
Discovering Essential Code Elements
in Informal Documentation

Peter C. Rigby∗
Department of Software Engineering

Concordia University
Montreal, QC, Canada

peter.rigby@concordia.ca

Martin P. Robillard
School of Computer Science

McGill University
Montreal, QC, Canada

martin@cs.mcgill.ca

Abstract—To access the knowledge contained in developer
communication, such as forum posts, it is useful to determine
automatically the code elements referred to in the discussions.
We propose a novel traceability recovery approach to extract the
code elements contained in various documents. As opposed to
previous work, our approach does not require an index of code
elements to find links, which makes it particularly well-suited for
the analysis of informal documentation. When evaluated on 188
StackOverflow answer posts containing 993 code elements, the
technique performs with average 0.92 precision and 0.90 recall.
As a major refinement on traditional traceability approaches, we
also propose to detect which of the code elements in a document
are salient, or germane, to the topic of the post. To this end we
developed a three-feature decision tree classifier that performs
with a precision of 0.65–0.74 and recall of 0.30–0.65, depending
on the subject of the document.

I. INTRODUCTION

An increasing amount of knowledge about software gets
conveyed and archived in informal developer communications
such as forum posts and mailing lists. Unfortunately, while
the informal structure promotes conviviality and discourse, it
also makes it more difficult to index, search, and analyze. A
particular problem is searching for discussions of a specific
software (API) element, to find good usage patterns, bug
workarounds, or alternatives.

To address this problem, many recent research projects have
targeted the recovery of traceability links between source code
elements and informal documentation [1], [2]. This work comes
in the wake of more general attempts at linking source code
and documents [3], [4].

Recent traceability work has focused on the problem of
identifying a known set of code terms in developer commu-
nication. For example, if a post or email message mentions
execute, does this term correspond to (for example) an
execute method in a code base of interest? In this case
success is strongly influenced by intrinsic factors of both
the message and of the names of the source code elements.
In the example above, execute will be easier to correctly
extract as a method if the author of the message includes
the parentheses after the method name. Similarly, elaborate
names such as equalsIgnoreCase are easier to correctly
link than pervasive terms such as add.

The state-of-the-art of traceability techniques for developer
resources shows very good accuracy (see Section II). However,

∗This work was done while Rigby was a postdoctoral researcher at McGill

all existing traceability approaches developed to date have
two important limitations for the detection of references to
code elements in developer communications: a closed-world
assumption, and a uniform importance assumption.

The closed-world assumption is that all code elements of
interests are known in advance. This assumption makes sense
when processing documents relating to a very specific system,
such as the tutorial for the JodaTime API.1 In this case, it is
possible to scan all the text and attempt to resolve various
combinations of tokens against code elements of the JodaTime
API. Unfortunately, the closed-world assumption breaks down
when analyzing general-purpose forums such as StackOverflow,
where code terms referring to various software elements can
appear in sometimes odd combinations. For example, the
Android tag on StackOverflow is associated with 6355 different
other tags, including HttpClient and SQLite.

The uniform importance assumption is that all mentions
of a code element have equal importance. For example,
if 50 messages in a forum contain a mention of the
method DocumentBuilderFactory.newInstance(),
then they are all equally “linked” to this code element. In
practice however, we observe that the relevance of a code
element can vary widely. In the case above, the element would
be highly relevant in a post demonstrating how to access XML
processing services provided by the factory, but the element
is boiler-plate code in most other cases. We thus consider
that not all elements are equally essential to a document:
some are more salient than others. To determine salience,
traditional information retrieval concepts such as term frequency
do not apply naively. As a simple example, if a code example
demonstrating a GUI layout manager involves three buttons
and one layout object, it does not mean that the example is
more about buttons than about layouts, even if both terms
appear in the same number of documents.

A very desirable goal would be to eliminate the closed
world and uniform importance assumptions for code element
traceability in developer communications. An ideal solution
to this problem would enable us to find, among very large
collections of messages and other documents, the ones that
actually discuss a particular code element. As a first step in
this direction, we developed a novel automatic code element
extractor (ACE) that works without a pre-defined set of known

1http://joda-time.sourceforge.net/userguide.html



In your question you are setting the content type on the class
UrlEncodedFormEntity to JSON. While this works for other
types, with JSON you should use a StringEntity and convert
the JSON object toString:

1 // Build the JSON object to pass parameters
2 JSONObject jsonObj = new JSONObject();
3 [...]
4 // add the parameters to the POST object
5 StringEntity entity = new

StringEntity(jsonObj.toString(),
HTTP.UTF_8);

6 entity.setContentType("application/json");
7 httpPost.setEntity(entity);
8 HttpResponse response =

client.execute(httpPost);

Fig. 1. Answer adapted from StackOverflow

Java elements. To explore alternatives to the uniform importance
assumption, we also built a classifier that estimates whether
an element is salient or not in a document.

An evaluation of our code extractor on 188 StackOverflow
answer posts containing a total of 993 code elements showed
an average precision of 0.92 and an average recall of 0.90.
These numbers are just a few percentage points lower that the
state-of-the-art closed-world code element linker, RecoDoc [2].

The classification of code elements as salient or not is much
less well-defined and also more difficult. In this case, our
classifier managed a precision of 0.65–0.74, and a recall of
0.30–0.65 (depending on the subject of the document).

These results are encouraging because they show that the
closed-world assumption can be shed with minimal loss of
accuracy, and that a reasonable, if modest, accuracy can be
obtained for the difficult task of determining whether an element
is salient. Although incremental improvements in both areas
are likely to follow, we feel that the performance of our initial
infrastructure is already sufficient to motivate experimentation
with applications such as advanced search tools.

II. BACKGROUND

Documents: Our approach is designed to extract and esti-
mate the salience of code elements in most types of developer
communication. We call document a generic unit of developer
communication. Documents include posts on a Q&A forum,
email discussions, and formal documentation like tutorials and
Javadoc. In this paper we use forums as our target application.

Figure 1 illustrates a typical forum post. Such documents
generally include free-form text and code fragments, both of
which potentially refer to code elements from different APIs.

Code Element Extraction: There are three stages involved
in most code element extraction techniques (also called linking
or traceability recovery techniques). Stage 1 and 2 do not
depend on each other.

1) Identifying code-like terms, which are sequences of
characters in a document that resemble code elements.

2) Creating an index of valid code elements. Code elements,
are types (e.g., classes, enums, annotations), methods,
and fields (or their equivalents in different programming

languages). For closed-world techniques, the index con-
sists of the elements defined in the source of a software
system of interest (e.g., all the classes, methods, and
fields of the Java Swing API).

3) Resolving code-like terms to their corresponding code
elements (and eliminating code-like terms that do not
map to valid elements). Code-like terms that map to a
single code element are unambiguous. In contrast, an
ambiguous code-like term can map to zero or two or
more code elements. In the latter case, ambiguous terms
require additional processing to resolve them to a single
code element. When a code-like term does not map to a
code element it remains unresolved.

The output of the process is a list of the code elements
associated with each document. The morphology of code-
like terms and their (non-)ambiguity determines the diffi-
culty of resolving them. Unambiguous terms are trivially
resolved, whereas ambiguous terms may be unresolvable. We
additionally distinguish between qualified and unqualified
terms. Qualified terms are connected by a dot to another term
(e.g.,httpPost.setEntity) and tend to be unambiguous,
while unqualified terms always require further resolution
(e.g.,toString in the free-form text in Figure 1).

Salience: For a code element to be salient, it must be
central to an example code fragment or have some discussion
defining its function or describing its use. For example,
in the answer in Figure 1, we learn that when combining
JSON with HttpClient, UrlEncodedEntity cannot be used.
Instead StringEntity should be used and with the content
type set to JSON through StringEntity.setEntity.
The JSON object must also be converted to a string via
JSONObject.toString. These code elements are salient
to the answer. In contrast, httpPost.setEntity on line
7 and the constructor JSONObject on line 1 represent
contextual code elements that provide the setup for the salient
elements.

In Section VII, we elaborate on the guidelines for manually
determining the salience of a code element. Manually creating
a benchmark from StackOverflow posts, we found that we
could not accurately identify salient code elements in questions
posts because developers indiscriminately dump stacktraces
and other code fragments. Questioners do not know where to
focus and so provide as much information as possible in the
hope that someone will spot their problem. In our benchmark,
we focus on answer posts and leave the identification of
salient code elements in question posts to future work as such
an identification would in many cases constitute a solution
to the questioner’s problem – a substantially more difficult
research problem. In contrast to our manual benchmark, which
only deals with answer posts, ACE identifies code elements,
regardless of salience, in all question and answer posts.

III. RELATED WORK

Bacchelli et al. [1] use lightweight regular expressions
that are based on programming language naming conventions
to identify code elements contained in email discussions. Their
technique, called Miler, is case sensitive and involves using
camel case to identify the entities. Camel-cased terms can



TABLE I
COMPARISON OF STAGES IN CODE ELEMENT EXTRACTION PROCESS

Technique 1. Code-like terms 2. Code Element Index 3. Resolver Avg Precision Avg Recall

Information Retrieval [1],
[3], [4]

Bag of words – text normal-
ization

Parsed from source code e.g., LSI 0.42 0.38

Miler [1] Language conventions (e.g.,
camel case)

Parsed from source code Exact string match 0.33 0.64

RecoDoc [2] Language conventions and
PPA [5]

Parsed from source code Term context and filters 0.96 0.96

ACE (current paper) Language conventions and
island parser

Parsed from collection of
documents

Term context and collection
context

0.92 0.90

be divided into compound terms that contain two or more
words (e.g.,HttpClient) and non-compound terms that are
single words (e.g.,get() or Intent). Non-compound terms
tend to be more ambiguous than compound terms because
single terms are more likely to be a word that is commonly
used in English (e.g., “To get an Intent ...”). To resolve
non-compound terms, Miler searches the document for the
term’s fully qualified name that includes a package and class
(e.g.,android.content.Intent), or the file name (e.g.,
‘Intent.java’). Miler’s index of code elements is based on the
source code of a reference system. The index contains only
classes, so it does not recognize members like methods and
fields. Miler’s average precision and recall is 0.33 and 0.64
respectively. These values vary depending on the software
project under examination and the programming language.

Information retrieval techniques have been widely used
to resolve the links between source code elements and
documentation. For example, Antoniol et al. [3] apply a
probabilistic and Vector Space Model (VSM) to resolve terms,
while Marcus et al. [4] use Latent Semantic Indexing (LSI).
Surprisingly, Bacchelli et al. show that lightweight regular
expressions perform similarly to more complex information
retrieval techniques, such as LSI, with a average precision of
0.42 and recall of 0.38, and VSM, with an average precision
of 0.23 and recall of 0.31.

Information retrieval techniques and lightweight regular
expressions are impractical for our purpose because they have
low precision and recall and they can only identify classes.

Term context is used in RecoDoc to link code-like terms in
documentation to their corresponding source code elements [2].
RecoDoc requires an index of valid code elements that it
extracts from the source code of a reference system. It uses
lightweight regular expressions to extract code-like terms
from free-form text and uses partial program analysis [5] to
extract them from code fragments. To resolve ambiguous terms,
RecoDoc uses a sequence of heuristic filters. For example, it
searches an ambiguous term’s context for a possible declaring
type. Here, “context” refers to additional information in various
scopes surrounding the term (see in Section IV). Other filters
involve name similarity matching between terms and code
elements (e.g., the variable htclient matches the type
HttpClient), excluding overloaded terms that exist in an
external library or that represent concepts instead of code
elements (e.g., ‘URL’ can be a concept as well as a code
element), and matching terms to a declaring superclass in the

class hierarchy. RecoDoc has matching precision and recall
values of 0.96.

We borrow and expand upon RecoDoc’s notion of term
context for resolving ambiguous terms. However, for our
purpose, RecoDoc has two limitations. First, its use of partial
program analysis creates a dependence on the Eclipse Java
compiler [5]. The compiler can handle some errors, but many
errors will force it to fail. RecoDoc has no record of the
terms in a code fragment with compilation errors. In tutorials,
where code fragments are written by expert developers for
illustrative purposes, compilation errors are less frequently a
problem. However in informal documentation, code fragments
represent informal questions and answers that developers
quickly construct with a narrow purpose. Developers often
eliminate much of the irrelevant code, making the fragment
concise but not compilable. Second, RecoDoc creates an index
of valid elements by parsing the source code of a software
system before extracting code-like terms. This index creates a
closed-world of terms, which means that it cannot identify code
elements from other APIs. While a tutorial usually contains
only code relating to a single API, posts on Q&A sites often
refer to multiple APIs. RecoDoc ignores information on how
to combine multiple APIs.

Island grammars specify production rules for language
constructs of interest (the islands, e.g., code elements), while
ignoring other language constructs that are uninteresting (the
water) [6]. They were originally developed to extract constructs
of interest from source code that did not compile. van Deursen
and Kuipers have used this technique to parse source code
and automatically generate documentation [7]. As part of ACE,
we select Java constructs from the language specification that
contain code elements (e.g., a class definition contains the
name of a class) [8], and implement an island parser that can
extract these constructs from free-form text and code fragments
that do not compile. Bacchelli et al. [9] construct an accurate
island parser to identify Java code-like terms in free-form text.
However, they do not resolve the code-like terms to valid,
qualified source code elements (i.e. they only perform Stage
1: identification of code-like terms).

Table I compares how representative code element extraction
techniques work for each stage described in Section II, and
include the performance of each approach as reported by its
author. We also include a comparison with ACE, the approach
we propose in this paper. We note that the performance
measures were not obtained on the same benchmark, so direct
comparison is not possible. However, each approach was



evaluated on a benchmark appropriate to its targeted application,
so the measures are at least representative of how the techniques
are expected to work in practice.

IV. CODE ELEMENT IDENTIFICATION WITH ACE
Our automated code element resolution tool is called ACE.

ACE can extract code elements from documents that contain
free-form text as well as code fragments that may not be
compilable; process an arbitrary collection of documents, so
there is no dependence on a predetermined index of valid code
elements; and handle large document collections with high
precision and recall.

ACE performs the three stages in the code element identifi-
cation process. It also has an additional processing stage.

1) It uses an island parser, to identify code-like terms from
each document.

2) It creates an index of valid code elements based on
stage 1.

3) It reparses each document to identify ambiguous terms
that match code elements in the term index. It resolves
each term using the term’s context.

4) It outputs the code elements associated with each
document.

Below we present each stage and the rationale for our choices.
We also provide a detailed description of term context, which
is necessary to understand our technique.

Stage 1: Island Parser
An island grammar only describes constructs of interest [6].
In our case, the constructs of interest are those that describe
code elements. We are not interested in language constructs,
for example, that control the flow of the program. The
island parser we developed is composed of a set of regular
expressions that are approximations of the following con-
structs in the Java Language Specification [8]: qualified terms
(e.g.,HttpClient.execute()), package names, variable
declarations, qualified variables (e.g.,client.execute()),
method chains (e.g.,client.execute().toString()),
class definitions including inheritance, declaration and over-
riding of methods, inner classes, constructors, stacktraces,
annotations, and exceptions.

We are able to process a document that contains compilation
errors, and we do not differentiate between free-form text
and code fragments. We define each regular expression, but
only to the extent that is necessary to isolate code elements
within a Java construct. We order regular expressions from
most precise to most flexible because terms contained within
a precise regular expression are more likely to be valid than
those contained in a highly flexible one. To eliminate some
of the ambiguity introduced by the regular expressions and to
determine the kind of an ambiguous term (e.g., variable vs.
class), we use regular expressions to ensure that each term
conforms to the Java naming conventions (e.g., camel case) [8].

Term Context (used in all subsequent stages): The Java
specification provides scoping rules that define the context for
each term and “In determining the meaning of a [term’s] name
[. . . ], the context of the occurrence is used to disambiguate
among packages, types, variables, and methods with the same
name.” [8] We use these rules to resolve code-like terms

contained in well-defined constructs, for example, to resolve an
unqualified method that is declared within the scope of a class
declaration. However, scope rules are defined for source code
and are insufficient for determining a term’s context inside a
document that contains both free-from text and code fragments.

To solve this problem, Dagenais and Robillard [2] defined
three term contexts: immediate or qualifying context, local
context (all the terms in the same document), and global or
thread context (documents in the same discussion thread). For
example, in the answer post in Figure 2 with respect to the
term executeMethod on line 2, the immediate context is
the term client. The local context is all the terms in the
document depicted by the question. The global context is all
the terms contained in related documents: the question and the
answer.

While these term contexts have an analog in the context
defined in the Java specification, Dagenais and Robillard define
them intuitively based on two observations. First, two code
elements mentioned in the same context are more likely to be
related than those mentioned further apart or in another context.
This concept is known as term proximity. Second, members
are unlikely to be mentioned without their declaring type in
context. The intuition behind the latter is that methods are often
declared in multiple types, so their type is usually mentioned
in the document, because without it they are ambiguous even
to a person reading the document.

Stage 2: Index of valid terms
Unlike previous work, the index is dependent on the terms that
are found across the entire collection of documents (i.e. the
collection context), instead of the code elements found in the
source code of a particular system. Our system must thus build
the index by opportunistically collecting and validating all the
terms it finds in a specified collection (e.g., a collections of
posts, a mailing list, etc)

The flexibility of the parser coupled with the ambiguity of
natural language, application-specific terms used by developers,
and mistakes made by developers means that not all code-like
terms extracted by the island parser are valid. Our intuition is
that terms that occur with low frequency are less likely to be
valid collection-wide elements than high frequency terms (See
Section V for validation). While we considered more complex
alternatives for eliminating terms, we found that an effective
technique is simply to exclude terms that appear in only one
thread context (one-off terms). For a term to be included in the
index as a valid code element, it must appear more than once
in a Java construct in a code fragment or in free-form text
in a qualified manner (e.g., HttpClient.execute). Valid one-off
terms must appear in a Java construct or in a qualified manner
in only one document. One-off terms tend to be valid in the
document in which they are found, but they introduce false
positives when applied to other documents.

Variable and package names need additional process-
ing before we can add them to the index. Package
names (e.g.,org.apache.http.client) resemble URLs
(e.g.,www.apache.org). While it may be possible to exclude
invalid names through naming conventions, we validate pack-
ages by ensuring that each defines at least one type in the col-
lection context (e.g.,org.apache.http.CookieStore).



Question
I’ve figured out how to create a client and how to GET re-
sponses, using the getResponseBodyAsStream in the GetMethod
class, can someone show me how to POST [. . . ]

1 HttpClient client = new
DefaultHttpClient();

2 HttpMethod method = new
GetMethod("http://www.apache.org/");

3 [...]

Answer
Here’s a brief code example that should help.

1 //method is a PostMethod
2 client.executeMethod(hostconfig, method);
3 method.setFollowRedirects(true);
4 InputStream is =

method.getResponseBodyAsStream();
5 [...]

Fig. 2. Resolving variables and unqualified terms. The question and answer
posts are adapted from StackOverflow.

We consider package names followed by a ’;’ or ’.*’ to be
valid.

In the case of variables, each one must be resolved to
its declaring type. The answer post in Figure 2 contains
three different variables that must be resolved. First, variables
that are declared in the local context (e.g.,InputStream
is) or in the global context (e.g.,client is resolved
to HttpClient client) are trivially resolved to their
type. Second, the declaration of contextual classes is of-
ten removed by developers. To resolve these variables, we
determine which members are associated with a variable
(e.g.,method.getResponseBodyAsStream,
method.setFollowRedirects). We then determine
which types declare a variable with a similar name in
the collection context (e.g., one post declares GetMethod
method and another PostMethod method). We assign
the variable to the type that has the largest number of members
(PostMethod declares both members, while GetMethod
only declares getResponseBodyAsStream). In the case
of a tie, we select the most frequently used type in the collection
context.

Stage 3: Reparse documents and resolve ambiguous
terms
With an index of valid terms, we reparse all documents and
extract unqualified, ambiguous code-like terms that match a
code element in the index. Below we describe how we use the
term’s context and the collection context to resolve or discard
each term.

For example, for each unqualified member (e.g.,
getResponseBodyAsStream in the first sentence in the
question in Figure 2), we determine whether or not there
is a valid type (e.g.,GetMethod) that declares the member
and is present within the local context. If it is not in the
local context, we repeat this step for the thread context. If the
defining type is present, we mark the member and type as valid

code elements for the document. In the case of more than one
possible type, we choose the type that has the closest proximity
to the member. In the case of local context, proximity is the
distance in characters between terms, and for the thread context,
proximity is the closest absolute difference in document dates
(e.g., the difference in time between when a question was
posted and an answer was posted).

When we were evaluating ACE, we found that unqualified
compound types and unqualified non-compound methods
yielded a high number of false negatives and false positives,
respectively. We include all ambiguous, unqualified compound
types that match a type in the index because the increase in
recall outweighed any decrease in precision (See Section VI).
We also exclude all unqualified non-compound method names
that are not followed by a parenthesis because many of these
terms occur in natural discourse, which increases the number of
false positives. For example, we exclude the word ‘execute’ but
include HttpClient.execute and execute(). Other
researchers have found that while compound camel cased terms
usually represent code elements, single word terms tend to be
ambiguous [1]; as a result stricter matching rules are justified
when resolving unqualified single word terms.

Stage 4: Final output
ACE outputs the index of valid terms for the collection and
the terms that are valid for each individual document. The
index contains no one-off terms, but a document does contain
one-off terms, which are extracted from valid Java constructs.
For example, a developer may create a Bank class that sends
information using HttpClient. If we exclude this Bank class,
which is a one-off term, we will introduce a false negative.

We also associate the following additional features with
each term: its kind (e.g., class, member), its context (e.g., it
may have been an unqualified, ambiguous term), its frequency
across the local, immediate, and collection contexts, and its
location in the document. We use these features in Section VII
to help classify the salience of a code element.

V. DATA SOURCE AND BENCHMARK

StackOverflow is a Q&A forum for computer program-
ming [10].2 Developers ask and answer questions as well as
vote on the quality of a post. Each question contains one or
more tags that indicate its topic. We process all question and
answer posts on StackOverflow, between August 2008 and
September 2011, related to the following three project tags:
HttpClient, Hibernate, and Android. These three project tags
crosscut a diverse set of topics. Each project tag is associated
with 384, 1610, and 6366 distinct other tags, respectively. We
choose three project tags to ease manual validation. Randomly
sampling across all StackOverflow posts would have made
manually validating code elements difficult because we would
have needed a base knowledge of many APIs. Although
all three projects are principally written in Java, they vary
dramatically in domain and size. HttpClient provides an API
for communicating with a server.3 StackOverflow contains
1051 documents tagged with ‘HttpClient’. Hibernate’s primary
function is to allow developers to model and persist Java

2http://stackoverflow.com
3http://hc.apache.org



objects in a relational database.4 There are 26 695 documents
tagged with ‘Hibernate’ on StackOverflow. Android is a mobile
platform.5 Developers can provide apps and games for Android
users. StackOverflow contains 230 836 documents tagged with
‘Android’.

Benchmark: From randomly sampled answer posts, we
manually identify the code elements contained in each post
and mark the code elements as salient or non-salient for the
purpose of the post. Validating the code elements identified
by ACE was much less time consuming than understanding
the post and identifying the salient code elements. We stopped
sampling when we had coded at least 300 code elements per
project. For HttpClient, Hibernate, and Android we coded 70,
53, and 65 random answer posts which contained 325, 325, and
343 code elements. We found that we could not accurately code
the salience of code elements in questions because developers
indiscriminately dump stacktraces and code fragments; they
do not know where to focus and often mistakenly assume a
code element relates to their problem. As a result, we leave the
salience of elements in question posts to future work and only
code answer posts. In contrast, ACE processes all question and
answer posts.

Our unit of analysis is the code element. We consider the
following kinds of code elements: packages, annotations, types,
methods, and fields. As with previous work, we do not consider
variables to be code elements, but we use them as intermediaries
when resolving members to their valid types. When ACE
incorrectly resolves a variable, all of the code elements qualified
by that variable are also invalid. Our guidelines for determining
code element salience are discussed in Section VII.

VI. EVALUATION OF ACE

We evaluate ACE by processing documents on StackOver-
flow and answering the following questions.

1) Does ACE identify valid code elements with high
precision and recall?

2) We considered unqualified compound types as valid.
What impact does this special case have on precision
and recall?

3) Can ACE process a large collection of documents? How
many code elements can be an unambiguously identified
using an island parser, how many must be resolved, and
how many were dropped because they do not represent
code elements?

Precision and Recall: We compare the code elements that
we manually identify with those identified by ACE. There are
three possible outcomes. A false positive (FP): ACE identifies
an invalid code element. A false negative (FN): ACE fails to
identify a code element. A true positive (TP): ACE identifies a
valid code element. A misclassified code element is considered
to be both a false positive and a false negative because ACE
identified an invalid code element and failed to identify a valid
code element.

ACE attains a high degree of precision and recall for each
project. Using the standard formulas for precision and recall [11,

4http://www.hibernate.org
5http://developer.android.com/about/index.html

TABLE II
HTTPCLIENT: PRECISION = 0.96 AND RECALL 0.92, HIBERNATE:

PRECISION = 0.91 AND RECALL 0.91, ANDROID: PRECISION = 0.90 AND
RECALL = 0.86

Project HttpClient Hibernate Android
TP FP FN TP FP FN TP FP FN

Packages 14 0 1 18 5 0 9 3 1
Annotations 0 1 0 65 1 1 0 0 0
Types 167 7 12 127 13 15 150 18 13
Methods 112 5 9 72 6 8 118 11 31
Fields 6 0 4 14 6 5 18 1 3
Total 299 13 26 296 31 29 295 33 48

Chapter 6.2.2], the respective values for HttpClient are 0.96
and 0.92, for Hibernate are 0.91 and 0.91, and for Android
are 0.90 and 0.86. Table II shows the breakdown by project
for the true positives and false positives and false negatives
associated with each kind of code element.

Special Case: During the manual inspection for the purpose
of evaluation, we noticed that ambiguous, unqualified com-
pound types (e.g.,InputStream) tend to represent valid code
elements. ACE treats all unqualified compound types as valid
elements. If we remove this special case for HttpClient, in the
manually coded benchmark, we introduce 22 false negatives
and 0 false positives, and, across the whole collection, we
invalidate 287 terms. While precision remains unchanged, recall
drops to 0.88 a decrease of 0.05. In the case of Hibernate,
for our benchmark, we introduce 20 false negatives and 0
false positives, and invalidate 9.9K terms across the collection.
Precision drops to 0.94, a one point decrease, while recall drops
to 0.84, a decrease of 0.06. For Android, in the benchmark, we
introduce 28 false negatives and eliminate 21 false positives and
invalidate 185K terms across the whole collection. Precision
increases to 0.96 a increase of 0.06, while recall drops to 0.78,
a decrease of 0.08. For HttpClient and Hibernate, we confirm
that the intuition that compound types tend to represent code
elements is valid, and the special case introduces no new false
positives in our benchmark. However, for Android, we do see
an increase in false positives, but think that the decrease in
false negatives justifies this special case.

Descriptive statistics: A term can be in one of three
states: an unambiguous term identified by the island parser, an
ambiguous, unqualified term that can be resolved to a code
element in our index, and unresolved terms that are ambiguous
but do not match a term in our index. We consider unambiguous
and resolved terms to be valid, while unresolved terms are
invalid and are dropped from ACE’s final output. We report
descriptive statistics for the entire collection of documents by
project (not just the benchmark). Table III presents a breakdown
of the terms by their kind. Most terms are types, followed by
methods. Fields are proportionally the most ambiguous kind.

Across the 1K documents for the HttpClient project, ACE
identified 17K valid code elements. There are 15K unambiguous
code elements that can be extracted from Java constructs using
the island parser. Of the 5.1K ambiguous terms, 2.1K can
be resolved by ACE, while the 3K code-like terms do not
represent valid code elements and remain unresolved.



TABLE III
THE NUMBER OF UNAMBIGUOUS, AMBIGUOUS, AND RESOLVED TERMS FOR EACH PROJECT. THE NUMBER OF TERMS THAT ARE DROPPED BY ACE AS

INVALID IS THE NUMBER OF AMBIGUOUS MINUS RESOLVED TERMS.

Project HttpClient Hibernate Hibernate
Unambig. Ambig. Resolved Unambig. Ambig. Resolved Unambig. Ambig. Resolved

Package 1.4K NA NA 53K NA NA 147K NA NA
Annotation 18 NA NA 28K NA NA 1.5K NA NA
Type 6.6K 3.5K 1.3K 114K 148K 32K 820K 1.4M 430K
Method 3.5K 378 132 63K 25K 15K 518K 318K 212K
Fields 330 364 4 6.4K 8.3K 519 81K 60K 17K
Variable 2.7K 427 331 36K 9.4K 7.4K 381K 91K 74K
Total 15K 5.1K 2.1K 300K 190K 55K 2.0M 1.9M 733K

Across the 27K documents tagged with Hibernate on
StackOverflow, ACE identifies 355K valid code elements. The
island parser identifies 300K unambiguous code elements. Of
the 190K ambiguous code-like terms, 55K can be resolved
to valid terms, and the remainder do not represent valid code
elements. Hibernate uses many more annotations than the other
two project because annotations are used to indicate which
classes represent entities in the database and the relationships
between entities.

Across the 231K documents tagged with Android on Stack-
Overflow, ACE identifies 2.7M valid code elements. The island
parser identifies 2.0M unambiguous code elements. Of the
1.9M ambiguous code-like terms, 733K can be resolved to valid
terms, and the remainder do not represent valid code elements.
Android has a substantially larger number of documents and
code elements than the other projects and shows that ACE can
process a large collection of resources.

Limitations: There is always the potential for bias in a
manually created benchmark. In our benchmark, we found
some cases were it was not obvious to which code element
a term belongs. For example, a code fragment may contain
an overridden method, but provide no indication of the class
that declares the method. Despite searching the APIs of the
systems involved in a post, when we could not reasonably link
a term to a single API code element, we conservatively marked
the element as a false positive, if ACE identified the term, or
false negative, if ACE had not identified the term. We make
our benchmark available for independent inspection.6

We chose diverse projects to test the generalizability of ACE.
Since the island parser used in ACE is not intended to be a full
implementation of the Java Language Specification, there is the
possibility that some Java constructs are not parsed correctly.
Any code element associated with incorrectly parsed constructs
are marked as false positives or false negatives. Furthermore,
the flexibility of the parser means that constructs in other
languages that resemble Java constructs will be identified by
our parser. For example, Image.open() could be a call to
the Image class in Java or in python. Our parser is only intended
to parse Java code, so non-Java code must be identified and
removed. ACE currently eliminates HTML and XML code.
Future work could involve extending ACE to recognize other
languages.

Conclusion: ACE can extract code elements from a col-
lection of documents with an average precision and recall

6Please see our benchmark at http://swevo.cs.mcgill.ca/icse2013rr

of 0.92 and 0.90, respectively. While ACE’s precision and
recall are 4 and 6 percentage points lower than RecDoc’s, we
do not require a priori knowledge of which code elements
are valid. This knowledge is difficult or impossible to obtain
from informal documentation. Our accuracy is substantially
better than the lightweight regular expression and information
retrieval approaches (e.g., [3], [1]). With average precision
and recall around 0.90, we can proceed to identify the code
elements that are salient to a document.

VII. SALIENT CODE ELEMENTS

A code element is salient, if it is central to an example code
fragment or if there is some discussion defining its function
or describing its use. For example, if an instance of a class is
created to demonstrate the correct use of a method, then it is
the method that is salient, not the class. However, if the class’
function is being described and example methods listed, then
it is the class that is salient and not the methods. The only
exception is when a code element is obviously the solution to
a developer’s question and no further explanation is required
(e.g., “A call to getUsernamePasswordCredentials
should fix your problem”). There are two additional types of
code elements that are part of our salience guideline.

Contextual code elements are not salient. Contextual
elements are those that are repeated across many posts and are
required before any system features can be used. For example,
developers always need an instance of a class that implements
HttpClient, so HttpClient is usually contextual.

Alternative code elements: Many posts provide advice
about code elements that are alternatives to others being used as
part of a task. Our definition of salience requires that alternative
code elements are not only listed but are also exemplified in a
code fragment or discussed in free-form text. In the example
below, a developer describes why a code element should not
be used, describes one that should work, and then mentions
two others that the developer may need to examine. The first
two code elements are salient. The last two are not salient
because they are not described in this post. It is probable that
they are better described in a different post. Replacing one
code element with another is always salient information.

ClientConnectionManager is not thread
safe. You must use ThreadSafeClientConn-
Manager in a multithreaded application. This class
manages a pool of client connections. You may want
to look at how this affects BasicHttpParams and
DefaultHttpClient.



Benchmark: Using the guidelines above and the randomly
sampled answer posts from Section V, we manually code
the salience of the code elements contained in each post. Of
the 299 code elements in the HttpClient sample that were
correctly classified by ACE, 89 are salient (30%). Of the 296
code elements for Hibernate, 80 are salient (27%). Of the 303
code element for Android, 106 are salient (35%). The code
elements in the benchmark are the input to our J48 decision
tree classifier.

A. Features

We use the following features to classify automatically code
element salience. Table IV shows descriptive statistics only for
features that are important predictors in our classifier.

TF-IDF: Term frequency (TF) and inverse document fre-
quency (IDF) are common measures of term importance in a
document [12]. In our context, TF is the number of times a
code element appears in a document. IDF is the inverse of the
number documents a code element appears across the collection
of documents (i.e. the rarity of an element in the collection).
We use logarithmic scaling because it is the standard way to
to reduce the distorting effect of elements that are redundantly
repeated in a single document [11]. TF-IDF is calculated
according to the following formula:

tf -idft,r = (1 + log(tft,r)) ∗ log(
N

dft
)

where tft,r is the number of times term t occurs in document r
and dft is the number of documents in the collection containing
t. TF-IDF values are not easy to interpret on their own, so we
do not display them in Table IV.

Element Kind: We want to know if the kind (e.g., class,
field) of code element impacts its salience. Table IV shows
that while types are the most common kind of element,
the most salient elements are methods for HttpClient and
Android. Hibernate is a special case because instead of using
the Hibernate API, developers write application-specific code
and annotate the code elements to indicate relationships
in the database. Answers tend to revolve around creating
the right relationships between one-off code elements, so
annotations drive the discussion. The importance of annotations
to Hibernate developers is reflected in Table IV, where 45%
of annotations are salient.

Context: We differentiate between the code elements that are
unambiguous and those that are ambiguous and need resolving.
For those that need additional resolution, we record in which
context, local, global, or collection context the required type is
found. We also differentiate between one-off code elements and
those that are in the index. The best predictor is the ambiguity
of the code element. The context and index appear to have a
consistently smaller impact on salience. In Table IV, we see
that, proportionally, resolved code elements are more salient
than unambiguous elements. For HttpClient, Hibernate, and
Android 47%, 42%, and 61% of resolved types are salient
compared to 23%, 24%, and 18% of unambiguous elements.

Location and text type: We measure the position of a code
element in terms of the normalized offset in characters of an
element in a document. If an element appears more than once

TABLE IV
FEATURES USED IN CLASSIFYING THE SALIENCE OF CODE ELEMENTS IN

STACKOVERFLOW ANSWERS

HttpClient Hibernate Android
Sal. Non-Sal. Sal. Non-Sal. Sal. Non-Sal.

Total 89 210 80 216 106 197
Package 4 10 5 18 1 12
Annotation 0 0 30 37 0 0
Type 40 127 26 144 54 139
Method 42 70 21 65 63 99
Field 3 3 4 23 8 16
Unambig. 52 169 58 186 33 151
Resolved 37 41 22 30 73 46
Free-form 43 42 33 50 69 43
Fragment 38 163 34 158 23 144
Both 8 5 13 8 14 10

in a document, we use the average value. We use text type
to refer to a code element that occurred in free-form text, a
code fragment, or in both. Text type gives the type of location
in a document. Text type tends to be a good predictor. For
HttpClient, Hibernate, and Android 51%, 40%, and 61% of
code elements in free-form text are salient and 19%, 21%,
and 14% of elements in code fragments are salient. For the
three projects a relatively small number of elements appeared
in both free-form text and code fragments: 4%, 7%, and 8%,
respectively.

B. Classifier

The input to the classifier is our manually labeled salience
values and the extracted features for each code element. We
create the following four J48 decision tree classifiers and run
ten-fold cross validation on each: a general classifier based on
TF-IDF, a classifier based on domain-specific features such
as code element kind, a classifier that includes all features,
and an optimal classifier that combines the top three strongest
predictors to eliminate overfitting. Table V shows the precision
and recall of each classifier.

TF-IDF classifier: While some documents will contain code
elements with high TF-IDF scores, others will contain low TF-
IDF scores. However, in both documents there are salient and
non-salient code elements. As a result, absolute TF-IDF has
low predictive power, so we normalize each TF-IDF score, by
the maximum score for the document. In the remainder of this
paper the term TF-IDF refers to normalized TF-IDF unless
otherwise indicated.

ntf -idft,r =
tf -idft,r

max(tf -idfr)

Normalization by the maximum TF-IDF score has the effect
of dividing code elements into their respective percentiles for a
given document. For example, given three elements with distinct
TF-IDF scores in a document, the one with the maximum TF-
IDF will be in the top percentile, while the one with the lowest
score will be in the bottom percentile, and the element with the
middle score will be in the 50th percentile. The decision tree
does not necessarily make a split at a single percentile. For
example, if all elements between the 25th and 80th percentile
are salient and the others on non-salient, there would be three
splits in the decision tree.



TABLE V
CLASSIFIER PRECISION AND RECALL

Project HttpClient Hibernate Android
Prec. Recall Prec. Recall Prec. Recall

TF-IDF (norm) 0.51 0.23 0 0 0.54 0.32
Domain-specific 0.61 0.35 0.69 0.30 0.74 0.65
All Features 0.65 0.36 0.59 0.33 0.71 0.56
Optimal 0.65 0.48 0.69 0.30 0.74 0.65

For HttpClient, Table V shows a precision and recall of
0.51 and 0.23. Code elements above the 95th percentile tend
to be salient. For Hibernate, TF-IDF and normalized TF-IDF
do not have any predictive power. We suspect this is due to
the heavy use of annotations to indicate relationships in a
Hibernate database. For Android, code elements above the
85th percentile tend to be salient, with a precision and recall
of 0.54 and 0.32.

Domain specific features are code element kind, context,
ambiguity, inclusion in the index, position, and text type (i.e. in
free-form or a code fragment). For HttpClient, Hibernate, and
Android, we see respective precision and recall values of 0.61
and 0.35, 0.69 and 0.30, and 0.74 and 0.65. However, the tree
appears to be overfitted as there is no reasonable explanation for
each split in the tree. As can be seen in Table V, combining TF-
IDF with the other features has a minor impact on precision and
recall, but does not make the interpretation of the classifier’s
output easier to understand.

Optimal classifier: We select the three features that are
closest to the root of the decision tree in the classifier that
contains all features and create an optimal classifier for each
project. For HttpClient, this classifier has the highest precision
and recall and the resulting decision tree is parsimonious and
interpretable. The strongest predictor is the text type. Code
elements that are only in code fragments tend not to be salient.
While methods contained in free-form text tend to be salient,
classes tend to be salient if they are ambiguous and non-salient
if they are unambiguous. Unambiguous types tend to qualify a
method (e.g.,HttpClient.execute()), which means that
they are usually contextual. Since ambiguous types appear on
their own and do not qualify other code elements, they tend
to be salient. TF-IDF is dropped from the classifier.

For Hibernate, the strongest predictors are text type, kind,
and term context. Code elements that are only in free-form
text tend to be salient if they are annotations or if they appear
in the collection context. Code elements that appear in both
are salient if they are annotations. Elements in code fragments
tend to be non-salient.

For Android, the strongest predictor is term ambiguity
followed by text type. While we included element kind, it
was eliminated when we generated the classifier. Like the
previous two projects, code elements that are only in code
fragments tend to be non-salient. Code elements in free-form
text that are ambiguous tend to be salient.

Limitations: Unlike manually resolving terms to their
respective code elements, classifying the salience of code
elements is less formally defined, which results in a greater
potential for bias. To counteract this bias, we use a straight-
forward but comprehensive guideline to classify the salience

of code elements in answer posts. The majority of answers
on StackOverflow are short and to the point. A small number
contain large multifaceted answers and sometimes contain
followup questions. Code elements in followup questions are
classified as non-salient to an answer post.

Code elements may be referred to indirectly during a discus-
sion. For example in “Use the setter/getter on AbstractEntity in-
stead of accessing the id field directly”. We know that the code
elements AbstractEntity and AbstractEntity.id
are salient elements, but we miss the indirectly refer-
enced, salient code element AbstractEntity.getId(),
AbstractEntity.setId(). ACE is not designed to
capture conceptual references to code elements. Identifying
indirectly referenced code elements is left to future work.
One possibility would be to capture conceptual knowledge by
analyzing the natural language text surrounding code elements.

C. Discussion

Our intuition had been that TF-IDF would be a good
predictor of code element salience in a document because
we expected salient elements to be described in free-form
text and their use illustrated in a code snippet (i.e. high TF).
We expected non-salient elements to be contextual and, as
a result, to be repeated in many different documents (i.e.
low IDF). We had planned on supplementing TF-IDF with
other features to increase the overall predictive power of our
classifier. However, TF-IDF was outperformed by domain-
specific features and was eliminated from our optimal classifier.
This finding was unexpected because TF-IDF tends to be a
good general predictor of term importance in documents [12].
Why then was it eliminated from our classifier?

Initially, we had been concerned that one-off terms might
have a negative impact on the predictive power of TF-IDF
because they have high IDF values but tend to be non-salient.
We had included a binary factor which indicated whether a
term was a one-off. However, there was no branch in the
decision tree that combined one-off terms and TF-IDF. We
also created a classifier that contained only these two features.
For HttpClient and Hibernate, this change had a negligible
effect on precision and recall when compared to the classifier
that just included TF-IDF. With Android there was an increase
of 0.09 for precision and a decrease of .04 for recall. In all
cases, the accuracy was well below the optimal classifier.

While creating our benchmark, we observed, especially on
HttpClient which has fewer total posts, that questions with
similar salient code elements in the answer were being asked
repeatedly. This repetition meant that salient code elements
were less rare than they would be in a tutorial which contains
less repetition. Repetition is not necessarily a negative feature
of Q&A sites because the repetition may show, for example,
how to use the salient element in a different context. Future
work is necessary to determine the impact of similar answers
on TF-IDF’s predictive power.

TF-IDF is an approximation of term importance, so perhaps
it is not surprising that it was outperformed by domain-specific
features. For all three projects text type (whether a code element
was in free form text or a code fragment) was a strong predictor.
For Android and HttpClient, the classifier was strengthened



by the term ambiguity. Terms that were in free-form text and
were ambiguous (i.e. unqualified terms) tended to be salient
because the author had specifically isolated these elements
and surrounded them by descriptive text. Qualified methods in
free-form text on HttpClient were also important for the same
reason. For Hibernate, elements in free-form text, especially
annotations, were particularly important.

Qualitative observations reveal why code elements in free-
form text tend to be salient. Developers often described the code
elements that were salient to a problem in free-form text and,
instead of providing a code fragment to illustrate the solution,
they provided a link to a code example or tutorial on another
site. This allowed developers to discuss the specifics (i.e. the
salient aspects) and to refer to another existing example for
the details (i.e. the context). The trend was especially common
on Android, which has the highest number of salient free-form
text code elements (See Table IV). An investigation of the links
to tutorials and other forms of documentation from informal
Q&A sites is an interesting avenue for future work.

Irrelevant code elements are not only non-salient, they also
adversely affect the focus and clarity of a post. For example,
developers asking a question are often confused, so they tend to
dump stacktraces and large code fragments into question posts.
These dumps have a lower proportion of salient and contextual
code elements than a well focused code example. The number
of irrelevant elements in question posts were the reason why
we could not develop a guideline to code them. In contrast, in
an answer post, a non-salient code element is rarely irrelevant
and usually is an alternative element or a contextual element.
The elements contained in code fragments were labeled as non-
salient by our classifier for all three projects. Non-salience does
not mean that the code elements are irrelevant. We conclude
that salient code elements are usually contained in free-form
text, while the contextual elements, that are necessary details
when solving a problem, are most often contained in the code
snippet.

VIII. CONCLUSION

Unlike tutorials and Javadocs, StackOverflow contains a
large, diverse set of questions and answers. A developer reading
an answer on StackOverflow can quickly understand the context
and get to its salient features. However, there are 139K answers
and 569K code elements related to Android on StackOverflow.
To help developers identify the salient code elements in such
a large collection of documents we developed ACE, which
identifies code elements, and a classifier, which identifies the
salience of the code elements to a post.

ACE uses an island parser to identify code elements in
documents. The advantage of this approach is that unlike
previous work, it does not rely on an index of valid elements
parsed from the source code of a particular system. Instead,
it identifies code elements in Java constructs and creates an
index of valid elements based on the elements contained in
the collection of documents. ACE reparses each document
extracting unqualified, ambiguous terms and resolves them to
their corresponding code elements by using the term’s context.

Parsing a diverse sample of documents that contains over 7058
distinct tags on StackOverflow, we obtain an average precision
and recall of 0.92 and 0.90. The closed-world assumption [2]
can be discarded with a minimal sacrifice in accuracy.

This paper introduces the notion of code element salience in
developer communication and provides a technique to classify
elements as salient or non-salient. Previous work assumed
that each element was of equal importance. To determine
the salience of the identified elements, we manually coded a
random sample of documents. Based on this benchmark of
StackOverflow answer posts, we created a classifier of code ele-
ment salience. The best predictors are domain specific-features.
These features indicate whether an element is contained in free-
form text or a code fragment, and whether it is unambiguous
or needs resolving. TF-IDF was dropped from our optimal
classifier. The classifier managed a precision of 0.65–0.74, and
a recall of 0.30–0.65. Identifying salient code elements adds an
important but complex dimension to code element traceability
in documents. Despite this complexity, our results are at least
as good as those seen in early work on linking code elements
to source code [3]. While improvements are probable, we feel
that the performance of our initial infrastructure is sufficient
to justify experimentation with applications such as advanced
search tools.

REFERENCES

[1] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source
code artifacts,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, 2010, pp. 375–384.

[2] B. Dagenais and M. P. Robillard, “Recovering traceability links between
an API and its learning resources,” in Proceedings of the 34th ACM/IEEE
International Conference on Software Engineering, 2012, pp. 47 –57.

[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Transactions on Software Engineering, vol. 28, no. 10, pp. 970–983,
2002.

[4] A. Marcus and J. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing,” in Proceedings of
the 25th ACM/IEEE International Conference on Software Engineering,
2003, pp. 125–135.

[5] B. Dagenais and L. Hendren, “Enabling static analysis for partial java
programs,” in Proceedings of the 23rd ACM Conference on Object-
Oriented Programming Systems Languages and Applications, 2008, pp.
313–328.

[6] L. Moonen, “Generating robust parsers using island grammars,” in
Proceedings of the 8th IEEE Working Conference on Reverse Engineering,
2001, pp. 13–22.

[7] A. Van Deursen and T. Kuipers, “Building documentation generators,”
in Proceedings of the IEEE International Conference on Software
Maintenance, 1999, pp. 40–49.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language
Specification: Java SE 7 Edition, 2012.

[9] A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci, “Extracting structured
data from natural language documents with island parsing,” in Proceed-
ings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’11. IEEE Computer Society, 2011,
pp. 476–479.

[10] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest q&a site in the west,” in Proceedings of
the International Conference on Human factors in Computing Systems,
2011, pp. 2857–2866.

[11] C. Manning, P. Raghavan, and H. Schutze, Introduction to Information
Retrieval. Cambridge University Press Cambridge, 2008.

[12] S. Robertson, “Understanding inverse document frequency: on theoretical
arguments for IDF,” Journal of Documentation, vol. 60, no. 5, pp. 503–
520, 2004.


