supply chain", there is not much known 

about the functioning of particular supply chains in practice. It is like travelling in 

the mountains: nowhere there is a place from which all slopes and gorges can be 

seen. When on route, it is only possible to see the path followed from one turn to the 

next one. Similarly, none of the partners in a supply chain has complete overview of 

what activities are executed by which partners. 

Especially when it comes to quantitative determination of how much costs are 

incurred per process in the supply chain, there is hardly any material available to 

each of the participants. When extending the notion of supply chains to virtual 

enterprises, the lack of factual knowledge is even larger. 

This paper is organized as follows: in next Section we will illustrate the above 

problem in a real life case study. This leads to the conclusion, that empirical analysis 

of processes in distributed environments is barely needed. In particular, none of the 

parties in a supply chain has any insight in the costs induced at other parties. More 

H. S. Jagdev et al. (eds.), Collaborative Systems for Production Management

© Springer Science+Business Media Dordrecht 2003



220 

surprisingly, we will claim that these parties do not even have insight in their own 

part of the processes involved. Following Section introduces the notion of process 

mining as a method to discover processes from empirical data. Remaining Sections 

provide an overview of process mining techniques and discuss the applicability in 

the supply chain context. 

REAL-LIFE CASE STUDY 

In a study on Supply Chain improvement (see Wouters et al. 1999) a supply 

chain of electrical installation in building and construction was investigated. Such a 

supply chain consists of manufacturers delivering products, wholesalers who make 

these products available to installers who are contracted by customers to provide 

electrical installations according to documents provided by architects. One of the 

results, describing the processes between manufacturers, wholesalers and installers, 

is depicted in Figure 1. 

Figure 1 - Processes in the installation supply chain 

Consider for example the contracting process in Figure 1. When an installer 

negotiates on products and work methods to be used for a particular prospect, the 

tendering will involve many requests for price quotations with the wholesalers. The 

wholesaler may, in tum, contact the supplier for technical specifications, possible 

delivery conditions, etc. However, the installer is not exactly aware of the activities 

triggered with the wholesaler and/or the manufacturer. For example, the installer 

may ask the same question to many wholesalers, and all these may contact various 

manufacturers for the same question on technical specifications. This is clearly a 

situation where the party which causes costs in the network (the installer) does not 

have visibility on the induced costs. 

When the installer and a particular wholesaler are going to have as closer 

partnership, it is essential to be able to have a proper view on the costs encountered 



221 

in these processes. It should be realized, that many organizations do not have their 

processes well described in process modelling formalisms. Rather, the work moves 

from one desk to another one, until a particular request is answered in a satisfactory 

way. 

A frrst step towards proper workflow analysis would be, to make sure that the 

same reference (e.g. quotation number) is used throughout the supply chain in order 

to relate activities at partners to the same process identifier. When this is the case, 

then parties involved may start to collect data on the subsequent stages through 

which a particular process proceeds. 

In the project performed with the installation supply chain, it was concluded that 

supply chain optimization is dramatically enhanced if partners understand each 

others processes and cost drivers. However, partners are extremely reluctant to allow 

each other to be enabled to calculate margins. Consequently, it is easy to convince 

the participants that quantitative analyses of processes make sense, but partners are 

generally unwilling to allow precise measurement of resource consumption. 

Therefore, joint process descriptions are welcomed by all parties in a supply chain, 

and participants are willing to submit descriptions of activities spent in the processes 

as depicted above in Figure 1, with clear reference to e.g. an identifier for tenders or 

orders. 

INTRODUCTION TO PROCESS MINING 

The managing of complex business processes calls for the development of 

powerful information systems, able to control and support the flow of work. These 

systems are called Workflow Management Systems (WtMS) and generally they are 

thought of as "a generic software tool which allows for definition, execution, 

registration and control of workflows" [1]. Despite the workflow technology 

promise, many problems are encountered when applying it. One of the problems is 

that these systems require a workflow model, i.e. a designer has to construct a 

detailed model accurately describing the routing of work. The drawback of such an 

approach is that a workflow model requires a lot of efforts from the workflow 

designers, workers and management, is time consuming and often subjective and 

incomplete. 

The idea that we propose is to reverse the process; instead of designing a 

workflow model, why not collecting the information related to the process and 

inducing the underlying workflow model? 

In the context of different partners which are participating in a supply chains of 

electrical installation, it means that the manufacturer, the wholesaler and the installer 

only needs to have a system of recording the process activities and to agree on a 

common order number and eventually on a common quotation numbers for the same 

type of processes. Subsequently, process-mining techniques can be used to reveal 

the overall distributed process. In the following subsection we provide a description 

of the process-mining problem. 



222 

What means process mining? 

We use the term process mining for the method of distilling a structured process 

description from a set of real executions of a certain business process. To illustrate 

the idea of process mining, consider the process executions from Table 1. 

Table 1 -An example of a process log 

C~'llumber 

Case 1 

Case2 

Case 3 

Case4 

CaseS 

Case 6 

Case 7 

E11:emted t;:~Sks 

AFGHIKL 

ABCEJL 

AFHGIKL 

AFGIHKL 

ABCEJL 

ABDJL 

ABCEJL 

In this example, there are seven cases that have been processed and twelve 

executed tasks. We can notice the following: for each case, the execution starts with 

task A and ends with task L, if C is executed, then E is executed. Also, sometimes 

we see task Hand I after G and H before G. We assume that it is possible to record 

events such that (i) each event refers to a task, (ii) each event refers to a case and 

(iii) events are totally ordered. We call this information history the process log. The 
process log is used to construct a process specification, which adequately models the 

registered behaviour. Using the information shown in Table 1, we can discover the 

process model depicted in Figure 2. To represent the model a Petri net is used [1]. 

More details about the Petri net formalism are given later. 

Figure 2 -A process model for the process log shown in Table 1 

The Petri net from Figure 2 starts with task A and finishes with task L. In the 

Petri net formalism, an tasks are represented as transitions (marked as rectangular 

blocks). After executing A, either task B or task F can be executed. If task F is 

executed, tasks H and G can be executed in parallel. A parallel execution of tasks H 

and G means that they can appear in any order. In the Petri net formalism, the 

parallel construct "after task F, tasks H and G are executed in parallel" is 
represented with the aid of two circles called "places", labelled "2" and "3". The 

choice construct "after task B, task D or task C are executed" is represented with 
only one place, labelled "7". 



223 

From the information given in Table 1 is relatively simple to construct the Petri 

net from Figure 2. In the case of real-world processes where much more tasks are 

involved and with a high level of parallelism, the problem of discovering the 

underlying process becomes very complex. In our process log example from Table 

l, it is easy to detect that the direct successors for task A are tasks B and F and for 

task B are tasks C and D. After task A, either task B or task F can be executed, thus 

there is a choice between B and F, that can be easily detected (the same holds for 

task B, where a choice can be made between the execution of Cor D). However, in 

case of parallel tasks, it is not so easy to decide which the direct successor is. For 

example, for the log presented in Table 1, which is the direct successor for task G: I 

orH? 

In practical situation it seems realistic to assume that workflow logs contain 

noise. Different situations can lead to noisy logs, like missing registration data or 

input errors. Moreover, logs can be incomplete. A log is incomplete if: 

'" The process that generates the log is too complex. In such a situation, it is 

possible that too few information are registered. 
'" There are tasks or combinations of tasks with a very long execution time. Let's 

consider the example presented in Figure 2. If we suppose to be always the case 

that event H is processed in 1 time unit, event G in 3 time units and I in 2 time 
units and H always finishes its execution before I starts, then we will always 

see the sequence "AFHIGKL" and never the sequence "AFGIHKL". Thus, we 

will not have that log information from where to determine that H is directly 

followed by K. 

'" Unbalance can exists between the probabilities of task executions. In Figure 2, 

after task A is executed, either task B or F can be executed. A task execution 
unbalance means, for example, that after task A, in 80% of the cases task B will 

be executed and only in the rest of 20% of the cases, task F will be executed. 

In later section we will present some process mining methods which try to 

provide solutions in case of noise and incomplete logs. 

Related work 

The idea of process mining is not new; it is already applied in different domains 

as software engineering processes [4-6] and workflow management [3, 7-10, 15]. 

Cook and Wolf have investigated similar issues in contexts of software 
engineering processes. They provide methods for process discovery in case of 

sequential processes [4], concurrent processes [5] and also a technique which 

display the differences between the process model and the real behaviour [6]. In [4], 

Cook and Wolf describe three methods for process discovery in case of software 

engineer processes: one using neural networks, one using a purely algorithmic 

approach and one Markovian approach. These authors consider the latter the two the 
most promising approaches. The purely algorithmic approach builds a finite state 

machine where states are fused if their futures (in terms of possible behaviour in the 

next k steps) are identical. The Markovian approach uses a mixture of algorithmic 

and statistical methods and is able to deal with noise. Note that the results presented 

in [4] are limited to sequential behaviour. Cook and Wolf extend their work to 



224 

concurrent processes in [5]. They propose specific metrics (entropy, event type 

counts, periodicity, and causality) and use these metrics to discover models out of 

event streams. However, they do not provide an approach to generate explicit 

representations for a broad rage of process models, i.e. we want to be able to 

generate a concrete Petri net rather than a set of dependency relations between 

events. In [6] Cook and Wolf provide a measure to quantify discrepancies between a 

process model and the actual behaviour as registered using event-based data. 

The idea of applying process mining in the context of workflow management 

was frrst introduced in [3]. This work is based on workflow graphs, which are 

inspired by workflow products such as ffiM MQSeries workflow (formerly known 

as Flowmark) and InConcert. In this last mentioned paper, two problems are defined. 

The first problem is to find a workflow graph generating events appearing in a given 

workflow log. The second problem is to find the definitions of the edge conditions. 

In [15], a tool based on these algorithms is presented. Herbst and Karagiannis also 

address the issue of process mining in the context of workflow management [7-10]. 

The approach uses the ADONIS modelling language and is based on hidden Markov 

models where models are merged and split in order to discover the underlying 

process. The work presented in [7, 9, 10] is limited to sequential models. A notable 

difference with the other approaches is that the same activity can appear multiple 

times in the workflow models. The result in [8] incorporates concurrency but also 

assumes that workflow logs contain explicit causal information. The latter technique 

is similar to [3, 15] and suffers from the drawback that the nature of splits and joins 

(i.e. AND and OR relations) is not discovered. 

As we can observe from the mentioned literature, a robust process-mining 

method should fulfil certain requirements: 

" Be able to detect concurrency. Generally, business processes are characterized 

by parallel processes. Thus, the algorithms which are limited to discover only 

sequential processes are not suitable to business processes. 

" Detect AND/OR relations explicitly and to model these relations with the aid of 

an appropriate modelling formalism. 

" Reflect the behaviour as registered in the process log. 

" The resulting model to be as simple as possible. 

We try to develop methods that respect these four requirements. As modelling 

formalism we chose the Petri nets. Petri nets provide a graphical but theoretical 

robust founded language for modelling concurrency. Petri nets (PN) have been 

successfully used to model and analyze processes from many domains, like for 

example, software and business processes. Processes can be modelled by WF nets, 

which form a subclass of PN [1]. In the following subsection we provide some 
basics about Petri nets. 

Workflow models and workflow nets 

A classical Petri net is a directed graph with two kinds of nodes, places and 

transitions, where arcs connect a place to a transition or a transition to a place. Each 

place can contain zero, one or more tokens. The state of a classical PN is determined 

by the distribution of tokens over places. A transition can frre if each of its input 



225 

contains tokens. If the transition fires, i.e. it executes, it takes one token from each 

input place and puts one token on each output place. 

W orkt1ows are case oriented, which means that each activity executed in the 

workflow corresponds to a case. For example, a case corresponds with an insurance 
claim. The process definition of a workflow assumes that a partial order exists 
between activities, establishing the execution order of the activities. Referring to the 
Petri net formalism, workflow activities are modelled as transitions and the causal 

dependencies between activities are modelled as places and arcs. 

A workflow net (WF) net is a classical PN with one source place (i.e. a place 

without incoming arcs), that represents the beginning of the case in the workflow, 

and a sink place (i.e. a place without outgoing arcs), which represents the end of the 

case in the workflow. Each transition and place in the WF net is on a path from 

source place to sink place. 

The routing in a workflow assumes four kinds of routing constructs: sequential, 

parallel, conditional and iterative routing [1]. Sequential routing concerns ordered 
causal relationships between tasks. For example, if we consider tasks A and B, we 
have a sequential routing construct when task B is executed only after task A is 

executed. Parallel routing is used when the order of execution is less strict. A 
parallel routing is modelled by AND-split and AND-join blocks. An AND-split 
corresponds to a transition with two or more output places and an AND-join 

corresponds to a transition with two or more input places. Conditional routing 
allows the modelling of a choice between two or more alternatives. To express the 
conditional construct, OR-split and OR-join blocks are used. An OR-split 

corresponds to two or more alternative output transitions and an OR-join 
corresponds to two or more alternative input transitions" For example, in Figure 2 

we can identify the following routing constructs: transitions 1-I and G are AND

splits, K is an AND-join, the places 1 and 7 (represented as circles) are OR-splits 
and 9 and 10 are OR-joins. 

OVERVIEW OF PROCESS MINING TECHNIQUES 

One of our first process mining results are based on some empirical 

experiments. We observed that simple process mining techniques work in case of 
some sorts of Petri nets and do not in case of others. A very natural question arose: 
which kind of processes can be rediscovered? Subsequently, we split the process 
mining problem in two approaches: 

1. The "theoretical" approach: find the classes of workflow models for which it is 
possible to accurately constmct the model by merely looking at their logs, 

assuming noise free and complete log. 

2. The "practical" approach: given a process log, construct the underlying Petri 

net, (i) in the presence of noise and (ii) incomplete log. 

The theoretical approach is very useful for providing insights with respect to the 

limitations of the process mining methods also in case of the practical approach. In 
the following two subsections we provide an overview of both theoretical and 
practical approaches. 



226 

The theoretical approach 

Our experiments started with the construction of different WF-nets and for each 

WF-net we generated a workflow log [11]. We showed that in case of sound and 

acyclic workflow nets involving parallel, conditional and sequential construct, our 

method was able to rediscover the original WF-nets. However, in case of a not-free 

choice WF-net the method was not able to find all connections between events. 

Subsequently, in [2] we formulated the "theoretical approach" of the process 

mining problem as a twofold objective. First, assuming the ideal situation without 

noise, we are looking for a mining algorithm that is able to rediscover sound WF

nets, i.e. based on a complete workflow log the corresponding workflow process can 

be derived. Sound WF-nets are those WF-nets where no deadlocks, infinite loops, 

etc. can happen, thus the soundness property insures a correct behaviour of the WF

net. To reason about the quality of a workflow mining algorithm, we need to make 

assumptions about the completeness of a log. For a complex process, a handful of 

traces will not suffice to discover the exact behaviour of the process. Thus, a 

workflow is complete if all tasks that potentially directly follow each other in fact 

directly follow each other in some trace in the log. Second, given such an algorithm 

we want to indicate the class of workflow nets which can be rediscovered, which of 

course, should be as large as possible. 

We found a mining algorithm for which it was possible to prove that: given a 

complete workflow log and assuming zero noise, it is possible to rediscover sound 

Petri nets, with the requirements that the underlying Petri net should belong to the 

class of structured Petri nets (SWF) (for more details about structured Petri nets, see 

[2]). 

Although such a result can leave the impression that only a small class of Petri 

nets can be rediscovered, we explained that from a practical point of view it is not 

the case. First, SWS-nets allow for all routing constructs encountered in practice, i.e. 

sequential, parallel, conditional and iterative routing are possible and the basic 

workflow building blocks (AND-split, AND-join, OR-split and OR-join) are 

supported. Second, workflow nets that are not SWF-nets are typically difficult to 

understand and should be avoided if possible. 

Although there are necessary some requirements in order to prove that the class 

of SWF-nets can be rediscovered on the basis of a complete workflow log, the 

applicability is not limited to SWF-nets. We also showed in [2] that in many 

situations a behaviourally equivalent workflow net can be derived. Even in the cases 

when the resulting workflow net is not behaviourally equivalent, it is meaningful 

and captures most of the behaviour, thus provides insights into the considered 

process. 

Also, we made the remark that these theoretical results are consistent with other 

empirical results. For example, the fact that workflow process exhibiting non-free 

choice behaviour are difficult to mine was observed both in theory and practice [2, 
11, 13]. 



227 

The practical approach 

The conclusions provided by the theoretical approach are very useful because 

we become aware of some of the possible limitations of the process mining problem, 

(e.g. the classes of WF-nets that cannot be mined correctly). However, one of the 

"strongest'' assumption in the case of the theoretical approach is the absence of noise 

and the completeness of the process log, which is very difficult to find in practice. 

Therefore, in the practical approach, we concentrate on situations with noise and 

incomplete information in the process log. 

We present two heuristic methods. The first method is using a parameter which 

is set in function of the amount of noise. The second method is going in the same 

direction: it is based on a learning approach for finding a threshold value which is 

used to detect for each task its direct successors. 

The first heuristic method 

In [13] is presented a method where the inducing of the WF-net depends on a 

parameter set in function of noise level. The method is based on (i) the 

dependency/frequency table and (ii) the causality metric. The dependency/frequency 

table (D/F-table); contains information about frequencies of events, frequencies of an 

event directly following all the other events, etc. The causality metric indicates the 

strength of the causality relation between two events and is calculated based on the 

information provided in the D/F table. The WF-net is constructed considering three 

rules where the causality metric and the noise level should exceed some threshold 

values. The experimental results shown that the method was able to discover the 

WF-net when the noise parameter varied. Thus, it seems that the method was robust 

in case of noise for the considered WF-nets. However, in case of non-free choice 

WF-nets, this heuristic method was not able to discover all connections, which is 

again in line with our theoretical results. 

The results from [13] were preliminary; therefore we considered that more 

experimental work should be done in order to provide a robust method for process 

mining when noise is present. Such a method is explained in the next subsection. 

The second heuristic method (the learning approach) 

Performing more experiments, we remarked that the previous method based on 

the noise parameter and the threshold value was not providing always good results. 

We tried to improve it by developing a learning method for finding automatically a 

threshold that can be used to induce the WF-net. 

Our idea was to use the same information from the D/F table and to develop 

additional metrics that can help to discover a process from the workflow logs. 

Subsequently, we split the pr~cess mining problem in two subproblems: (i) finding 

the direct successors for each event and (ii) finding the AND/OR relation between a 

pair of two events. For solving the two mentioned subproblems, we planned to use a 

global learning approach, namely to develop a logistic regression model. Once we 

know for all events their direct successors and the AND/OR relations between 

events, we can construct the WF-net. 



228 

In [12], we provided a method for solving the first process mining subproblem. 

Namely, given a workflow log, we have to find the direct successor task(s) for each 

event, (i) in the presence of noise and (ii) incomplete log. 

In addition to the causality metric already introduced (see [13]), we built two 
new metrics which express the succession relation: a local metric and a global 
metric. The local metric is comparing the frequency of an event X directly preceded 

by an event Y with the frequency of event Y directly preceded by event X. The 

global metric compares the two frequencies mentioned before by taking into account 
the overall frequencies of events X and Y. The three me tries, i.e. the causality metric 

and the local and global metrics were used to develop a logistic regression model 

that can be used to predict when two events are in the direct succession relation. In 
order to develop the logistic regression model, a learning material was produced, by 
varying the number of event types, the amount of information contained in the 
workflow log, the amount of noise and the unbalance of task execution probabilities. 

In conclusion, the method was able to find almost an direct connections in the 
presence of parallelism, unbalance and noise. Also, we tested our model on a 
workflow log generated by a more complex Petri net than the learning material, 
resulting in a close performance to the learning materiaL The next step is to use the 
same learning approach for finding the AND/OR relations between two events, 
which is actually an ongoing work. In this way, we are able to build the WF-net 
which is our final goal. 

APPLICABILITY IN THE CONTEXT OF SUPPLY CHAIN 
OPTIMIZATION 

Let us now return to the problem with which this paper started: redesigning 
business processes in networked enterprises. Recall that each participant in a supply 

network has very limited information on the process steps executed with his 
suppliers, customers, or subcontractors. In other words, no party in the supply 

network has proper view on the whole set of activities related to e.g. a quotation, an 
order, or a shipment. 

On the other hand, experience as described in [14] learns the following. Each 
chain, i.e. each business process involving a particular manufacturer, wholesaler, 
and installer, when analyzed in detail, showed considerable opportunity for 

improvement. 

For example, ordering by wholesalers to manufacturers turns out to be much 

lower than ordering costs by installers to manufacturers. This is due to the fact that 
wholesalers have optimized their logistics and installers have optimized their 
engineering and installing activities. However, this does not mean that it always 
makes sense to have the shipments physically fiow through the warehouse of the 
wholesaler. It could be more attractive to move the goods directly from the 
manufacturer to the construction site where the installer is working. Such ideas 
require careful analysis of what happens in practice, not only in terms of financial 
transactions, but also in terms of frequencies of information exchange and cost 
driving activities. It took many man-months of work to investigate such facts in the 



229 

project reported in [14], and the results were sometimes unsatisfactory because the 

ultimate insight in the complete business process could not be gained. 

The idea is to provide a solution for collecting the necessary information about 

the whole business process, with less effort and with more reliable results, and to use 

efficiently these data. Our method consists on two basic steps. First, each part 

involved into the supply chain has to enable a task registration system that allows 

recording all the tasks or activities that have been executed into the process. An 

essential requirement is that all involved parts have to agree on a common order 

number and eventually on common quotation numbers for the same type of 

processes. Second, the process logs produced by the task registration system are 

used by the process mining techniques described in following sections and a Petri 

net for the whole distributed process is induced. Further on, the obtained model can 

be analyzed by the involved parties and eventually changes can occur in order to 

optimize the supply chain and to diminish the overall process costs. 
By using such a method we expect that the supply chain activity can be 

improved because the parties (i) will benefit of a deeper understanding of the entire 

distributed process and (ii) they will be not obliged to allow that precise 

measurements for resource consumption that they are not willing to make them 
public. 

CONCLUSIONS 

There is considerable need in practice to discover business processes, which 

cross the boundaries of individual companies. Description of such processes in terms 
of frequencies and costs constitute a sound basis for supply chain optimization. It 
was argued, that such a discovery is by no means trivial. 

An overview is given about new techniques that induce workflows from a 

workflow log, in which traces of individual workflows are shown, even if there is 

some noise in the data or the log is incomplete. However, in order to apply these 

techniques it is essential that companies involved in the supply chain use a common 
denominator for describing their activities, such as an order number. Only than it is 
possible to create Petri-nets, which fit the workflow log. 

These techniques cannot determine distributed workflows in such a way that 

they completely cover all aspects of reality in all detail. The induced workflows 

cannot be better than the data they stem from. However, these workflows represent 

reality with sufficient precision to form a basis for redesign of cross-organizational 
processes. This is exactly the purpose they should serve! 

REFERENCES 

[1] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. J. of 

Circuits, Systems, and Computers, 8(1): 21- 66; 1998. 

[2] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow mining: which 

processes can be rediscovered? Beta publication, WP 75 2002, Eindhoven, The 

Netherlands. 



230 

[3] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process models from Workflow 

Logs. In Sixth International Conference on Extended Database Technology, pg. 469 -

483, 1998. 

[4] J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-Based 

Data, ACM Transactions on Software Engineering and Methodology, 7(3): 215 - 249, 

1998. 

[5] J.E. Cook and A.L. Wolf. Event-Based Detection of Concurrency. In Proceedings of the 

Sixth International Symposium on the Foundations of Software Engineering (FSE-6), 

Orlando, FL, November 1998, pp. 35- 45. 

[6] J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring the 

correspondence of a Process to a Model. ACM Transactions on Software Engineering 

and Methodology, 8(2): 147- 176, 1999. 

[7] J. Herbst. A Machine Learning Approach to Workflow Management. In 11th European 

Conference on Machine Learning, volume 1810 of Lecture Notes in Computer Science, 

pages 183- 194, Springer, Berlin, Germany, 2000. 

[8] J. Herbst. Dealing with Concurrency in Workflow Induction In U. Baake, R. Zobel and 

M. Al-Akaidi, European Concurrent Engineering Conf., SCS Europe, Gent, Belgium, 

2000. 

[9] J. Herbst and D. Karagiannis. An Inductive approach to the Acquisition and Adaptation 

of Workflow Models. In M. Ibrahim and B. Drabble, editors, Proceedings of the 

IJCA/'99 Workshop on Intelligent Workflow and Process Management: The New 

Frontier for AI in Business, pg. 52-57, Stockholm, Sweden, August 1999. 

[10] J. Herbst and D. Karagiannis. Integrating Machine Learning and Workflow Management 

to Support Acquisition and adaptation of workflow Models. International Journal of 

Intelligent Systems in Accounting, Finance and Management, 9: 67 - 92, 2000. 

[11] L. Maruster, W.M.P. van der Aalst, T. Weijters, A. van den Bosch, W. Daelemans. 

Automated discovery of workflow models from hospital data. In Krose, B., de Rijke, 

M., Schreiber, G. and van Someren, M. (eds.): Proceedings 13th Belgium-Netherlands 

Conference on Artificial Intelligence (BNAIC'Ol), 25-26 October 2001, Amsterdam, 

The Netherlands, pp. 183 -190. 

[12] L. Maruster, W.M.P. van der Aalst, A.J.M.M. Weijters and A. van den Bosch-Process 

mining: discovering direct successors in process logs, submitted to the 5th International 

Conference on Discovery Science 2002, November 24-26, 2002, Lubeck, Germany. 

[13] T. Weijters, W.M.P. van der Aalst. Process Mining: Discovering Workflow Models 

from Event-Based Data. In Krose, B., de Rijke, M., Schreiber, G. and van Someren, M. 

(eds.): Proceedings 13th Belgium-Netherlands Conference on Artificial Intelligence 

(BNAIC'Ol ), 25-26 October 2001, Amsterdam, The Netherlands, pp. 283 - 290. 

[14] M.J.F. Wouters, G.J. Sharman, and J.C. Wortmann. Reconstructing the Sales and 

Fulfillment Cycle to Create Supply Chain Differentiation. International Journal of 

Logistics Management, 10 (1999), no.2, p. 83 - 98 

[15] M.K. Maxeiner, K. Kuspert, and F. Leymann. Data Mining von Workflow-Protokollen 

zur teilautomatisierten Konstruktion von Prozemodellen. In Proceedings of 

Datenbanksysteme in Buro, Technik und Wissenschaft, pages 75 - 84. Inforrnatik 

Aktuell Springer, Berlin, Germany, 2001. 


