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Abstract. Online social networks are often defined by considering in-
teractions over large time intervals, e.g., consider pairs of individuals
who have called each other at least once in a mobilie-operator network,
or users who have made a conversation in a social-media site. Although
such a definition can be valuable in many graph-mining tasks, it suffers
from a severe limitation: it neglects the precise time that the interaction
between network nodes occurs.

In this paper we study interaction networks, where one considers not only
the social-network topology, but also the exact time that nodes interact.
In an interaction network an edge is associated with a time stamp, and
multiple edges may occur for the same pair of nodes. Consequently, in-
teraction networks offer a more fine-grained representation that can be
used to reveal otherwise hidden dynamic phenomena in the network.

We consider the problem of discovering communities in interaction net-
works, which are dense and whose edges occur in short time intervals.
Such communities represent groups of individuals who interact with each
other in some specific time instances, for example, a group of employees
who work on a project and whose interaction intensifies before certain
project milestones. We prove that the problem we define is NP-hard,
and we provide effective algorithms by adapting techniques used to find
dense subgraphs. We perform extensive evaluation of the proposed meth-
ods on synthetic and real datasets, which demonstrates the validity of
our concepts and the good performance of our algorithms.

Keywords: community detection, graph mining, social-network analy-
sis, dynamic graphs, time-evolving networks, interaction networks

1 Introduction

Searching for communities in social networks is one of the most well-studied
problems in social-network analysis. A number of different methods has been
proposed, employing a diverse set of algorithmic tools, such as, agglomerative
approaches, min-cut formulations, random walks, spectral methods, and more.
Somewhat in contrast to this line of work, it has been observed that large net-
works are characterized by the lack of clear and well-defined communities [13,21].
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The lack of well-defined communities can be contributed to the high degree
of interconnectivity, and the existence of overlapping communities. The phe-
nomenon of overlapping communities is aggravated by the fact that community-
detection methods typically ignore the time of interaction between network
nodes, for instance, the same type of link can be used to represent friends in
a hobby club and work colleagues.

On the other hand, as the amount of available data increases in volume and
richness, it becomes possible to analyze not only the underlying topology but
also the exact time of interactions. Analysis of such interaction events can reveal
much more information about the structure and dynamics of the communities
in the network. To be more concrete, consider the following examples.

Example 1: A group of researchers across many different European institutions
are working on a large project. The members of the group go along with their
everyday lives and other tasks, often unrelated to the project. However, once
every few weeks or months, before deadlines of deliverables or project meetings,
there is a lot of interaction among the group members.

Example 2: A group of twitter users is interested in technology products, in
particular smartphones, and they are very active in blogging reviews and com-
menting the posts of each other. Their interaction is sparse, but it sustains over
a long time, and it intensifies significantly after the release of a new product.

The main point of these two examples is that the communities are not iso-
lated. Their members interact with each other, but they also interact with others
outside the community. If one ignores the interaction dynamics and considers
only the static social-network topology, the communities will be hidden and it
will be impossible to discover them. It is only when considering the interaction
time instances among the community members that it becomes possible to iden-
tify them: in both of the above examples, many interactions occur among the
community members, but in a number of relatively short time intervals.

In this paper we formalize the idea exemplified above. We consider interaction
networks for which we assume that all interaction events between the network
nodes are known. Examples of such interaction networks include call graphs of
telecommunications, email communication networks, mention and commenting
networks in social media, collaboration networks, and more. Thus, interaction-
network datasets are already abundant in many application domains.

In the context of interaction networks, we study the problem of discover-
ing communities that are dense and whose edges occur in short time intervals.
We prove that the problem we define is NP-hard, even though that the corre-
sponding problem on static graphs is polynomially-time solvable. For the prob-
lem we define, we provide algorithms inspired by the literature of finding dense
subgraphs. Our experiments demonstrate the effectiveness of the proposed algo-
rithms, as well as the validity of our hypothesis. Namely, that it is possible to
find communities that satisfy the requirements we set: dense interactions that
occur within a number of short time intervals.



2 Preliminaries and notation

An interaction network G = (V,E) consists of a set of n nodes V and a set of
m time-stamped interactions E between pairs of nodes

E = {(ui, vi, ti)} , with i = 1, . . . ,m, such that ui, vi ∈ V and ti ∈ R.

We consider that interactions are undirected. More than one interaction may
take place between a pair of nodes, with different time stamps. Conversely, more
than one interaction may take place at the same time, between different nodes.

For an interaction network G = (V,E) we associate the set of edges π(E) to
be the pairs of nodes for which there is at least one interaction (one may think
of π as “projecting” the edges of the interaction network along the time axis)

π(E) = {(u, v) ∈ V × V | (u, v, t) ∈ E for some t} .

Given an interaction network G = (V,E), the network π(G) = (V, π(E)) is
a standard graph with no time stamps on its edges. We refer to π(G) as the
topology network of G or as the underlying network of G.

Given an interaction network G = (V,E) and a subset of nodes W ⊆ V , we
define the induced interaction network G(W ) = (W,E(W )), such that E(W )
consists of the interactions whose both end-points are contained in W ,

E(W ) = {(u, v, t) ∈ E | u, v ∈W} .

We also consider time intervals [s, f ], where s ∈ R is the start point and
f ∈ R is the end-point of the interval. We define the span of an interval to be
its time duration, i.e., span(T ) = f − s.

We define a time-interval set T to be a collection of non-overlapping time
intervals, T = (T1, . . . , Tk). The span of T is the sum of individual spans,

span(T ) =

k∑
i=1

span(Ti) .

Given an interaction network G = (V,E) and a time interval T = [s, f ] we
define the spliced interaction network G(T ) = (V,E(T )), where E(T ) are the
interactions that occur in T ,

E(T ) = {(u, v, t) ∈ E | s ≤ t ≤ f} .

The above notion can be extended in a straightforward manner, so as to define
the spliced interaction network with respect to a set of time intervals T =
(T1, . . . , Tk). This is achieved by collecting edges from individual time intervals,

that is, G(T ) = (V,E(T )), where E(T ) =
⋃k

i=1E(Ti).

The concepts of induced interaction network and spliced interaction network
provide two different ways to select subsets of interaction networks; one is based
on subsets of nodes and the other is based on time intervals. The definition



of dynamic communities, which is the central concept of our paper, relies on
these two subset-selection strategies. In particular, for an interaction network
G = (V,E), a subset of nodes W , and a set of time intervals T , we define a
dynamic community G(W, T ) as the subgraph that consists of the nodes in W
and the set of interactions among the nodes in W that occur within T . In more
formal terms, G(W, T ) is defined to be the spliced interaction network H(T ),
where H is the induced interaction network G(W ).

To measure the quality of a dynamic community we rely on the notion of
density. We recall the definition of density as defined for static graphs, e.g., for
the topology network π(G) = (V, π(E)) of an interaction network G = (V,E).
We also review the densest-subgraph problem for static graphs.

Given a static graph H = (V, F ), i.e., the edges F do not have time stamps,
the density of the graph d(H) is twice the ratio of edges and the vertices,

d(H) =
2 |F |
|V |

.

Problem 1 (Densest subgraph). Given a static graph H = (V, F ), find a subset
of vertices W that maximizes the density d(H(W )).

Unlike the problem of finding the largest clique, which is NP-hard, finding the
densest subgraph is polynomially-time solvable. Furthermore, there is a linear-
time factor-2 approximation algorithm [2,8]. The algorithm deletes iteratively a
vertex with the lowest degree, obtaining a sequence of subgraphs. Among those
subgraphs the algorithm returns the one with the highest density.

3 Dense communities in interaction networks

Given an interaction network G = (V,E) we aim to find a set of nodes W
and a set of time intervals T , such that the subgraph G(W ) is relatively dense
within T . To ensure that the time span of the subgraph G(W ) is short, we impose
two types of constraints on the time-interval set T : (i) constraints on the number
of intervals of T , and (ii) constraints on the total length of T . We discuss these
two constraints shortly. For the problem of finding dense dynamic communities,
which we provide below, we also assume a quality score q(W, T ;G) that measures
the density of the community G(W, T ) in the interaction network G.

Problem 2. Assume that we are given a quality score q(W, T ;G) that measures
the quality of the community defined by nodes W and time interval span T in
the interaction network G. Assume also we are given a budget K on the number
of time intervals, and a budget B on the total time span. Our goal is to find a
set of nodes W and a set of time intervals T that maximize

q(W, T ;G) , such that |T | ≤ K and span(T ) ≤ B.

The first constraint states that we can have at most K intervals while the second
constraint requires that the total duration is at most B. Both constraints are



required: assuming that the quality score increases with the time span, if we drop
the second constraint, then we can always choose the whole time span. Such a
solution, however, does not capture the intuition of dynamic communities that
we aim to discover. On the other hand, if we drop the first constraint, then we
can pick individual edges by setting a time interval of duration 0 around each
individual edge. Namely, the constraint on the number of intervals is necessary
to impose time-continuity on the solutions found.

Regarding the score function used to assess the quality of a community, our
proposed measure is the density of the topology network, after restricting to
node set W and time-interval set T

q(W, T ;G) = d(π(G(W, T ))) ,

that is, we count twice the number of interactions that occur between nodes of
W within time intervals T , and divide this number by |W |.

3.1 Complexity

We proceed to establish the complexity of the problem of finding a dense dynamic
community in interaction networks (Problem 2).

Proposition 1. The decision version of Problem 2 is NP-complete.

Proof. We are given an interaction network G, budgets K, B, and a threshold σ,
and we need to answer whether there is a node set W and a time-interval set T ,
which satisfy the two budget constraints, and for which q(W, T ;G) ≥ σ.

The problem is clearly in NP. To prove the hardness, we obtain a reduction
from VertexCover. An instance of VertexCover specifies a graph H and
budget `, and asks whether there is a set V ′ ⊆ V , such that |V ′| ≤ ` and each
edge of the graph is adjacent to at least one of the nodes of V ′.

Consider graph H = (U,F ) with n nodes and m edges, and budget `. Let
us define an interaction network G = (V,E). The node set V consists of U and
n+1 additional auxiliary nodes, and the set of edges E is defined as follows: First
we consider n + 1 distinct time points t0, . . . , tn. At t0 we consider interactions
between all the auxiliary nodes, and between auxiliary nodes and each v ∈ U .
We arbitrarily order the nodes in U and let vi be the i-th node. At time ti we
connect vi with all its neighbors in H.

Assume that there exists a solution W and T , for Problem 2, with budgets
K = `+1 and B = 0. We claim that W will contain all nodes and T will contain
t0 and the time points corresponding to the vertex cover of H.

Let us first prove that W = V and (t0, t0) ∈ T . Assume otherwise. Then,
since the remaining time intervals have only edges between U , there must be at
most n(n− 1)/2 edges, yielding density at most n− 1. Let us replace one of the
selected time intervals with t0 and reset W to be auxiliary nodes. This solution
gives us a density of n, which is a contradiction.

Now we have established that t0 is a part of T . A straightforward calculation
shows that it is always beneficial to add auxiliary nodes to W , if they are not



part of a solution. Once this is shown, we can show further that adding any
missing nodes from U also improves the density. Consequently, W = V .

Set σ = 2(n(n + 1)/2 + n(n + 1) + m)/(2n + 1). The first two terms in the
numerator correspond to the edges at t0. The remaining m edges must come
from the remaining time intervals. This is only possible if and only if the time
intervals contain all edges from H, that is, the corresponding nodes cover every
edge, which completes the reduction. ut

4 Algorithms for discovering communities

In this section we present the algorithm we propose for Problem 2. Since the
problem is NP-hard, we propose an iterative method, which improves the so-
lution by optimizing each one of the two components, the node set W and the
time-interval set T , in an alternating fashion, while keeping the other fixed.

Both of the objectives of our alternating optimization method give rise to
interesting computational problems. One problem reduces to finding the densest
subgraph, and the other is related to coverage, and it is even NP-hard. Next we
formalize the two problems of our alternating optimization method.

Problem 3. Consider an interactive network G = (V,E). Consider the problem
of finding a dense dynamic community, with budgets K and B, and quality
score q . Assume that a set of nodes W is provided as input. Find a time-interval
set T that maximizes

q(W, T ;G) , such that |T | ≤ K and span(T ) ≤ B.

Problem 4. Consider the problem of finding a dense dynamic community on an
interactive network G = (V,E) with quality score q . Assume that a time-interval
set T is given as input. Find a set of nodes W that maximizes q(W, T ;G).

The proposed algorithm starts from an initial time interval set T0, and obtains
a solution (W, T ) by iteratively solving the two problems defined above until
convergence. Pseudocode of the method is given in Algorithm 1. As one may
expect the iterative algorithm does not provide a guarantee for the quality of
the solution that it returns. However, as it is stated by the following proposition,
whose proof is straightforward, it has the desirable property that both of the
alternating optimization problems return the correct component of the solution
if they obtain as input the other component correctly.

Proposition 2. Let (W, T ) be a solution to Problem 2 for a given interaction
network G. Then (i) T is a solution to Problem 3 given G and W , and (ii) W
is a solution to Problem 4 given G and T .

In the next two sections, 4.1 and 4.2, we present in detail our solution for
the two subproblems of the iterative algorithm. In Section 4.3 we discuss the
initialization of the algorithm.



Algorithm 1: Iterative algorithm for finding a dense dynamic community

1 T0 ← initial sets of time intervals;
2 i← 0;
3 while (convergence; i++) do
4 Wi+1 ← solution to Problem 4 given Ti;
5 Ti+1 ← solution to Problem 3 given Wi+1;

6 return (Wi, Ti);

4.1 Finding an optimal set of nodes

We start with Problem 4 where the goal is to find an optimal set of nodes W
given a set of time intervals T . Assume that we are given a set of time intervals
T and let H = π(G(T )) be the topology network for the interactions that occur
within T (i.e., the topology network of the interaction network spliced by T ).
Note that

q(W, T ;G) = d(H(W )) .

Consequently, finding the optimal set of nodes is equivalent to the densest-
subgraph problem (Problem 1) on the (static) graph H. It follows that finding
the optimal set of nodes W , given time-interval set T , can be done in polynomial
time. In our implementation, we use the linear-time algorithm of Charikar [8],
which, as outlined in Section 2, offers a factor-2 approximation guarantee.

4.2 Finding an optimal set of time intervals

We now present our solutions for the second subproblem of the iterative algo-
rithm, namely, finding an optimal set of time intervals for a given set of nodes.
Unfortunately, even if this is a subproblem of the general community-discovery
problem, it remains NP-hard. The proof of this claim is a simplified version of
the proof of Proposition 1.

We view the problem of finding optimal time intervals as an instance of a
maximum-coverage with multiple budgets (mcmb) problem.

Problem 5 (mcmb). Given a ground set U = {u1, . . . , um} with weighted ele-
ments w(ui), a collection of subsets S = {S1, . . . , Sk}, p cost functions ci map-
ping each subset of S to a positive number, and n budget parameters Bi, find a
subset P ⊆ S maximizing∑

u∈X
w(u), such that X =

⋃
S∈P

S, and
∑
S∈P

ci(S) ≤ Bi, for all i = 1, . . . , p.

When p = 1, the problem is the standard budgeted maximum coverage. The
problem is still NP-hard but there exists an approximation algorithm by Khuller
et al. that achieves (1 − 1/e) approximation ratio [17]. However this algorithm
requires to enumerate all 3-subset collections, making it infeasible in practice.



The optimization problem can be also viewed as an instance of maximizing
submodular function under multiple linear constraints. Kulik et al. presented a
polynomial algorithm that achieves (1 − ε)(1 − 1/e) approximation ratio [18].
Unfortunately, this algorithm is not practical even for modest ε.

To see how finding a set of time intervals is related to maximum coverage,
consider as ground set the set of edges π(E(T )) (interactions that occur in T
without the time stamps), and for each time interval T ∈ T create a subset
ST containing all edges whose corresponding interactions occur in T . There are
two cost functions c1(T ) = 1 and c2(T ) = span(T ). The first budget constraint
enforces the number of allowed time intervals to stay below K, while the second
budget enforces the time-span constraint.

Thus, we need to solve the mcmb problem, defined above, with two budget
constraints. We propose two solutions, both of which are inspired by the stan-
dard greedy approach for maximum coverage. The difference between the two
proposed approaches is on how they try to satisfy the budget constraints. The
first approach incorporates both budget constraints on the greedy step, while
the second approach sets a parameter that controls the amount of violation of
one constraint, and optimizes this parameter with binary search.

The standard greedy approach for maximum coverage is to select the set that
has the best ratio of newly covered elements with respect to its cost. Motivated
by this idea, we suggest the following greedy approach. Given a currently selected
set of time intervals, say T , we find the interval R that has the best ratio

q(W, T ∪R,G)− q(W, T , G)

max(x, y)
, where x =

1

K − |T |
and y =

span(R)

B − span(T )
.

The numerator in the ratio is the number of new edges that can be covered with
the new interval R. The denumerator is the maximum of two quantities, x and
y, representing the two constraints on number of time intervals and time span,
respectively. Both x and y are normalized so that they are equal to 1 if adding
R will cap the corresponding constraint. By taking the maximum of the ratios
we consider the constraint that is closer to be capped and penalize the ratio
accordingly. The algorithm stops when one of the two constraints gets violated.
We will refer to this approach as Greedy.

Our second approach is based on the following observation. Assume that we
are given a number α and consider optimizing

q(W, T , G)− α · span(T ) , such that |T | ≤ K. (1)

Note that we do not enforce any budget on the time span. If we set α = 0,
then the solution will contain the whole time. On the other hand, if we set α to
be large, T will be just singular points. In fact, as it is shown in the following
proposition, the time span of the optimal solution decreases as α increases.

Proposition 3. Consider α1 and α2 with α1 < α2. Let T1 and T2 be the solu-
tions of Equation (1) for α1 and α2, respectively. Then span(T1) ≥ span(T2).



Proof. Define βi = span(Ti) and di = q(W, Ti, G). Due to optimality, we have

d1 − α1β1 ≥ d2 − α1β2 and d2 − α2β2 ≥ d1 − α2β1.

By rearranging the terms we obtain α1β2 − α1β1 ≥ d2 − d1 ≥ α2β2 − α2β1.
Rearranging the left and the right side gives us (α1 − α2)(β2 − β1) ≥ 0. Since
α1 < α2, we must have β1 ≥ β2, which proves the proposition. ut

Ideally, if we can solve Equation (1) optimally, we can use binary search to
find the smallest α such that the time span of the solution does not exceed the
budget. As we do not have an exact solver for Equation (1), we apply a greedy
approach where in each step we find a single time interval that maximizes the
score function. We then apply a binary search to find α that produces a feasible
solution. We refer to this algorithm as Binary.

4.3 Initialization

The quality of the solution discovered by the iterative algorithm depends on the
set of time intervals T0 used as initial seed. Consider an optimal solution (W, T ),
with T = (T1, . . . , TK), which achieves density d∗. It follows that there is one
single time interval T ∈ T , for which the optimal set of nodes W has density at
least d∗/K on π(G(T )). This observation motivates us to limit ourselves to con-
sider only time interval sets of size 1. Assuming large computational power, one
could test every possible time interval as a seed, consequently run the iterative
algorithm, and return the best solution found out of all runs. There are O(m2)
such intervals, which is polynomial.

When running the algorithm O(m2) times is expensive, we can select J ran-
dom intervals, run the iterative algorithm for each of those random intervals, and
return the best solution found out of all runs. In our experiments we evaluate
the effect of the number of random seeds J to the quality of the solution found.

5 Experimental evaluation

To evaluate the proposed methods we use several datasets: synthetic and real-
world social communication networks. We describe our datasets in detail below.

Synthetic data. We simulate activity on a network with a planted community.
Different parameters for the planted community and the background noise are
used, and the objective is to measure how the algorithms behave with respect to
those parameters. The background network G is an Erdős-Rényi random graph,
with expected degree being one of the model parameters. We plant a dense
subgraph G′, whose expected degree is a second model parameter. The length
of whole time interval T is |T | = 1000 time units, while the interactions for the
edges of G′ can be covered by k = 3 arbitrary planted time intervals with total
length of |T ′| = 100 time units (10 times shorter than |T |). We randomly assing
edges of G to time instances in T and edges of G′ to time instances in T ′.



Table 1: Characteristics of the two families of synthetic datasets. Planted com-
munity in Synthetic1 is a 5-clique. Planted community in Synthetic2 is an 8-node
subgraph.

Name |V | Exp[|E|] community avg degree background avg degree

Synthetic1 100 1000 4 1.5 – 6
Synthetic2 100 1000 2 – 7 4

Table 2: Basic characteristics of real-world datasets. |V |: number of nodes;
|π(E)|: number of edges of the topology network; |E|: number of interactions;
d(π(G)): density of the whole topology network; d∗(π(G)): density of densest
subgraph of the topology network.

Name |V | |π(E)| |E| d(π(G)) d∗(π(G))

Tumblr 1980 2454 7645 2.479 7.0
Students 883 2246 9865 5.087 11.292
Enron 1143 2019 6245 3.533 14.387

We test the ability of our algorithms to discover the planted communities in
two settings. In the first setting (dataset family Synthetic1) we fix the planted
subgraph and we vary the average degree of the background network. The ob-
jective is to test the robustness against background noise. In the second setting
(dataset family Synthetic2) we fix the average degree of the background network
and we vary the density of the planted subgraph. The characteristics of the
synthetic datasets are given in Table 1.

Real-world data. We use three datasets. The characteristics of these datasets
are summarized in Table 2.

Tumblr: This is a subset of that Memetracker dataset,1 which contains only
quoting between Tumblr users. The subset covers three months: 02.2009–04.2009.

Students:2 This dataset logs the activity in a student online community at Uni-
versity of California, Irvine. Nodes represent students and edges represent mes-
sages with ignored directions. We used a subset of the dataset that covers four
months of communication from 2004-06-28 to 2004-10-26.

Enron:3 This is the well-known dataset that contains the email communication
of the senior management in a large company. It spans over 20 years from 1980.

Discovering hidden structure. We test the ability of our algorithms to detect
the planted communities for different levels of background and in-community av-
erage degrees. We quantify the quality of our algorithms by measuring precision
and recall, with respect to the ground-truth communities. We also report the

1 http://snap.stanford.edu/data/memetracker9.html
2 http://toreopsahl.com/datasets/#online_social_network
3 http://www.cs.cmu.edu/~./enron/

http://snap.stanford.edu/data/memetracker9.html
http://toreopsahl.com/datasets/#online_social_network
http://www.cs.cmu.edu/~./enron/
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Fig. 1: Precision, recall and F -measure on Synthetic1, as a function of the
background-network density. The planted community is a 5-clique.
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Fig. 2: Precision, recall and F -measure on Synthetic2, as a function of the density
of a planted community of 8 nodes. The background-network density is set to 4.

F -measure, the harmonic mean of precision and recall. Results reported below
are averages over J = 1000 independent runs.

Precision, recall and F -measure results for the two families of synthetic
datasets are shown in Figures 1 and 2, respectively. Recall that datasets Syn-
thetic1, contain a community based on a 5-clique. Both algorithms are able to
discover this community correctly when the average degree of the underlying
graph is smaller then the average degree of the planted community. Even when
the community density is equal to the background-network density (around 4),
the algorithms tend to keep high precision and recall. Precision and recall re-
grade at the same rate, indicating that with increase of background-network
density the algorithms retrieve less nodes of planted community and more noisy
nodes. Nevertheless, the measures do not drop very low, implying that the 5-
clique spread over k = 3 short time intervals is distinguishable even within a
dense background network.

The results on the second family of datasets (Synthetic2), shown in Figure 2,
are similar. Both algorithms perform well when the background-network density
is smaller than the planted-community density.

Effect of random seeds. Both of our algorithms are instances of Algorithm 1.
In the experiments shown above we initialize the interval seed T0 with the whole
time interval T spanned by the dataset. Starting from T0 = {T} ensures that the
subgraph we discover belongs to some dense structure in the topology network.
However, if such a dense structure occurs in a scattered manner, the initialization
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(a) Students, B = 7 days, K = 3
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(b) Students, B = 7 days, K = 7
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(c) Tumblr, B = 7 days, K = 3
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Fig. 3: Effect of random initializations on real-world datasets.

T0 = {T} may mislead. To overcome this problem and avoid dense structures
that cannot be covered in the given time budget, we initialize Algorithm 1 with
many random time intervals, and return the best solution found.

The improvement of performing random initializations is shown in Figure 3.
The experiments are shown for Tumblr and Students. The figures show the best
density discovered by our algorithms, when J independent random runs are per-
formed. As expected, random initializations improve the performance of the al-
gorithms. The most significant improvement is obtained for the Student dataset.
We also experiment with a baseline that finds the densest subgraph over all pos-
sible intervals that satisfy the time budget B (no iterative process is followed).
We see that our algorithms perform significantly better than this baseline.

Discovered communities. Table 3 reports the densities of the communities
discovered by our algorithms in the real-world datasets. We use J = 200 random
initializations. We compare our algorithms with the same baseline as before: the
densest subgraph over all intervals that satisfy the time budget B.

Overall, we observe that Greedy and Binary perform equally well, while
in some settings Binary yields denser communities than Greedy.



Table 3: Densities of discovered subgraphs. The second column contains the
number of allowed sets K and the column “budget” contains the time span
budget B. For Tumblr and Students, B1, B2 and B3 are equal to 1, 3 and 7 days,
respectively. For Enron, B1, B2 and B3 are 10, 30 and 120 days, respectively.

budget = B1 budget = B2 budget = B3

Name K Binary Greedy Base Binary Greedy Base Binary Greedy Base

Tumblr 1 3.818 3.818 3.866 4.0 4.0 4.0 4.5 4.5 4.5
2 4.0 4.0 3.866 4.571 4.571 4.0 5.111 5.111 4.5
3 4.6 4.285 3.866 5.2 5.2 4.0 5.5 5.4 4.5
4 4.909 4.8 3.866 5.384 5.25 4.0 5.857 5.666 4.5
5 5.166 5.111 3.866 5.666 5.5 4.0 6.0 5.866 4.5
7 5.5 5.333 3.866 6.0 5.714 4.0 6.333 6.333 4.5

10 6.181 5.818 3.866 6.428 6.181 4.0 6.8 6.666 4.5

Students 1 2.947 3.384 3.428 3.76 3.764 3.84 4.545 4.647 4.755
2 3.5 3.3 3.428 4.32 4.133 3.84 5.225 5.125 4.755
3 4.2 3.846 3.428 4.384 4.444 3.84 5.304 5.312 4.755
4 4.0 4.0 3.428 4.545 4.615 3.84 5.642 5.368 4.755
5 4.363 4.363 3.428 4.933 4.941 3.84 5.939 5.642 4.755
7 4.625 4.545 3.428 5.210 5.185 3.84 6.108 6.0 4.755

10 4.956 4.888 3.428 5.666 5.485 3.84 6.5 6.307 4.755

Enron 1 6.7272 6.7272 6.727 8.8 8.8 8.8 11.909 11.909 11.9
2 8.875 8.4705 6.727 9.2222 9.625 8.8 13.047 11.913 11.9
3 10.470 10.0 6.727 10.555 11.176 8.8 13.307 12.8 11.9
4 11.058 10.736 6.727 11.904 12.2 8.8 13.642 13.047 11.9
5 11.473 11.4 6.727 12.25 12.16 8.8 13.714 13.238 11.90
7 12.370 12.16 6.727 12.666 13.0 8.8 13.931 13.857 11.9

10 13.285 13.185 6.727 13.357 13.571 8.8 14.074 14.0 11.9

For fixed value of the time budget B, the density of the discovered community
increases with K. For small values of K (1 to 3), the density of the communities
discovered by our algorithm is equal, or in some cases slightly smaller, than the
density of the communities discovered by the baseline. This behavior is expected,
as the brute-force baseline tests all possible intervals, while our algorithms use
only some random intervals for initialization. However, as the value of K in-
creases, the algorithms take advantage of the provided flexibility to use many
intervals effectively; for K > 3 both algorithms always outperform the baseline.

Furthermore, as we can see by contrasting Tables 2 and 3, the discovered
communities are almost as dense as the densest subgraphs on the whole topology
network, even though the time budget is significantly smaller than the time span
of the dataset. For example, the densest subgraph of the over 20-year-large Enron
dataset has average degree 14.387, while we were able to discover a subgraph
with average degree 13.285 in a budget of 10 days, spanning 10 time intervals.



6 Related work

Community detection is one of the most studied problems in social-network
analysis. A lot of research has been devoted to the case of static graphs, and the
typical setting is to partitioning a graph into disjoint communities [9,12,26,30];
a thorough survey on such methods has been compiled by Fortunato [10].

Typically the term “dynamic graphs” refers to the model where edges are
added or deleted. In this setting, once an edge is inserted in the graph it stays
“alive” until the current time or until it is deleted. For example, this setting is
used to model the process in which individuals establish friendship connections
in a social network. On the contrary, our model intends to capture the continuous
interaction between individuals. In the dynamic-graph setting, researchers have
studied how networks evolve with respect to the arrival of new nodes and edges
[19,20,31], the process of how groups and communities are formed [4], as well as
methods for mining rules for graph evolution [5].

With respect to community detection in time-evolving graphs, the promi-
nent line of work is to consider different graph snapshots, find communities in
each snapshot separately (or by incorporating information from previous snap-
shots), and then establish correspondences among the communities in consecu-
tive snapshots, so that it is possible to study how communities appear, disap-
pear, split, merge, or evolve. A number of research papers follows this frame-
work [3,14,22,24,29]. Similar recent works apply concepts of Laplacian dynam-
ics [23] and frequent pattern mining [6] to ensure coherence and sufficiency of
communities found in sequence of graph snapshots.

Many dynamic-graph studies are dedicated to the event-detection problem.
The comprehensive tutorial by Akoglu and Faloutsos covers recent research on
this topic.4 The majority of the works focuses on how to compare different graph
snapshots, and it aims to detect those snapshots that the graph structure changes
significantly. The research tools developed in this area include novel metrics for
graph similarity [25] and graph distance—see the survey of Gao et al. [11] and
recent paper [28]—as well as extending scan-statistics methods for graphs [27],
while a number of papers relies on matrix-decomposition methods [1, 16].

To our knowledge, the approach that is best aligned with our problem set-
ting, is presented by Bogdanov et al., for the problem of mining heavy subgraphs
in time-evolving networks [7]. Yet, the two approaches are conceptually very dis-
tinct. First, the approach of Bogdanov et al. is still based on network snapshots,
and thus sensitive to boundary quantization effects. Second, their concept of
heavy subgraphs is based on edge weights, and their discovery problem maps to
prize collecting Steiner tree, as opposed to a density-based objective.

Hu et al. propose a framework for mining frequent coherent dense subgraphs
across a sequence of biological networks [15]. Their core concept is to construct
a second-order graph, which represents co-activity of edges in the initial graph.
As with the previous papers, Hu et al. work with network snapshots, which is
quite a different model than the one we consider in this paper.

4 http://www.cs.stonybrook.edu/~leman/icdm12/

http://www.cs.stonybrook.edu/~leman/icdm12/


In summary, in contrast to the existing work, in this paper we introduce a
new point of view in the area of dynamic graphs, namely, we incorporate in our
analysis point-wise interactions between the network nodes.

7 Concluding remarks

In this paper we considered the problem of finding dense dynamic communities
in interaction networks, which are networks that contain time-stamped informa-
tion regarding all the interactions among the network nodes. We formulated the
community-discovery problem by asking to find a dense subgraph whose edges
occur in short time intervals. We proved that the problem is NP-hard, and we
provided effective algorithms inspired by methods for finding dense subgraphs.

Our paper is a step towards a more refined analysis of social networks, in
which interaction information is taken into account and it is used to provide a
more accurate description of communities and their dynamics in the network.

Our work opens many possibilities for future research. First we would like
to extend the problem definition in order to discover many dense dynamic com-
munities. This can be potentially achieved by asking to cover all (or a large
fraction of) the interactions of the network with dense dynamic communities.

Second, we would like to incorporate additional information in our approach.
As an example, think that the “smartphone community” discussed in the in-
troduction, may use certain specialized vocabulary, brand names, or hashtags,
which can provide additional clues for discovering the community. Our frame-
work uses only time stamps of interactions; complementing our methods with
additional information can potentially improve the quality of the results greatly.
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