
0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E J a n u a r y / F e b r u a r y 2 0 0 6 I E E E S O F T W A R E 6 1

focus

criterion, in the early stages of the software life
cycle. “Early” signifies occurring before imple-
mentation in any development iteration. An as-
pect in requirements is a concern that crosscuts
requirements artifacts; an aspect in architec-
ture is a concern that crosscuts architectural
artifacts. Identifying and managing early as-
pects helps to improve modularity in the re-
quirements and architecture design and to de-
tect conflicting concerns early, when trade-offs
can be resolved more economically.

In addition, identifying aspects at one stage
provides benefits downstream. Knowing re-
quirements-level aspects helps the architect de-
sign a better system, and knowing architec-
ture-level aspects helps produce a more robust
implementation. Early aspects can span devel-
opment activities, and many find their way
into the code as traditional implementation as-
pects. More concretely, identifying and man-
aging early aspects across phases can

■ increase the consistency of requirements
and architecture designs with each other
and with the implementation;

■ provide a rationale and traceability for as-
pects across life-cycle activities; and

■ help ensure that crosscutting concerns ev-
ident in a system’s problem domain or so-
lution space are captured as aspects in the
implementation.

In this article, we describe how to identify
and capture early aspects in requirements and
architecture activities and how they’re carried
over from one phase to another. We’ll focus
on requirements and architecture design ac-
tivities to illustrate the points, but the same
ideas apply in other phases as well, such as
domain analysis or in the fine-grained design
activities that lie between architecture and im-
plementation. There are many approaches for
working with early aspects in practice (for a

Discovering Early Aspects

T
raditionally, aspect-oriented software development has fo-
cused on the software life cycle’s implementation phase: devel-
opers identify and capture aspects mainly in code. But aspects
are evident earlier in the life cycle, such as during requirements

engineering and architecture design.
Early aspects are concerns that crosscut an artifact’s dominant decompo-

sition, or base modules derived from the dominant separation-of-concerns

aspect-oriented programming

Elisa Baniassad, Chinese University of Hong Kong

Paul C. Clements, Carnegie Mellon University

João Araújo and Ana Moreira, New University of Lisbon

Awais Rashid, Lancaster University

Bedir Tekinerdoğan, University of Twente

An integrated
approach to working
with early aspects
lets you identify
them and exploit
them throughout
the software
development
life cycle.

list, visit www.early-aspects.net), but they’ve
existed mostly in isolation. We borrow prac-
tices from some of these approaches to offer
an integrated view of working with early as-
pects, including how to link the life-cycle
phases together.

Aspects and requirements
The dominant decomposition for require-

ments is the requirements document’s organi-
zation into sections that its author has chosen
(see the sidebar for more on dominant decom-
position). Assume we’re starting with a rela-
tively well-organized requirements set. Where
possible, we capture each concern separately,
perhaps in its own section, document, or any
other requirements artifact. These artifacts can
capture any concern: a structural entity, a use
case, a feature, a behavior, or a stakeholder goal.
A requirements aspect, then, is a concern that
cuts across other requirement-level concerns
or artifacts of the author’s chosen organization.
It is broadly scoped in that it’s found in and has
an (implicit or explicit) impact on more than
one requirement artifact. Broadly scoped prop-
erties can be quality attributes (nonfunctional
requirements) as well as functional concerns

that the requirements engineer must describe
with relation to other concerns.

The scenario
Consider a banking system with many re-

quirements traditionally organized, including
the following (each requirement may expand
to many requirements or represent a section ti-
tle in a requirements document):

Requirements A
1. Pay interest of a certain percent on each ac-

count making sure that the transaction is
fully completed and an audit history is kept.

2. Allow customers to withdraw from their ac-
counts, making sure that the transaction is
fully completed and an audit history is kept.

These requirements reveal “pay interest,”
“withdrawal,” “complete in full,” and “audit-
ing” as central concerns. Of those concerns,
“pay interest” and “withdrawal” are described
in separate requirements. However, “complete
in full” and “auditing” are each described in
both requirements 1 and 2. Figure 1a depicts
this concern scattering. This arrangement is
problematic: If we want to find out which trans-

6 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Aspect-oriented software development (AOSD) emerged
from a rethinking of the relationship between modularization
(partitioning software into discrete, nonoverlapping implemen-
tation units) and the time-honored principle of separation of
concerns. Any separation-of-concerns criterion leads to a par-
ticular partitioning, as though the software were sliced into
pieces in a particular direction. But this inevitably leads to con-
cerns that wash across the resulting modules. This is known as
the tyranny of the dominant decomposition.1 AOSD introduces
the concept of an aspect—a concern that cuts across the base
modules derived from the dominant separation-of-concerns cri-
terion—plus automated support to weave the separately de-
scribed aspects back into the base modules.

Work in aspects has been mostly limited to the implementa-
tion phase, dealing with concerns that implementation units
have in common, factoring those out as aspects, and employ-
ing programming-language-level support to weave the aspects
back at loading time, compilation time, or runtime. In fact,
AOSD has become nearly synonymous with aspect-oriented
programming (AOP),2 and dominant decomposition usually
refers to the system’s decomposition into implementation units,
such as subsystems, classes, and objects. Most AOSD ap-
proaches place the burden for aspect identification and man-

agement on the programmer.
But crosscutting concerns are often present well before the

implementation, such as in domain models, requirements, and
the architecture. Dominant decomposition, however, means
something different in the early software development activities.
For example, modern treatments of software architecture all em-
brace the concept of multiple architectural views. The dominant
decomposition for the architecture is the set of views chosen to
represent it. Similarly, requirements are typically organized into
sections that describe features, domain objects, viewpoints, sys-
tem components, subsystems, use cases, or stakeholder goals.
The dominant decomposition for requirements is the organiza-
tion of the requirements document into sections on the basis of
stakeholders’ perspectives—for example, use case, viewpoint,
and goal descriptions.

References
1. P.L. Tarr et al., “N Degrees of Separation: Multi-Dimensional Separation of

Concerns,” Proc. 21st Int’l Conf. Software Eng. (ICSE 99), ACM Press,
1999, pp. 107–119.

2. G. Kiczales et al., “Aspect-Oriented Programming,” Proc. 11th European
Conf. Object-Oriented Programming (ECOOP 97), LNCS 1241, Springer,
1997, pp. 220–242.

Dominant Decomposition in Early Software Development

actions should be fully completed or audited, we
must sift through the whole requirements set for
references to transactions and auditing.

Attempting to rewrite the requirements to
remove the scattering would result in the fol-
lowing requirements:

Requirements B
1�. Pay interest of a certain percent on each

account.
2�. Allow customers to withdraw from their

accounts.
3. Make sure all transactions are fully com-

pleted.
4. Keep an audit history of all transactions.

This rewriting introduces implicit tangling
between the newly separated concerns (“au-
diting” and “complete in full”) and the other
concerns (“pay interest” and “withdrawal”),
as figure 1b illustrates. However, it would be
impossible to discuss how transactions should
be audited or completed in full without at
least hinting at what the transactions should
be. So, this arrangement is also problematic:
You can’t tell, without an exhaustive search,
which transactions the “complete in full” and
“auditing” properties affect.

However, an intuitive and inherently aspect-
oriented solution exists (see figure 1c). In fact,
the “complete in full” and “auditing” proper-
ties are aspects. They’re broadly scoped in that
they impact other concerns described in the re-
quirements (“withdrawal” and “pay interest”).
The AO solution is to make the impact explicit
by modularizing aspects into two sections: one
that describes the requirements of the aspect
concern itself (3�, 4�), and another that de-
scribes the breadth of its impact (3A, 4A). The
AO solution results in the following:

Requirements C
1�. Pay interest of a certain percent on each

account.
2�. Allow customers to withdraw from their

accounts.
3�. To fully complete a transaction…
3A. List of transactions that must be fully

completed: {1�, 2�}
4�. To audit…
4A. List of transactions that must leave an

audit history: {1�, 2�}

With this organization, we capture

■ Core or base concerns (“withdrawal” and
“pay interest”): 1�, 2�

■ Aspect descriptions: 3�, 4�
■ Impact requirements: a requirement de-

scribing the influence of one concern over
other concerns: 3A, 4A (purple in figure 1c)

Activities
Now that we have an idea of what a re-

quirements-level aspect looks like, we can con-
sider a less ad hoc approach for working with
them. This involves four basic steps: identify,
capture, compose, and analyze.

Identify. In an existing set of requirements, it
isn’t likely to be clear what aspects are present.
In the banking example, we used two typical
aspect examples: transaction management and
auditing. In a way, we used domain knowledge
about banking to recall that transaction man-
agement is typically a crosscutting concern in
requirements. (A domain model endowed with
early aspects of its own would have brought this
to our attention explicitly.) But a requirements

J a n u a r y / F e b r u a r y 2 0 0 6 I E E E S O F T W A R E 6 3

(a)

1. Pay interest

Traditional Implicit tangling Aspect oriented

Complete
in full

Auditing

2. Withdrawal

Complete
in full

Auditing

(b)

1∆. Pay interest

2∆. Withdrawal

3. Complete
in full

4. Auditing

(c)

1∆. Pay interest

2∆. Withdrawal

3A. Completed
transactions

3∆. Complete
in full

4A. Audited
transactions

4∆. Auditing

Implicit relationships Explicit relationships

Figure 1. Three approaches (Requirements A-C) to organizing
requirements: (a) Manifestation of broad impact (the same concern in
multiple requirements), (b) implicit relationships (one concern
implicitly mentions another), and (c) explicit relationships (impact
requirements (in purple) describe one concern’s impact on another).

document might describe many atypical aspects.
This step involves spotting these, so that we can
manage them effectively and consistently.

When identifying aspects in requirements,
look for:

■ Aspect terms. These are quality attributes
(such as security, data consistency, or reli-
ability). “Complete in full” is such a prop-
erty. Requirements engineers can identify
these terms using simple searching tech-
niques or tools made especially for aspect-
oriented requirements analysis, such as
AORE1 and EA-Miner.2

■ Impact requirements. These describe one
concern’s influence over another. In our ex-
ample, requirements 3A and 4A indicate
how requirements engineers must impose
“complete in full” and “auditing” on “pay
interest” (1�) and “withdrawal” (2�). Vi-
sualization techniques such as Theme/Doc,3

EA-Miner,2 and XML-based techniques
such as ARCADE4 can point out such require-
ments because they show which require-
ments describe which concerns, revealing
concern overlap.

■ Scattered concerns. These are terms, con-
cepts, or behaviors that appear in multiple
(well organized) requirements. Such con-
cerns may have broad impact. If a series of
use cases describe the requirements in the
banking system, the concept of auditing
might appear in both the “pay interest”
and “withdrawal” use cases. Since audit-
ing is scattered over multiple artifacts, it’s
likely an aspect. It’s possible that not all
scattered concerns should be captured as
aspects, however. Some scattered concerns
might be too trivial or heterogeneous to
capture separately. For instance, if a dif-
ferent type of auditing is required for
every transaction, it’s unhelpful to decou-
ple auditing’s description from its transac-
tion description. However, if some core
concepts related to auditing crosscut the
other concerns, those should be collected
and their points of impact recorded.

Capture. In this step, requirements engineers
reorganize the requirements so that each re-
quirement artifact describes only one concern.
In the previous example, we did this by trans-
forming the requirements from the model
shown in figure 1a to that shown in figure 1b,

removing the “auditing” and “complete in
full” properties from the “withdrawal” and
“pay interest” descriptions and creating new
artifacts describing those two concerns.

Compose. In this step, we formally state the
impact requirements (3A and 4A in figure 1c)
to specify how concerns should be composed.
Compositions in requirements are analogous
to pointcut specifications—a selection of a set
of join points, or well-defined points in the
base modules where the aspect should be ap-
plied—in AOP implementation. But not sur-
prisingly, composition in requirements looks
different from composition in code. For in-
stance, to capture the influence of “complete
in full” (3�) and “auditing” (4�) on “with-
drawal” (2�) and “pay interest” (1�), we
would write these specifications:

■ Constrain {1�, 2�} by 3� or Constrain
withdrawal and pay interest by “complete
in full”

■ Constrain {1�, 2�} by 4� or Constrain
withdrawal and pay interest by “audit”

Drawing out the analogy with join-point
models for AOP, the italicized elements in this
composition specification are the pointcuts, the
underlined elements are the type of advice, and
the elements in quotes are the advice behavior.

To ensure that we capture all the relation-
ships, we must fully assess each aspect’s
breadth of impact. Once again, visualization
techniques such as Theme/Doc and EA-Miner
may help assess which concerns a broadly
scoped property affects.

Requirements engineers can compose re-
quirements using techniques such as those
Rashid and his colleagues discuss.4 Some com-
position techniques result in scenarios or state
machines,5 or projections of the aspect influ-
ences on other requirements.6

Analyze. This step involves analysis of the
modularized aspect concerns to understand
their trade-offs with respect to other require-
ments and to identify conflicts and inconsis-
tencies. The analysis is facilitated by compos-
ing the requirements using the techniques we
just described, which has the benefit of reveal-
ing potentially conflicting aspects.4,6 For in-
stance, if we add a new requirement regarding
response time for a completed transaction, a

6 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

The multiview
architectural

approach
moves away
from the idea
that only one

structure
determines
a system’s

decomposition.

conflict might arise if auditing is carried out
within a transaction, due to the time it would
take. We can then consider and resolve such
conflicts.

Aspects and architecture design
A software architecture is a software sys-

tem’s structure or structures; these structures
comprise elements, those elements’ externally
visible properties, and the relationships among
them.7

Views
Modern treatments of architecture represent

structures and other architectural information
as a set of views, each of which shows a partic-
ular kind of element and the corresponding re-
lations among those elements. The three basic
kinds of views are module, component-and-
connector, and allocation (see table 1).8

Some views are hybrid, conveying informa-
tion belonging to more than one of these fam-
ilies. For instance, a UML class diagram used
to illustrate an architectural view can show
both structural and execution-time informa-
tion. Views are often thought of as a docu-
mentation mechanism, but equally important
is that they’re also an architecture creation
method (a by-product of which is architectural
aspect discovery). An architect engineers the
structures native to each view to achieve the
system’s quality and behavioral goals. A view-
based architecting process can and will reveal
intra-view or cross-view commonalities that
the architect can capture as aspects.

Hence, we consider that the views them-
selves, rather than the software elements and
relationships they show, form the dominant
decomposition for an architecture. The whole
point of the multiview architectural approach
is to move away from the idea that systems
have only one structure or style determining
the decomposition. The decomposition is hier-

archical, as views have substructure. The ar-
chitect can decompose a view into “view
packets” that show small parts of the system
at great depth, or broader parts of the system
at shallow depth. Aspects in architecture,
then, manifest as discovered concerns that
crosscut views or parts of views. We can use
aspects to naturally and conveniently capture
issues that often arise during architectural de-
sign, such as

■ making sure all elements share common
behaviors, such as a start-up protocol, re-
covery in case of failure, reporting in case
of error, and so on (for example, all ele-
ments in our banking system might need
to behave the same if asked to execute a
transaction on a nonexistent account);

■ specifying a common substructure—for
example, requiring every application mod-
ule to include three submodules to moni-
tor the module’s health, periodically send
a heartbeat to the system-wide health
monitor, and check the module’s inputs
for validity, respectively; and

■ giving elements interfaces that have parts
in common, such as common sets of meth-
ods by which the elements’ functionality
can be invoked.

Activities
As in requirements, the main activities con-

cerning architectural aspects are identify, cap-
ture, compose, and analyze.

Identify. Although no automated technique ex-
ists for identifying architectural aspects, the ar-
chitect can use utilitarian, manual approaches
for finding crosscutting architectural concerns
during the normal activities of architecture-
based development.

Analyze the system’s business case. The ar-
chitect uses the business case to identify stake-

J a n u a r y / F e b r u a r y 2 0 0 6 I E E E S O F T W A R E 6 5

Table 1
Software architecture views

Module view Component-and-connector view Allocation view

Elements Units of implementation Units of run-time behavior Software and structures in the software’s environment

Relationships How the system is constructed How the elements interact with each How the software elements map to environmental
(such as “specializes,” “is a part other to do the system’s work (such elements (such as “deployed on” or “assigned to”)
of,” “inherits from,” or “is allowed as “sends data to,” “invokes,” or

to use”) “synchronizes with”)

holders and the driving goals behind the sys-
tem’s construction. Beyond what a requirements
specification usually captures, these goals
might represent the developing organization’s
ambitions underlying the system. An example
is an organization’s desire to reuse a subsystem
being developed for the current project in fu-
ture systems. Another example is a desire to
use Java 2 Enterprise Edition because the staff
is already trained in it. These goals might
eventually be refined into quality attribute
goals (such as for performance, security, or
reusability) that will shape the architecture, or
they might simply translate to design con-
straints. Analyzing the business case can iden-
tify overriding concerns that might cut across
the architectural elements of the design and
hence be candidates for aspects.

Understand the architecturally significant
requirements. Some requirements are more in-
fluential than others in the architecture. To
identify these requirements, architects look for
quality attributes that reflect the system’s
highest-priority business goals and those that
have the most impact on the architecture, es-
pecially decomposition decisions. In this step,
the architect can use requirements aspects iden-
tified earlier. In the banking example, we’re re-
quired to keep an audit history of all transac-
tions; this was captured as a requirements
aspect. This aspect provides a cue that every
architectural element whose function is to
carry out a transaction must record its actions
in an audit history.

Select patterns and tactics. Most prescriptive
approaches to architecture design start with
choosing appropriate architectural patterns.
Architectural patterns represent concerns satis-
fied using a group of architectural elements.

Work on code-level design patterns has shown
that capturing patterns using aspects is promis-
ing. The same is true for architectural patterns
(for example, those that Frank Buschmann and
his colleagues discuss9), where they form the
basis for prepackaged architectural design deci-
sions. Architectural tactics represent a finer-
grained approach to imbuing the architecture
with quality attributes.7 For example, redun-
dancy is a tactic for increasing a system’s avail-
ability. Figure 2 shows tactics for increasing sys-
tem performance.7 Choosing patterns and
tactics to solve a design problem helps identify
architectural aspects in two ways:

■ A pattern or tactic used in several places in
the architecture is by definition “crosscut-
ting” (an aspect) and need be specified
only once.

■ Some architectural patterns might call di-
rectly for the use of aspects in their defini-
tion. These aspects are simply added to
the architectural aspects list.

Finally, we can consider texture. Architec-
tural texture refers to a set of fine-grained de-
sign decisions that apply to a broad set of ele-
ments.10 For example, our banking system
elements that perform transactions on a
shared database will be required to follow cer-
tain protocols to allow rollback in the case of
failure. Texture decisions such as these are
candidates for aspects because a particular
choice will (somewhat) uniformly affect the
design of many architectural elements, possi-
bly in different views.

Capture. The architect captures aspects in the
architecture document, which we can structure

6 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Events
arrive

Performance

Resource management Resource arbitrationResource demand

• Introduce concurrency
• Maintain multiple copies
• Increase available resources

• Scheduling policy
• Synchronization policy

• Increase computational efficiency
• Reduce computational overhead
• Manage event rate
• Control frequency of sampling

Response
generated
within time
constraints

Figure 2. Tactics for
increasing system
performance.

as a set of views plus information that ties the
views together.11 If architectural aspects apply
across a set of elements, whether in a single
view or across views, we can factor them out
and document them separately—in an aspect
view. We document aspects in the aspect view
using the same languages and notations that
are used to describe the architecture’s corre-
sponding nonaspectual parts—for example:

■ If an aspect captures behavior common to
a set of elements, we can represent the be-
havior using whatever language the archi-
tect is using to capture elements’ nonaspec-
tual behavior: statecharts, message sequence
charts, Z specifications, and so on.

■ If an aspect captures common substruc-
ture, the architect represents the substruc-
ture in the same way that other structural
information is captured: UML class dia-
grams, for example.

■ If an aspect captures parts of an interface
common to a set of elements, the architect
represents that in the same way that other
interfaces are captured: IDL, for example.

Conventional views have places (sections in
a documentation template) to show structure,
behavior, interfaces, and so on. An aspect view
can use exactly the same organization. The
only difference is that aspects will be abstract
with respect to specific architectural elements.
For example, in an aspect view, behavior is
specified not for an element but for a set of el-
ements to be named later. Each aspect should
be documented with a rationale that identifies
its origins (which of the identification activi-
ties outlined previously led to its discovery).

In the banking example, requirements as-
pects emphasized to the architect that every
transaction must run to completion and
maintain an audit history. The architect,
when designing architectural elements to
carry out transactions, may choose to impose
a common internal structure and common be-
havior on each one to achieve those require-
ments in a consistent and conceptually coher-
ent fashion. These become the architectural
aspects. The aspect view would show an ab-
stract element (standing for any transaction
element), that element’s substructure, those
subelements’ interfaces, and how they behave,
all to assure transaction completeness and
capture audit history.

Compose. In addition to producing views, an
architect must produce documentation that
explains how views are related. Suppose our
banking application’s architecture is built as a
client-server system. A server might represent
a single implementation unit—we code it
once—but several execution units if the bank-
ing system is to have multiple servers running.
Somewhere in the documentation, the archi-
tect must map the (single) server in a module
view to the multiple servers in a component-
and-connector view.

Adding aspects to the mix requires estab-
lishing a mapping between the elements of an
aspect view (the architectural aspects) and the
elements or substructures in the different
views to which they apply. This is the concep-
tual analog to join points. In the banking ex-
ample, the mapping would establish the corre-
spondence between the transaction elements
and the aspects showing their common sub-
structure and behavior.

Analyze. Architectural analysis in the early-
aspect context, in addition to its conventional
purpose of assessing the architecture’s fitness
for a prescribed purpose, includes evaluating
the suitability of the aspects that the architect
has identified. The Architecture Tradeoff
Analysis Method can readily accommodate ar-
chitectural aspects into its analysis flow.12 To
the ATAM, an aspect’s creation is simply an
architectural decision like any other to be eval-
uated in the context of prevailing functional
and quality attribute goals. The Aspectual
Software Architecture Analysis Method
(ASAAM) includes steps to help identify aspects
after the architecture has been designed.13

The flow of early aspects: Later use
Up to this point, we’ve looked at why and

how to apply aspects in requirements and ar-
chitecture. However, early aspects also have
relevance and importance when passed be-
tween stages and on to later stages of the life
cycle—for example, for broader vision, im-
proved traceability, and improved trade-off
handling and negotiation.

Broader vision
Early aspects from both requirements and

architecture offer valuable insight in the im-
plementation phase. They provide an im-
proved localized description of stakeholder

J a n u a r y / F e b r u a r y 2 0 0 6 I E E E S O F T W A R E 6 7

Early aspects
also have

relevance and
importance

when passed
between stages
and on to later
stages of the

life cycle.

needs by addressing the crosscutting concerns,
as gathered by domain experts, requirements
engineers, and architects. These are roles whose
scope, vision, and experience extend beyond
implementation. These people, more than pro-
grammers, are guided by broader life-cycle and
organizational concerns. They’re in a good po-
sition to learn from the past and reuse the ac-

quired knowledge to design better applica-
tions. They respond to an organization’s busi-
ness goals, from which programmers might be
largely insulated. They glean concerns directly
from stakeholders, with whom programmers
seldom interact. They have insights into the en-
tire application domain, whereas implementers
tend to focus on only the system at hand.

6 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Table 2
Identifying and capturing early aspects

Life-cycle phases Early-aspects activities

Getting aspects Getting aspects Capturing and composing
from requirements from architecture Identifying aspects aspects Passing aspects on

Overall — — Start with understanding Capture aspects in require- Use identified and captured
the artifacts’ basic de- ments by specifying and aspects to drive imple-
composition. Then, capturing them separately mentation, maintenance,
look for broadly scoped and by specifying their and incremental
properties and signs of composition. If possible, development.
scattered concerns and rewrite documentation to
identify artifacts that better align with aspects.
tangle concerns. Otherwise, capture aspects

and their impact separately.

Requirements — Aspects that arise Look for common terms, Untangle all requirements Concerns and impact
engineering in architecture requirements that in- that you can. Reorganize requirements are given

might be evident fluence other require- them so that each concern to architecture design
earlier. Feed them ments, and requirements is described in its own and motivate the formation
back to the require- that tangle two or more section or location. For the of views. Use concerns
ments activity for concern terms. Some rest (the aspects), separate and impact requirements
possible incorpora- requirements describe the aspect descriptions to guide implementation:
tion. For instance, the impact of one con- from their corresponding requirements aspects may
use them to guide cern on another. impact requirements. (after passing through
keyword or property Impact requirements are an architecture/design
searching among used to more formally phase) become code-level
requirements. Or specify how the aspect aspects, and requirement
they might suggest should be composed with compositions become join
the need for a new other concerns. points. Composition and
requirements analysis of requirements
artifact. aspects provide early

insights into architectural
trade-offs.

Architecture Examine the — Look for concerns Extract aspects from views Architectural views guide
design concerns, impact in the business case; to form a view of their own. implementation, system

requirements, identify architecturally Use the languages and testing, integration, incre-
and trade-off significant requirements; notations used to capture mental development, and
decisions made to choose patterns and conventional views to maintenance. Architectural
resolve concern tactics (design patterns capture the aspect view. aspects become candidates
conflict. Treat describe how a particular Map the aspects and the for implementation aspects.
a requirements design choice affects views and elements to Use the mappings between
aspect as a many architectural which they apply to one views when implementing
candidate for an elements); and identify another. pointcuts using an AOP
architectural common policies, sub- language.
element whose structures, interfaces, and
responsibility will behaviors. For instance,
address that we discussed examining
concern. multiple use cases or

architectural elements
for commonalities.

Improved traceability
Aspects in requirements often give rise to

aspects in architecture, and then in implemen-
tation. For instance, aspects at the require-
ments level can be mapped onto design as-
pects, a function or component, or an
architectural decision.4 By identifying and
managing aspects throughout the life cycle,
every aspect that ends up in the implementa-
tion has a firm pedigree. Either the imple-
menters created it, or the architecture imposed
it. Architectural aspects, in turn, are docu-
mented showing their origins, one of which
could be requirements aspects. Hence, we can
trace every aspect throughout the system’s life
cycle back to its origins, thus providing the in-
sight necessary to effectively manage the as-
pect as the system evolves.

Improved trade-off handling and negotiation
Identifying aspects at each phase automati-

cally reveals the scope of the concern, whereas
a concern scattered throughout might be over-
looked or have its impact underestimated or
overestimated. This enables trade-off handling
and negotiation between phases on an in-
formed, rather than a speculative, basis. For
example, an architect who wishes to “push
back” on a difficult requirement will know the
scope of that requirement exactly.

S everal approaches are available for in-
corporating aspects in the requirements
and architecture phases of software de-

velopment. Some existing approaches explicitly
include aspects; for others, we can straightfor-
wardly add them in. An all-encompassing inte-
grated approach doesn’t yet exist. Given the
ever-increasing role that aspects play in soft-
ware development and their new and com-
pelling role in the early design phases, we can
hope for such a methodology in the future.
But the lack of such a packaged solution need
not deter us from gaining the advantages of
working with early aspects. At each stage, as
table 2 illustrates, we can identify and capture
them and pass them on.

The full potential of early aspects is only
now being glimpsed, but indications are that it
could become a valuable resource for software
system designers. Toward this end, a series of
Early Aspects workshops (www.early-aspects.
net) began in 2002. They’re now a primary

gathering place for researchers and practition-
ers interested in this novel concept. Seven
workshops have been held and two more are
scheduled for major conferences in 2006.
Work on individual pieces of this integrated
approach has shown that early aspects work in
practice in both industrial and pedagogical set-
tings.3,5,6,13 We hope that this article has

J a n u a r y / F e b r u a r y 2 0 0 6 I E E E S O F T W A R E 6 9

About the Authors

Elisa Baniassad is an assistant professor at the Chinese University of Hong Kong. Her
research interests include innovating and conducting empirical studies on visualization tech-
niques related to aspect-oriented requirements engineering and establishing rationale relation-
ships between high-level documentation and source code. She is coauthor of Aspect Oriented
Analysis and Design: The Theme Approach (Addison Wesley, 2005). She received her PhD in
computer science from the University of British Columbia. Contact her at the Dept. of Computer
Science and Eng., Ho Sin Hang Bldg., Chinese Univ. of Hong Kong, Shatin, New Territories,
Hong Kong, SAR, China; elisa@cse.cuhk.edu.hk.

Paul C. Clements is a technical staff senior member at Carnegie Mellon University’s
Software Engineering Institute, where he has led projects in software architecture and software
product line engineering. He received his PhD in computer sciences from the University of
Texas at Austin and is coauthor of Software Architecture in Practice (Addison-Wesley, 2003),
Documenting Software Architectures (Addison-Wesley, 2002), and Evaluating Software Architec-
tures (Addison-Wesley, 2001). Contact him at Software Eng. Inst., Carnegie Mellon Univ., Pitts-
burgh, PA 15213; clements@sei.cmu.edu.

João Araújo is an assistant professor at the New University of Lisbon. His research inter-
ests include aspect-oriented software development, requirements engineering, and model-
driven development. He received his PhD in computer science from Lancaster University. He is
a co-organizer of the Early Aspects workshop series. Contact him at Departamento de Infor-
mática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre,
2829-516 Caparica, Portugal; ja@di.fct.unl.pt.

Ana Moreira is an assistant professor at the New University of Lisbon. Her research inter-
ests include aspect-oriented requirements engineering and design, model-driven engineering,
and object-oriented modeling. She is an editorial board member of Software and Systems Mod-
eling and Transactions on Aspect-Oriented Software Development and is the steering committee
chair for the ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems (MoDELS 2006). She is also a co-organizer of the Early Aspects workshops series. Con-
tact her at Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade
Nova de Lisboa, 2829–516 Caparica, Portugal; amm@di.fct.unl.pt.

Awais Rashid is a senior lecturer in Lancaster University’s Computing Department,
where he leads research in aspect-oriented software engineering. His research interests include
aspect-oriented requirements engineering, aspect-oriented databases, and object data manage-
ment. He is the author of Aspect-Oriented Database Systems (Springer, 2004) and a founding
co-editor in chief of Transactions on Aspect-Oriented Software Development. He also coordi-
nates the European Network of Excellence on AOSD, funded by the European Commission. Con-
tact him at Computing Dept., Infolab21, South Dr., Lancaster Univ., Lancaster LA1 4WA, UK;
awais@comp.lancs.ac.uk.

Bedir Tekinerdoğan is an assistant professor in the Software Engineering Group at
the University of Twente, where he leads the software architecture design group. His research
interests include aspect-oriented software development, software architecture design, model-
driven engineering, and software product line engineering. He’s also a co-organizer of the Early
Aspects workshop series. Contact him at Univ. of Twente, Dept. of Computer Science, Software
Eng., PO Box 217 7500 AE, Enschede, NL; bedir@cs.utwente.nl.

7 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

shown that early aspects can play an important
and integrated role throughout the life cycle.

References
1. I. Brito and A. Moreira, “Integrating the NFR Frame-

work in a RE Model,” presented at Early Aspects: As-
pect-Oriented Requirements Engineering and Architec-
ture Design Workshop, 2004, http://trese.cs.utwente.nl/
workshops/early-aspects-2004/Papers/BritoMoreira.pdf.

2. A. Sampaio et al., “EA-Miner: A Tool for Automating
Aspect-Oriented Requirements Identification,” Proc. Int’l
Conf. Automated Software Eng. (ASE 05), ACM Press,
2005, pp. 352–355.

3. E. Baniassad and S. Clarke, “Theme: An Approach for
Aspect-Oriented Analysis and Design,” Proc. 26th Int’l
Conf. Software Eng. (ICSE 04), IEEE CS Press, 2004, pp.
158–167.

4. A. Rashid, A. Moreira, and J. Araújo, “Modularisation
and Composition of Aspectual Requirements,” Proc. 2nd
Int’l Conf. Aspect-Oriented Software Development
(AOSD 03), ACM Press, 2003, pp. 11–20.

5. J.Araújo, J. Whittle, and D. Kim, “Modeling and Com-
posing Scenario-Based Requirements with Aspects,” Proc.
12th IEEE Int’l Requirements Eng. Conf. (RE 04), IEEE
CS Press, 2004, pp. 58–67.

6. A. Moreira, A. Rashid, and J.Araújo, “Multi-Dimen-
sional Separation of Concerns in Requirements Engineer-
ing,” Proc. 13th IEEE Int’l Requirements Eng. Conf.
(RE 05), IEEE CS Press, 2005, pp. 285–296.

7. L. Bass, P. Clements, and R. Kazman, Software Architec-
ture in Practice, 2nd ed., Addison-Wesley, 2003.

8. P. Clements et al., Documenting Software Architectures:
Views and Beyond, Addison-Wesley, 2002.

9. F. Buschmann et al., Pattern-Oriented Software Architec-
ture: A System of Patterns, John Wiley & Sons, 1996.

10. M. Jazayeri, A. Ran, and F. Van Der Linden, Software
Architecture for Product Families: Principles and
Practice, Addison-Wesley, 2000.

11. P. Kruchten, “The 4+1 View Model of Architecture,”
IEEE Software, vol. 12, no. 6, 1995, pp. 42–50.

12. P. Clements, R. Kazman, and M. Klein, Evaluating Soft-
ware Architectures: Methods and Case Studies, Addison-
Wesley, 2001.

13. B. Tekinerdogan, “ASAAM: Aspectual Software Architec-
ture Analysis Method,” Proc. 4th Working IEEE/IFIP
Conf. Software Architecture (WICSA 04), IEEE CS Press,
2004, pp. 5–14.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE Distributed Systems Online
brings you peer-reviewed articles,

detailed tutorials, expert-managed topic
areas, and diverse departments covering
the latest news and developments in this

fast-growing field.

Log on for free access
to such topic areas as

Grid Computing

Mobile & Pervasive

Distributed Agents

Security

Middleware

Parallel Processing

Web Systems

Real Time & Embedded

Dependable Systems

Cluster Computing

Distributed Multimedia

Distributed Databases

Collaborative Computing

Operating Systems

Peer to Peer

Software Engineering

THE IEEE’S 1ST ONLINE-ONLY MAGAZINE

To receive regular updates, email

dsonline@computer.org

h
t

t
p

:/
/

d
s

o
n

li
n

e
.c

o
m

p
u

t
e

r.
o

r
g

