
Discovering Expressive Process Models
by Clustering Log Traces
Gianluigi Greco, Antonella Guzzo, Luigi Pontieri, and

Domenico Saccà, Member, IEEE Computer Society

Abstract—Process mining techniques have recently received notable attention in the literature for their ability to assist in the

(re)design of complex processes by automatically discovering models that explain the events registered in some log traces provided as

input. Following this line of research, the paper investigates an extension of such basic approaches, where the identification of different

variants for the process is explicitly accounted for, based on the clustering of log traces. Indeed, modeling each group of similar

executions with a different schema allows us to single out “conformant” models, which, specifically, minimize the number of modeled

enactments that are extraneous to the process semantics. Therefore, a novel process mining framework is introduced and some

relevant computational issues are deeply studied. As finding an exact solution to such an enhanced process mining problem is proven

to require high computational costs, in most practical cases, a greedy approach is devised. This is founded on an iterative, hierarchical,

refinement of the process model, where, at each step, traces sharing similar behavior patterns are clustered together and equipped

with a specialized schema. The algorithm guarantees that each refinement leads to an increasingly sound model, thus attaining a

monotonic search. Experimental results evidence the validity of the approach with respect to both effectiveness and scalability.

Index Terms—Process mining, data mining, workflow management, clustering, classification, association rules.

�

1 INTRODUCTION

EVEN though workflow management systems are ever
more utilized in enterprises, their actual impact in

managing complex processes is still limited by the
difficulties encountered in the design phase. Indeed,
processes often have complex dynamics whose modeling
requires expensive and long analysis, which may be
eventually unfeasible from an economic viewpoint. There-
fore, several approaches have been recently proposed in the
literature to accommodate the design of complex workflows
by means of process mining techniques (see Section 7, for an
overview of different proposals).

These approaches are devoted to automatically deriving
a model that can explain all the episodes recorded in the
event log (also known as transactional log or audit trail [1]),
which is, in fact, collected and stored by most information
systems while the activities of a given process are
executed—this is the case of transactional information
systems such as Workflow Management (WFM), Enterprise
Resource Planning (ERP), Customer Relationship Manage-
ment (CRM), Business to Business (B2B), and Supply Chain
Management (SCM) systems. Eventually, the “mined”
model is used to (re)design a detailed workflow schema,
capable of supporting forthcoming enactments.

Example 1.1. As a sample applicative scenario, throughout

the paper the process of handling customers’ orders

within a business company will be considered. The

process (called OrderManagement) consists of the follow-

ing activities:

a. receiving the order,
b. authenticating the client,
c. checking the availability of the required product

in the stock,
d. verifying the availability of external supplies,
e. registering the client in the company database,
f. evaluating the trustworthiness of the client,
g. evaluating the production plan,
h. rejecting the order,
i. accepting the order,
j. contacting the mail department in order to speed

up shipment of the goods,
k. applying some discount, and
l. preparing the bill.

In this scenario, some execution traces may be
available for they are collected by the information
systems of the business company (e.g., the log in
Fig. 1a). And, in fact, the aim of process mining
techniques is to look at these traces and to automatically
identify a model for the OrderManagement process.

Actually, since several alternative models may be singled

out for any fixed log, techniques have been proposed for

identifying the most conformant one, i.e., the model which is

the best “aligned” with the log. In this respect, the most

widely considered measure for conformance is the complete-

ness of the model (similar to fitness in [2]) which is, roughly

speaking, the percentage of the traces stored in the log that

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006 1

. G. Greco is with the Department of Mathematics, University of Calabria,
Via Bucci 30B, I87036, Rende (CS), Italy. E-mail: ggreco@mat.unical.it.

. A. Guzzo and D. Saccà are with ICAR-CNR and DEIS, University of
Calabria, Via Bucci 41C, I87036 Rende (CS), Italy.
E-mail: guzzo@icar.cnr.it, sacca@unical.it.

. L. Pontieri is with the Institute of High Performance Computing and
Networks (ICAR-CNR), Via Bucci 41C, I87036 Rende (CS), Italy.
E-mail: pontieri@icar.cnr.it.

Manuscript received 24 June 2005; revised 24 Mar. 2006; accepted 11 Apr.
2006; published online 19 June 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0245-0605.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

may be the result of some enactment supported by the

mined model. Then, differences among various proposals

for process mining often come in the language used for

representing process models and in the specific algorithms

used for mining the best-fitting one.
In this paper, progress toward enhancing the process

mining framework is made, specifically by taking care of

the following two key issues:

1. Good completeness of the model does not necessa-
rily entail its conformance with the underlying
process P . For instance, a fully complete model
may support not only all the traces provided in
input, but also an arbitrary number of execution
patterns that are not registered in the log. In many
cases, such a situation might strongly undermine the
significance of the mined model with regards to the
application needs. Therefore, models that should be
focused on it are not too generic and they appro-
priately encode the behavior of the process. This can
be accomplished by taking care of another para-
meter, called soundness (similar to minimality or
behavioral appropriateness in [2]), which measures
the percentage of enactments of the mined model
that do find some correspondence in the log.
Intuitively, the lower the factor, the more extraneous
(with regard to the process semantics) executions the
model supports.

2. The output of process mining techniques is usually
too complex to be practically exploited by the
designer, as emerged in several real applications
domains (see, e.g., [3], [4]). This aspect is especially
relevant in the case of processes consisting of a large
number of activities, with several specific execution-
scenarios and complex behavioral rules, for which
the mined models may be made up of hundreds of
tasks and constraints. Nonetheless, very little effort
has been made to support some kinds of abstraction
(e.g., techniques in [5], [6], [7] are able to produce
models that focus on the main behavior as reported
in the log by properly dealing with noise). In this
respect, a viable solution for a better understanding
of the process semantics is to take care of the
existence of variants of the process, so that each
variant may be independently mined and equipped
with a specialized model. Clearly, only the most
relevant variants should be identified in order to
prevent the model from becoming too specific. Then,

suitable strategies supporting some kinds of trade-
off in the identification of the variants and, possibly,
the ability of incrementally refining the model
should be conceived.

Though some of the approaches in the literature already
exploit some minimality conditions for increasing the
soundness (e.g., [8], [9]), very little effort has been made
to discover variants and usage scenarios (cf. [10], [11]).
However, the isolation of the variants would make clear the
“implicit” model (cf. [9]) underlying a process, i.e., the
knowledge (organizational/behavioral rules) that actors
have in mind during the enactments. Specifically, if variants
for the process are not discovered and properly classified,
the mined model will eventually mix different usage
scenarios and, hence, is likely to be unsound.

1.1 Overview of the Approach and Contributions

In this paper, the above issues are addressed by proposing a
novel process mining algorithm that is able to cope with
complex processes by discovering conformant (both sound
and complete) models. This is carried out by producing a
clear and modular representation of the process, where its
relevant variants are explicitly singled out by means of a
technique for clustering log traces. Specifically, each variant
is modeled by means of a distinct workflow schema WSi so
that the resulting model for the whole process, called the
disjunctive workflow schema, is precisely the set of all these
individual schemas.

Actually, the greater expressiveness of disjunctive
schemas comes with a cost. Indeed, the problem of
computing conformant disjunctive schemas and the pro-
blem of checking whether a given disjunctive schema at
hand is sound enough turn out to be intractable.

Therefore, we pragmatically face the process mining
problem by means of a greedy strategy based on an
iterative, hierarchical refinement of a disjunctive schema,
WS_, in which, at each step, a schema WSi 2 WS_ is
selected and the traces supported by WSi are partitioned
into clusters. Eventually, each cluster is equipped with a
refined workflow schema, which is meant to model a
specific usage scenario specializing WSi. Notably, the
algorithm is designed in a sophisticated way guaranteeing
that each refinement leads to an increasingly sound schema
for the given process so that a monotonic search is attained.

Moreover, in order to efficiently partition traces into
clusters by means of well-known methods, we investigate
an approach for producing a “flat” relational representation
of the traces by projecting them onto a set of suitable features

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

Fig. 1. An example process: (a) some traces, (b) workflow schema WS0, and (c) an example instance.

which are meant to characterize the traces that are not
properly modeled by the current workflow schema being
refined. Therefore, the paper also accounts for the definition
of both an abstract representation for the features and an
efficient level-wise algorithm for their computation.

We conclude by noting that all the algorithms above
have been implemented, and the results of a thorough
experimental activity are also discussed in the paper.

1.2 Organization

The rest of the paper is organized as follows: In Section 2,
we report a few preliminaries on workflows, processes, and
logs. The problem of discovering a disjunctive process
model from some log data is introduced in Section 3, where
some relevant computational issues have also been studied.
In Section 4, a solution for the basic case where the mined
model is nondisjunctive is discussed. Its generalization is
reported in Section 5, where the clustering-based approach
to process mining and the feature extraction algorithm are
illustrated. The two next sections, i.e., Section 6 and
Section 7, are devoted to presenting results of the experi-
ments and major related works in the literature, respec-
tively. A few concluding remarks are, finally, sketched in
Section 8.

2 FORMAL FRAMEWORK: WORKFLOW SCHEMA

AND LOGS

In this section, we introduce the basic notions and
notations for formally representing process models that
will be used throughout the paper. We point out that a
comprehensive formalization of all the facets of workflow
modeling is beyond the scope of this paper; the reader
interested in expanding on this subject is referred to, e.g.,
[12], [13], [14], [15], [16], [17]. Specifically, the modeling
language is kept simple and less expressive than other
existing languages, such as Petri nets [18] or event driven
process chains EPCs [19], [20].

For instance, it does not account for loops, i.e., recursive
workflow schemas and iterated executions, which instead
can be coped with, e.g., by the WF-net model and the
�-algorithm [21], and—as commonly done in the process
mining framework—it forces all outgoing and ingoing
edges of a given node to have the same type. On the other
hand, the model allows for the arbitrary mixing of
synchronization and choice constructs, which is sometimes
avoided in other formalizations related to process mining.

Moreover, an important feature of our approach is that
there is no conceptual limitation in accommodating more
sophisticated models and techniques for their manipulation
because it is to a large extent independent of the underlying
workflow model, which mainly affects the way each cluster
of traces is equipped with a schema (cf. algorithm
MineWorkflow in Section 4). In this respect, the proposed
approach is modular and may allow any preexisting
process mining algorithm to be used (provided, as we shall
see in the following, it satisfies the properties in
Theorem 4.3). In fact, the assumptions exploited in the
paper were required by the necessity of starting from a
simple model enjoying these properties, yet covering
important features in workflow specification.

Definition 2.1. Let P be a process. Aworkflow schemaWS for
P is a tuple hA;E; a0; AF ; ForkFork; JoinJoini, where A is a finite set
of activities (also called nodes, or tasks), E � ðA�AF Þ �
ðA� fa0gÞ is an acyclic relation of precedences among
activities (whose elements are simply called edges), a0 2 A is
the starting activity, and AF � A is the set of final activities.
The tuple hA;E; a0; AF i is often referred to as the control
flow graph ofWS: It states the orderings among the activities
involved in P that must be respected during their execution.

The functions ForkFork : ðA�AF Þ7!fAND;OR;XORg and

JoinJoin : ðA� fa0gÞ7!fAND;ORg, also called local con-

straints in the literature, relate the execution of activities that

are neighbors of each other in the control flow graph. A node a

with JoinJoinðaÞ ¼ OR (respectively, AND) is an or-join
(respectively, and-join); moreover, a node a with ForkForkðaÞ ¼
OR (respectively, AND, XOR) is an or-fork (respectively,

and-fork and xor-fork).

An example workflow schema is reported in Fig. 1b by
means of an intuitive graphical notation. Actually, this is a
schema (possibly, the result of some process mining
algorithm) for the OrderManagement process presented in
Section 1.

Each time a workflow is enacted in a workflow manage-
ment system, it produces an instance that is a suitable
subgraph I ¼ hAI ; EIi of the schema satisfying all the
constraints. Intuitively, AI contains those activities that
are executed in I and that, therefore, activate their outgoing
edges. Notice that the target of these edges is not required
to be executed as well, i.e., some branches of the control
flow graph may be only partially executed, because a final
activity, belonging to another branch, was completed in the
meanwhile. Therefore, in the following definition, these
kinds of task that are not executed in instance I are
explicitly distinguished and included in set A0

I .

Definition 2.2. Let WS ¼ hA;E; a0; AF ; JoinJoin; ForkForki be a
workflow schema. Let I 0 ¼ hAI [A0

I ; E
0
Ii be a connected

subgraph of hA;Ei, such that the following conditions hold:

1. a0 2 AI ,
2. AI \AF 6¼ ;,
3. fða; bÞ j ða; bÞ 2 E0

I ^ a 2 A0
Ig ¼ ;,

4. for each ða; bÞ 2 E0
I , a 2 AI , and b 2 ðA0

I [AIÞ,
5. for each a 2 AI [A0

I � fa0g,

fb j ðb; aÞ 2 E0
I ^ b 2 AIg 6¼ ;;

6. for each a 2 ðAI � fa0gÞ s.t . JoinJoinðaÞ ¼ AND,
fðb; aÞ j ðb; aÞ 2 Eg � E0

I ,
7. f o r each a 2 ðAI �AF Þ s . t . ForkForkðaÞ ¼ AND,

fða; bÞ j ða; bÞ 2 Eg � E0
I ,

8. for each a 2 ðAI �AF Þ s.t. ForkForkðaÞ ¼ XOR,
jfða; bÞ j ða; bÞ 2 E0

Igj ¼ 1, and
9. f o r each a 2 ðAI �AF Þ s . t . ForkForkðaÞ ¼ OR,

jfða; bÞ j ða; bÞ 2 E0
Igj � 1;

Then, the graph I ¼ hAI ; E
0
I \ ðAI �AIÞi is an instance of

WS (denoted as WS � I).

An example instance for the OrderManagement process is
reported in Fig. 1c, according to a graphical notation where
dashed nodes and edges represent activities and prece-

GRECO ET AL.: DISCOVERING EXPRESSIVE PROCESS MODELS BY CLUSTERING LOG TRACES 3

dences that are activated but not included in the instance.
Specifically, the instance models a case where the order is
rejected (activity h is executed) because the client is not
reliable (checked by f). However, given that the required
product is available in stock, activity i is the target of an
activated edge, but it is never executed.

We point out that most process-oriented commercial
systems only store partial information about process
instances by tracing some events related to the execution
of its activities. Specifically, the logs stored by such systems
may range from a simple task sequence (recall, e.g., Fig. 1a)
to richer formats (evidencing, e.g., the start and/or the
completion of a task). We next describe an abstract
representation of a process log which is commonly adopted
in the literature.

Let A be the set of task identifiers for the process P ; then,
a workflow trace s over A is a string in A�, representing a
sequence of task executions. Given a trace s, we denote by
s½i� the ith task in the corresponding sequence and by
lengthðsÞ the length of s. The set of all the tasks in s is
denoted by tasksðsÞ ¼

S
1	i	lengthðsÞ s½i�. Finally, a workflow

log for P , denoted by LP , is a bag of traces over A, i.e.,
LP ¼ ½ s j s 2 A��.

We conclude this section by relating the notion of trace to
that of instance.

Definition 2.3. Let I ¼ hAI ; EIi be an instance of a workflow
schema WS ¼ hA;E; a0; AF ; JoinJoin; ForkForki for a process P and
let s be a trace in LP . Then, s is compliant with WS
through I, denoted by s �I WS, if s is a topological sort of I.

For instance, the trace abfcgh is compliant with the
instance reported in Fig. 1c, while the traces afbcgh and
abfjk are not.

Notice that the definition above entails that if s �I WS,
then: s½1� ¼ a0, i.e., the first task in s is the initial activity in
WS, s½lengthðsÞ� 2 AF , i.e., the last task in s is a final
activity in WS, and, tasksðsÞ ¼ AI , i.e., all the tasks in s are
executed in I.

We conclude by saying that s is simply compliant with
WS, denoted by s � WS, if there exists I such that s �I WS.
The reader may check, for instance, that the traces in Fig. 1a
are compliant with the workflow schema in Fig. 1b as each
of them is a topological sort of some instance of that
schema.

Before leaving the section, we note that, while logs in real
life are often characterized by multiple executions of the
same task, our workflow model admits only one execution
for each activity in the schema. However, multiple execu-
tions can be coped with by means of a syntactic expedient.
Let P be a process and let LP be a log for it where multiple
executions of the same activity are allowed in the same
trace. Let a be an activity in P and let nðaÞ � 0 be the
maximum number of times it is executed over all the traces
in LP . Then, we can mine a workflow schema WS, where
each activity a is (virtually) substituted by nðaÞ distinct
activities, say a1; . . . ; anðaÞ, by exploiting the log LP derived
from LP by replacing the ith occurrence of a in any trace by
ai. By construction, WS contains no duplicated activities
and, hence, it conforms to Definition 2.1.

3 THE PROCESS MODEL DISCOVERY PROBLEM

In this section, we preliminary introduce and discuss the
problem of automatically (re)constructing a workflow
schema modeling a given process, on the basis of some
log data collected from previous executions. Afterward, a
number of variants of the process mining problem are
defined and studied from a computational point of view.

3.1 Disjunctive Schemas

Let A be the set of task identifiers for the process P . We
assume that the actual workflow schema for P is unknown
and we consider the problem of properly identifying it in
the set of all the possible workflow schemas having A as the
set of activities. To this purpose, we first derive from the log
traces an initial workflow schema and we subsequently
iteratively refine it into a number of specific schemas, each
of them modeling a class of traces having the same
behavioral characteristics. Therefore, the resulting model is
a collection of workflow schemas as defined below.

Definition 3.1. Let P be a process. A disjunctive workflow
schema for P , denoted by WS_, is a set fWS1; . . . ;WSmg of
workflow schemas for P . The number m is referred to as the
size of WS_, denoted by jWS_j.

Any instance I of some WSj 2 WS_ is also said to be an
instance ofWS_, denoted by I � WS_. In fact, the schema is
denominated disjunctive precisely because the set of its
instances is the union of the sets of the instances of each
workflow schema in WS_.

Similarly, a trace s is compliant with WS_, denoted by
s � WS_, if s is compliant with some WSj 2 WS_. Note
that, since a trace s does not provide any information about
the edges exploited to execute the registered activities,
deciding whether s is compliant with the schema WS_ may
be, in principle, a complex task. Indeed, while constructing
an instance for s, it is crucial that activating edges are
properly chosen to satisfy all the local constraints (specifi-
cally, the difficulty is with or-join tasks activated through
xor-forks) and to execute all the activities in the trace. The
following proposition, whose proof is in [22], makes it clear
that a smart strategy can be conceived with this aim so that
deciding whether a trace s is compliant with a schema WS_

can be done in polynomial time (in the size of the schema).

Proposition 3.2. Let WS_ ¼ fWS1; . . . ;WSmg be a disjunctive
workflow schema and s be a trace. Let e, nf , and ef denote the
maximum number of edges, xor-fork nodes, and edges
originating in xor-fork nodes, respectively, over all schemas
in WS_. Then, deciding whether s � WS_ is feasible in
Oðm�maxðe; nf � efÞÞ.

Let us now assume that a log LP for the process P is
given. Then, we aim at discovering the disjunctive schema
WS_ for P which is as “close” as possible to the actual
unknown schema that generated LP . In the following, the
quality of the mined model is evaluated according to two
different criteria, namely, the completeness and the soundness,
constraining the discovered model to admiting exactly the
traces in the log. Specifically, a (fully) complete workflow is
such that all traces in the log at hand are compliant with

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

some instance of it, whereas a (fully) sound workflow is
such that all of its possible enactments have been actually
registered in the log. These two criteria are formalized
below.

Definition 3.3. Let WS_ be a disjunctive workflow model and
LP be a log for the process P . We define:

.

soundnessðWS_;LP Þ ¼
jfs j s2LP ^ s � WS_gj

jfs j s � WS_gj
;

i.e., the percentage of traces compliant with WS_ that
have been registered in the log—the larger the sounder;

.

completenessðWS_;LP Þ¼
jfs j s 2 LP ^ s � WS_gj

jfs j s 2 LPgj
;

i.e., the percentage of traces in the log that are
compliant with WS_—the larger the more complete.

Given two real numbers � and � between 0 and 1
(desirable values should be close to 1), we say that WS_ is
�-sound with regard to LP , if soundnessðWS_;LP Þ � �;
moreover, WS_ is �-complete with regard to LP , if
completenessðWS_;LP Þ � �.

We next apply the notions introduced above to a simple
explicative example.

Example 3.4. Consider again the workflow schema WS0 in
Fig. 1b. We leave to the careful reader the task of
checking that WS0 admits 20 instances and 276 traces.
Let L be the log shown in Fig. 1a. Thus, we have:
soundnessðfWS0g; LÞ ¼

16
276

¼ 5:797%, and

completenessðfWS0g; LÞ ¼
16

16
¼ 100%:

A different representation for the traces in L is given

by the disjunctive workflow schema, which consists of

the two workflow schemas shown in Fig. 2. Note that we

have : soundnessðfWS_
1 ;WS_

2 g; LÞ ¼
11
97
¼ 11:34% and

completenessðfWS_
1 ;WS_

2 g; LÞ ¼
11
16
¼ 68:75%. Indeed ,

fWS_
1 ;WS_

2 g models 97 distinct instances, 64 through

WS_
1 and 33 through WS_

2 . However, the completeness

value is lower than 1 as some traces in L (namely,

s8; . . . ; s12) are not compliant with fWS_
1 ;WS_

2 g. Inter-

estingly, this example shows how the soundness of a

given schema can be increased by replacing it with a set

of more specific schemas. This strategy is exploited in the

mining algorithm presented in Section 5, which also

prevents completeness losses.

Since soundness and completeness are the parameters to
be taken into account while mining process models, it is
relevant to study their “intrinsic” complexity. As proven
next, checking soundness is a hard task, surprisingly even
in the case where the model is given at hand and does not
need to be discovered. The result evidences that our mining
problem is structurally harder than traditional learning
problems, where the functions to be optimized can be
checked in polynomial time for any candidate solution.

Proposition 3.5. Let WS_ be a disjunctive workflow model, and
LP be a log for a process P . Then, deciding whether WS_ is 1-
complete with regard to LP is feasible in time
Oðjfs j s 2 LPgj �m�maxðe; nf � efÞÞ,

1 with one scan of
LP only. Moreover, deciding whether WS_ is 1-sound with
regard to LP is co-NP-complete. Hardness holds even for
jWS_j ¼ 1.

Proof. To check 1-completeness, we can repeat the
procedure in Proposition 3.2, for each trace s in LP ;
therefore, the result easily follows.

Let us now prove that checking for 1-soundness is
co-NP-complete. Consider the complementary problem,
say soundness, of deciding whether there is a trace s such
that s � WS_ and s 62 LP . Problem soundness is ob-
viously in NP; we next show that it is NP-complete. To
this purpose, we recall that, in [23], it has been proven
that deciding whether a given workflow schema WS
admits an instance is NP-complete. We construct the
following instance of the problem soundness: WS_ ¼
fWSg and LP ¼ ;. Then, the answer of soundness is
“yes” if and only if WS admits an instance; hence
soundness is NP-complete as well. It turns out that
deciding 1-soundness is co-NP-complete. tu

3.2 Exact and Maximum Process Discovery

Armed with the framework outlined so far, we are in the
position of formalizing the problem we want to deal with.
Basically, we aim at discovering a disjunctive schema WS_

for a given process P which is �-sound and �-complete, for
some given � and �. However, it is easy to see that a trivial
schema satisfying the above conditions always exists (even
for � ¼ 1 and � ¼ 1), consisting of the union of exactly one
workflowmodeling each distinct trace in LP . Unfortunately,

GRECO ET AL.: DISCOVERING EXPRESSIVE PROCESS MODELS BY CLUSTERING LOG TRACES 5

Fig. 2. The two schemas constituting the disjunctive workflow schema WS_.

1. See the notation in Proposition 3.2.

such a model would be an overly detailed and complex
representation of the process P , with its size being
jWS_j ¼ jLP j ¼ jfs j s 2 LPgj. We therefore introduce a
bound on the number of schemas in WS_ for defining the
basic problem we shall study in the paper.

LetLP be aworkflow log for the process P . Given two real
numbers � and �, and a natural number m > 0, the Exact
Process Discovery problem, denoted by EPDðLP ; �; �;mÞ,
consists of finding (if any) an �-sound and �-complete

disjunctive workflow schema WS_, such that jWS_j 	 m.
Actually, we can show (see [22]) that the Exact Process
Discovery problem can be solved in polynomial time only for
trivial cases (unless P ¼ NP).

Theorem 3.6. Given a log LP for a process P and a natural
number m > 0, EPDðLP ; 1; 1; mÞ always admits a trivial
solution if jLP j 	 m. Otherwise, i.e., if jLP j > m, deciding
whether EPDðLP ; 1; 1;mÞ admits a solution is in �P

2 and
NP-hard.

Since it could happen that EPD does not have solutions
(cf. Theorem 3.6) and since it is difficult to check whether
we are in such a situation (cf. Proposition 3.5), we restate
the process discovery problem in such a way that it always
admits a solution. Specifically, we allow the sacrifice of
enough portions of soundness to get a result; however, we
impose a strict bound on the completeness (which is usually
1) since modeling all the traces in the log is often an
important requirement for the mined schema.

Definition 3.7. Let LP be a workflow log for the process P .
Given a natural number m, the Maximum Process
Discovery problem, denoted by MPDðLP ;mÞ, consists of
finding a 1-complete disjunctive workflow schema WS_ such
that jWS_j 	 m and soundnessðWS_;LP Þ is the maximum
over all the 1-complete schemas.

However, the problem MPD is also untractable by a
straightforward reduction from EPD. Moreover, we suspect
a hardness result for the second level of the polynomial
hierarchy. Therefore, it comes as no surprise that we
pragmatically face the problem by using a heuristic
approach in which we mine a preliminary, possibly not
sound enough, model, and iteratively refine it. Specifically,
the approach is designed in a way that each time a
refinement is made, the model is guaranteed to increase
in soundness. The careful reader at this point may under-
stand the importance of this property since it allows a
monotonic search in the space of the solutions by never
checking for the soundness of the current model, which is
unfeasible.

4 MINING A WORKFLOW SCHEMA

In this section, we start the description of the algorithm for
MPDðLP ;mÞ by proposing a solution for the case m ¼ 1.
Our approach is simple, but it enjoys some nice properties
that are crucial for the extension to the case m > 1 and
which have been not fully considered while designing
previous approaches in the literature.

Throughout this section, we assume that a log LP for the
process P over tasks A is given. For the sake of exposition,

we assume that each trace contains the initial activity a0 as
the first task. We start by introducing notions for expressing
precedence relationships between activities, which are
derived from occurrences in the logs:

. The dependency graph for LP is the graph
DLP

¼ hA;Ei, where

E ¼ fða; bÞ j 9s 2 LP ; i 2 f1; . . . ; lengthðsÞ � 1g s:t:

a ¼ s½i� ^ b ¼ s½iþ 1�g:

. Two activities a and b in A are parallel in LP , if they
occur in some cycle of DLP

.
. Given two activities a and b in A, we say that a

precedes b in LP , denoted by a ! b, if a and b are not
parallel, and there is a path from a to b in DLP

.

Example 4.1. Consider the log L ¼ fabcde; adbce; aeg,
concerning a process P . The dependency graph for L is
shown in Fig. 3a. Notice, for instance, that a, b, and c are
parallel activities in L, and that a ! c and b ! e hold.

Armed with these notions, we can now describe the
algorithm MineWorkflow, which is shown in Fig. 4. The
algorithm starts by constructing the dependency graph,
which is subsequently modified in Steps 2-11 in order to
remove the cycles, which, in fact, correspond to sets of
parallel activities. Actually, removing an edge is a critical
step since it must be carried out by preserving connectivity.
Therefore, each time an edge, say ða; bÞ, is removed from E,
we preserve the paths by connecting a and b with some
preceding activity (Step 5) and with some following one
(Step 8) for each of the traces in LP .

Notice that there are several alternative graphs that may
support all the logs at hand; the algorithm has been
designed for introducing as few spurious traces as possible
so that soundness is heuristically maximized. For instance,
a schema with a0 connected to all the other activities will be
a complete schema as well, but it is likely to be terribly
unsound. Our idea is instead to preserve the paths in the
flow (ideally, in the absence of cycles, we can get even

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

Fig. 3. Example 4.1: (a) Dependency graph and (b) control flow graph.

1-sound schemas). Accordingly, in Steps 12-18, the algo-
rithm builds the local constraints by applying the most
stringent possible choices for each activity. Specifically,
notice that or-forks and or-joins are likely to deteriorate the
soundness and should be therefore avoided if possible.

Example 4.2. Let us turn back to Example 4.1, and apply the
MineWorkflow algorithm. In Steps 2-10, the edges
ðb; cÞ, ðc; dÞ, and ðd; bÞ are removed from the graph in
Fig. 3a, since they are parallel in L. The connectivity of
the graph is reestablished by connecting a to c, and b to
e; actually, other edges are processed that were already
in the graph. In Step 11, a becomes the starting activity
and e the only final one. The resulting control flow is
shown in Fig. 3b. Finally, the associated constraints are
such that: ForkFork and JoinJoin both assign the value AND to
each of the activities b, c, and d, for they having just one
predecessor and one successor. Moreover, the initial
activity a (respectively, the final activity e) is associated
with an OR value by the ForkFork (respectively, JoinJoin)
function, since the trace ae in the log contains only one
of the successors of a (respectively, predecessors of e).

We can now conclude the description of the algorithm by
stating a number of relevant properties. First, it is not
difficult to see that the mined schema is 1-complete; more
interestingly, we are able to show (see [22]) that it satisfies a
kind of “monotonicity” property that is crucial for
guaranteeing the correctness of the greedy strategy we
shall exploit in the following section for the general
problem MPDðLP ;mÞ, with m > 1.

Theorem 4.3. The MineWorkflow algorithm on input LP

computes a workflow schema WS in linear time in the size of
LP and satisfies the following conditions:

. Maximum Completeness Condition: WS is a
1-complete workflow schema with regards to LP

. Monotonicity Condition: Let L0
P be a log such that

L0
P � LP and let WS0 be the output of MineWork-

flow on input L0
P . Then, the set of traces compliant

withWS0 is a subset of the set of traces compliant with
WS, i.e., fs j s � WS0g � fs j s � WSg.

As a further remark, note that the proposed algorithm can
be extended to cope with noise by slightly modifying the
construction of the dependency graph. Specifically, we can
use a threshold % such that an edge ða; bÞ is in a suitable
dependency graph, say D%

LP
, if and only if a occurs before b

in at least %� jLP j traces. Clearly enough, this construction
avoids the introduction of spurious dependencies that are
unfrequent in LP .

5 CLUSTERING WORKFLOW TRACES

In order to solve the MPDðLP ;mÞ problem, we exploit the
idea of iteratively and incrementally refining a schema,
starting with a preliminary nondisjunctive model which can
be mined by the algorithm MineWorkflow. In a nutshell,
we propose a greedy solution, implemented in the
algorithm ProcessDiscover, that computes the mined
schema WS_ through a hierarchical clustering in which the
current disjunctive schema (equipped with a subset of the

GRECO ET AL.: DISCOVERING EXPRESSIVE PROCESS MODELS BY CLUSTERING LOG TRACES 7

Fig. 4. Algorithm MineWorkflow: A solution for MPDðLP ; 1Þ.

input log) is stepwise refined into k clusters of traces
modeled by possibly different schemas, with the aim of
increasing its soundness yet preserving maximum comple-
teness. In this section, we discuss the details of such an
algorithm.

5.1 Algorithm ProcessDiscovery

The algorithm ProcessDiscover is shown in Fig. 5. It
first mines, in Step 1, a workflow schema WS1

0, by means of
the procedure MineWorkflow described in Section 4. This
workflow is associated with all the traces in LP and
becomes the starting point of the computation; indeed, the
disjunctive workflow schema WS_ initially contains WS1

0

only (see Step 2). Then, the algorithm starts refining the
schema. In particular, each workflow schema, say WSj

i ,
eventually inserted in WS_, is identified by the number i of
refinements occurred since the beginning of the computa-
tion and by an index j for distinguishing the schemas at the
same refinement level. Each schema WSj

i is also equipped
with a set of traces that WSj

i is able to model, denoted by
LðWSj

iÞ. These sets of traces can be viewed as clusters of the
original log.

At each step, ProcessDiscover selects a schema
WSj

i 2 WS_ for being refined (Step 4) by exploiting the
function refineWorkflow. To this purpose, the most natural
strategy is to select the schema having the minimum value
of soundness over all the schemas inWS_. In order to get an
efficient implementation, we pragmatically suggest exploit-

ing an approximation of this approach, where the schema
having the maximum number of or-forks is chosen—these
nodes introduce, in fact, nondeterminism and possibly
spurious traces. Notably, in our current implementation
(see Section 6), the user is allowed to interactively select the
cluster to refine at each step so that any arbitrary,
application-dependent strategy may be adopted.

The refinement is carried out by “partitioning” the
traces associated with WSj

i in a way that guarantees the
resulting schema to increase in soundness. Actually, in
order to reuse classical clustering method and, specifically
in our implementation, the k-means algorithm, the
procedure refineWorkflow translates the log LðWSj

iÞ into
flat relational data, denoted by RðWSj

iÞ, by means of the
procedures FindFeatures and Project, which will be
discussed in Section 5.2. The basic idea is to identify a set
of relevant features that are assumed to characterize the
traces in the cluster, thereby leading to viewing each trace
as a Boolean tuple over the space of such features. In
particular, if more than one feature is identified, it
computes the clusters WShþ1

iþ1 ; . . . ;WShþk
iþ1 , where h is the

maximum index of the schemas already inserted in WS_

at the level iþ 1, by applying the k-means algorithm on
the traces in LðWSj

iÞ, and add them to the disjunctive
schema WS_.

Finally, for each schema added to WS_, the procedure
MineWorkflow described in Section 5 is applied, so that
the control flow and the local constraints are mined as well.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

Fig. 5. Algorithm ProcessDiscover.

Note that a main point of the algorithm is fixing the
number k of new schemas to be added at each refinement
step. The range of k goes from a minimum of 2, which will
require several steps for the computation, to an unbounded
value, which will return the result in only one step. One
would then expect that the latter case is the most desirable.
This is not necessarily true; rather, there are three basic
reasons for preferring a hierarchical computation, with
several refinements:

1. Exploiting a large value of k would be beneficial
only if it is possible to encode traces in a metric space
by guaranteeing that standard clustering algorithms
produce a solution maximizing the soundness;
recall, indeed, that our basic aim is to identify
bunches of execution traces which can be soundly
modeled by a workflow schema. However, given
that the notion of soundness is computationally
intractable (cf. Proposition 3.5) and that the MPD

problem is likely to be hard for the second level of
the polynomial hierarchy (cf. Theorem 3.6), we
believe that this cannot be done efficiently. To see
this from another perspective, we can say that,
differently from traditional clustering problems
where the compactness of the clusters is measured
according to the same metric used for evaluating the
similarity between pairs of entities (e.g., Euclidean
distance in a metric space), in the MPD problem the
objective function (soundness) cannot be related in a
straightforward manner with some kind of likeness
among traces. An iterative approach based on
stepwise refinements guaranteeing that each refine-
ment leads to an increase in soundness is quite an
effective solution to this problem. Moreover, it
allows a monotonic search in the space of the
solutions by never checking for the soundness of
the current model.

2. The result of the hierarchical clustering is a taxonomy
of workflow schemas whose leaves encode, in fact,
the mined disjunctive model (recall that each work-
flow is in fact equipped with a level i and is the result
of a refinement of some workflow with level i� 1).
Such a tree-based representation is relevant because
it gives more insights on the properties of the
modeled workflow instances and provides an in-
tuitive and expressive description of the process
behavior at different levels of detail. The exploitation
of this structure for semantic knowledge consolida-
tion tasks has been recently discussed in [24].

3. Disjunctive models can be used not only to get an
effective comprehension of complex processes, but
also as executable models supporting further coming
instances of the process. Indeed, as soon as there is a
new enactment, the most appropriate mined variant
of the process should be selected based on the
environment (e.g., users and data values). Clearly
enough, shifting the choice of the variant to the very
first step of the enactment may be undesirable in
several situations (see, e.g., studies on branching
bisimulation [25], [26]). In fact, an interesting
strategy to support the enactment is to exploit the

hierarchical structure of the mined model. At the
very beginning, the most general model (i.e., the root
of the hierarchy) may be selected for being enacted.
Then, as soon as a choice is made which allows
univocal determination of the specific variant (of the
current schema) being actually executed, the hier-
archy can be traversed, and one child of the current
node can be selected to be the actual workflow
schema. The technique can be iterated till a leaf of
the hierarchy is selected. Therefore, the more the
schema has a tree-like structure, the more we are free
to decide the actual moment in which a specific
schema has to be associated with the current
enactment.

We can now conclude the description of the algorithm

ProcessDiscover by stating its main properties. The

careful reader will notice that the properties of MineWork-

flow are in fact crucial now.

Theorem 5.1. Let WS_ be the output of ProcessDiscover

applied on input MPDðLP ;mÞ. Then, 1) WS_ is 1-complete

with regards to LP . 2) Let WS_
b be an �-sound disjunctive

schema, and let WS_
a be the �0-sound disjunctive schema

obtained updating WS_
b by means of the invocation of

refineWorkflow in Step 6. Then, �0 � �. 3) The main loop

(Steps 3-8) is repeated m times at most.

Proof.

1. Assume that the output WS_ of ProcessDis

cover on input MPDðLP ;mÞ is of the form
fWS1; . . . ;WSng. Recall, preliminarily, that each
schema WSi is also equipped with a subset of
LP , denoted by LðWSiÞ. It is easy to see that
the logs LðWS1Þ; . . . ;LðWSnÞ form, in fact, a
partition of LP . Indeed, the traces associated
with WS1

0 coincide with those in LP (see Step 2);
moreover, each time a schema is refined, its
associated traces are simply clustered in Step
P5, so that the property of being a partition of
LP is preserved after any invocation of the
refineWorkflow procedure.

Finally, the result follows because of the

1-completeness (by the property of MineWork

flow in Step 1 and Step P8) of each schema

WSi 2 fWS1; . . . ;WSng.
2. LetWS_

b be an �-sound disjunctive schema and let
WS_

a be the �0-sound disjunctive schema obtained
updating WS_

b by means of the invocation of
refineWorkflow. Let us preliminary recall that:

� ¼
jfs j s2LP ^ s � WS_

b gj

jfs j s � WS_
b gj

;

�0 ¼
jfs j s2LP ^ s � WS_

agj

jfs j s � WS_
agj

:

Then, by property 1 above, both WS_
b and

WS_
a are 1-complete. Therefore,

jfs j s2LP ^ s � WS_
b gj

jfs j s2LPgj
¼
jfs j s2LP ^ s � WS_

agj

jfs j s2LPgj
¼1:

GRECO ET AL.: DISCOVERING EXPRESSIVE PROCESS MODELS BY CLUSTERING LOG TRACES 9

Assume now, without loss of generality, that
refineWorkflow finds at least two features;
otherwise, WS_

b ¼ WS_
a holds. Then, let WS_

b ¼
fWS1; . . . ;WSng and let WSn be the schema
refined by refineWorkflow so that

WS_
a ¼ fWS1; . . . ;WSn�1;WSnþ1; . . .WSnþkg

is the disjunctive schema after which the refine-
ment of WSn is performed—notice that we are
assuming, without loss of generality, that WSn is
the schema chosen for being refined. Now, observe
that

fs j s � WS_
b g ¼

[

i¼1::n

fs j s � WSig;

and

fs j s � WS_
ag ¼

[

i¼1::n�1;nþ1::nþk

fs j s � WSig:

Recall that each schema of the form WSi, with
nþ 1 	 i 	 nþ k, is obtained by mining
LðWSiÞ by means of MineWorkflow and that
fLðWSnþ1Þ; . . . ;LðWSnþkÞg is a partition of
LðWSnÞ by result of clustering in Step P5. It
follows that LðWSiÞ � LðWSnÞ, for each index i
with nþ 1 	 i 	 nþ k. Then, since MineWork-

flow satisfies the monotonicity condition (cf.
Theorem 4.3), the set fs j s � WSig is contained
in the set fs j s � WSng. Clearly, this entails
that fs j s � WS_

ag � fs j s � WS_
b g and, conse-

q u e n t l y , jfs j s � WS_
agj 	 jfs j s � WS_

b gj.
Thus, �0

� � 1 holds as well.
3. Termination in m iterations at most is guaranteed

by the check in Step 3. tu

5.2 Dealing with Relevant Features

The last aspect to be analyzed in the algorithm Process

Discovery is the way the procedures FindFeatures

and Project are carried out. Roughly speaking, the former
identifies a set F of relevant features, whereas the latter
projects the traces into a vectorial space whose components
correspond to these features. This is done with the aim of
reducing the problem of clustering workflow traces to a
standard clustering problem for which efficient algorithms
have already been proposed in literature.

Actually, the idea of representing the data set at hand by
using a proper set of features has been exploited for
efficiently handling data mining problems (see, e.g., [27],
[28], [29], [30], [31]); as an instance, in [30], the problem of
classifying sequences is dealt with by considering frequent
subsequences of them as relevant features.

Clearly enough, changing the domain of interest drama-
tically affects the notion of relevant feature, which is
strongly application dependent. Specifically, in the case of
workflow executions, the identification of relevant features
is aimed at having clusters which can be modeled by means
of sound schemas. Generally, a schema with a low value of
soundness is such that it mixes different execution scenarios
that cannot be kept separate by means of dependencies in
the control flow and local constraints only. Thus, a simple

way of increasing soundness is precisely to single out that

kind of (frequent) “behavior” that is not properly modeled

by the workflow schema. This is explained below.

Example 5.2. Consider again the sample workflow schema

and the associated log reported in Fig. 1. Let us try to

identify some relevant features to be used for the

clustering. Consider, for instance, the sequences abefi

and ik, and notice that they frequently occur in the log

(five times each). However, their combination, i.e.,

abefik, never occurs in the log, which is unexpected

by looking at the control flow only. Similar considera-

tions also apply when noticing the absence in the log of

the sequence acdgij, which is strange due to frequent

occurrence of both the sequential patterns acdgi and ij.
Intuitively, the situations above witness some kinds of

behavioral constraint. For instance, it may be the case
that a fidelity discount is not applied for new clients and
that the mail department can be contacted only when it
was not necessary to check the availability of external
suppliers. As a result of this behavior, since both abefik

and acdgij are expected but not in the log, the workflow
schema is likely to be unsound. The notion of relevant
feature reported below is aimed at capturing such
scenarios.

Let LP be a log, WS ¼ hA;E; a0; AF ; ForkFork; JoinJoini be a

workflow schema, and � be a threshold, i.e., a real number

such that 0 	 � 	 1. Then, we say that a sequence a1a2 . . . ah
of activities (i.e., a string in A�) is �-frequent in LP if, for

each pair of consecutive activities ðai; aiþ1Þ, with

1 	 i 	 h� 1, there is a path from ai to aiþ1 in hA;Ei, and if

jfs 2 LP j a1 ¼ s½i1�; . . . ; ah ¼ s½ih� ^ i1 < . . . < ihgj=jLP j > �:

Definition 5.3. A discriminant rule (or feature) with

threshold h�; �i in a log LP is an expression � of the form

½a1 . . . ah�� 6!h�;�i a such that: 1) a1 . . . ah is �-frequent in

LP , 2) aha is �-frequent in LP , and 3) a1 . . . aha is not

�-frequent in LP .

Notice that, in the above definition, we considered a

second threshold (�) for evaluating whether the resulting

string is frequent: The lower � is, the more unexpected the

rule is. In the extreme case, i.e., � ¼ 0, the workflow mixes

two scenarios that are completely independent of each

other. This is the case, for instance, of the schema and the

log in Fig. 1, where both ½abefi�� 6!h�;0i k and ½acdgi�� 6
!h�;0i j are discriminant rules for � < 5=16.

Actually, while discovering discriminant rules, we are

interested in those satisfying some additional minimality

requirements.

Definition 5.4. A feature � : ½a1 . . . ah�� 6!h�;�i a is minimal if

the following conditions (aimed at avoiding redundancies) are

satisfied:

. does not exist b with ½a1 . . . ah�� 6!h�;�i b, such that ab
is �-frequent in LP , and

. does not exist ½c1 . . . ck�� 6!h�;�i a, such that
tasksðc1 . . . ckÞ � tasksða1 . . . ahÞ.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

Once minimal features have been discovered, the proce-
dure Projectmaps each trace s in the log LP into a point of a
suitable vectorial space where the k-means algorithm can
operate. The vectorial space has as many dimensions as the
number of features considered and each trace s is mapped to
the point s! as follows. Let � : ½a1 . . . ah�� 6!h�;�i a be a feature
computed by FindFeatures, then the value of the
component of s! associated with � is: 0, if a 2 tasksðsÞ, or

P
i jfs½i�g \ fa1; . . . ; ahgj � lengthðsÞlengthðsÞ�i

P
i lengthðsÞ

lengthðsÞ�i
;

otherwise.
Intuitively, Project tries to map the traces by splitting

them according to the occurrence of the feature �. Indeed,
the lowest value (cf. 0) is assigned in the case where a

occurs in the trace s, while the highest value (cf. 1) is
assigned if all the nodes in fa1; . . . ; ahg are in s, but a is not.
Otherwise, i.e., if a 62 tasksðsÞ but some node in fa1; . . . ; ahg
is not in s, the value is obtained by lexicographically
weighting the occurrences of such nodes, by giving
preference to those occurring first in the control flow.

Examp l e 5 . 5 . Re c a l l t h a t ½abefi�� 6!h�;0i k and
�2 : ½acdgi�� 6!h�;0i j, for � < 5=16, are discriminant rules
in the example in Fig. 1. Then, it is not difficult to check
that �1 : ½efi�� 6!h�;0i k and �2 : ½dgi�� 6!h�;0i j are mini-
mal discriminant rules, which allow to project the log
into a two-dimensional vectorial space, as shown in Fig.
6a.

By looking at this feature space in Fig. 6b, four
clusters can be identified: C1 ¼ fs1; s2; s3; s4; s5; s6; s7g,
C2 ¼ fs8; s9; s10g, C3 ¼ fs11; s12g, and

C4 ¼ fs13; s14; s15; s16g:

Let us now focus on the algorithm FindFeatures for
computing the set of all the minimal features. The algorithm
takes in input a log LP , a workflow schema WS, the
thresholds � and � in Definition 5.3, a number ‘ bounding
the length of the features to be discovered, and a number
maxF bounding the number of features that should be

returned as output. The algorithm exploits a level-wise
search in the space of all the possible features, in the a priori
style (see, e.g., [32], [33], [34]).

To see how this exploration is possible, consider two
strings s : a1 . . . ah and s0 : a01 . . . a

0
h0 . We say that s directly

precedes s0, denoted by s
 s0, if s is a prefix of s0 and
jtasksðsÞj ¼ jtasksðs0Þj � 1. Moreover, we say that s precedes
s0, denoted by s
� s0, if either s
 s0 or there exists a string
s00 such that s
� s00 and s00
� s. It is not difficult to see that
all frequent sequences can be constructed by means of a
chain over the
 relation and, therefore, the space of
frequent sequences forms a lower semilattice that can be
explored in a bottom-up fashion: At each iteration of the
main loop (Steps 3-15), the algorithm generates all the
possible �-frequent sequences whose length is len by
exploiting previously computed �-frequent sequences with
length len� 1 and stores them in Candlen. In particular, in
Steps 8 and 9, it scans the log for singling out the sequences
in Candlen that are �-frequent and �-frequent in LP by
storing them in the sets L�

len and L�
len, respectively. Actually,

the computation starts in Step 1, where L�
2 is initialized to

contain all the �-frequent sequences of length 2. Then,
candidates of length len are obtained by combining any
sequence of the form a1 . . . aj in L�

len�1 with any sequence of
the form aja in L�

2 .
Finally, after the frequent sequences are discovered, in

Steps 10-13, the features consisting of len nodes are
identified and stored in Flen. To this purpose, the sequence
of the form a1 . . . aja must be not �-frequent and the
minimality conditions must be satisfied (Step 11). At the
end of each iteration, the discovered minimal features are
eventually inserted into the set F (Step 14). The process is
repeated until no other frequent sequence is found or all the
features up to the length ‘ are found.

It is worth noting that the algorithm does not directly
output the set F ; rather, it invokes the function mostRele
vantFeatures, whose aim is to select (if possible) the maxF

most representative in F . This latter task is carried out for
reducing the dimensionality of the vectorial space. Usually,
feature selection is a very complex activity and some
general-purpose techniques have been proposed in the
literature (see, e.g., [31], [35]). In this case, things are simpler
since the semantics of discriminant rules induces quite a
natural ordering among elements in F , consisting of
preferred features having the lowest value for the
threshold �. These are the most unexpected rules. There-
fore, mostRelevantFeatures simply returns the top-maxF
elements in F with regard to this ordering.

After the algorithm has been described, we can now state
its main properties.

Theorem 5.6. The algorithm FindFeatures is such that: 1)
The main loop is repeated ‘� 2 times at most and ‘� 2 is in
fact the maximum number of log scans. 2) At each iteration,
L�
len contains the set of all the �-frequent sequences of length

len. 3) At the end of the computation, the set F contains the
set of all the minimal features of length bounded by ‘.

Proof.

1. By conditions in Step 3, there are at most
‘� 2 iterations. Moreover, for each iteration, only

GRECO ET AL.: DISCOVERING EXPRESSIVE PROCESS MODELS BY CLUSTERING LOG TRACES 11

Fig. 6. Sample traces: (a) Projection in the feature space and

(b) clusters.

Steps 8 and 9 require access to the log LP , which
can be done by one scan only.

2. L�
len trivially contains �-frequent sequences only,

because of Step 8. Moreover, all the sequences in
L�
len have length len; indeed, sequences in L�

2

have, by construction, length 2 and each sequence
in L�

len is the result of the merging of a sequence
a1 . . . aj (of length len� 1) and aja—formally, one
can prove this property by induction. Thus, we
have to show that L�

len, in fact, contains all the
�-frequent sequences of length len. The proof is by
structural induction on the length len. Base: For
len ¼ 2, the property holds by construction.
Induction: Assume that L�

len�1 contains all the
�-frequent sequences of length len� 1. Clearly,
sequences in L�

len can be written by adding to any
sequence in L�

len�1 exactly one activity because of
the fact that the space of such sequences forms a
lower semi-lattice with regard to the “
 ” rela-
tion. This is precisely what is done in Step 7.

3. We show that Flen contains exactly the minimal
features of size len, for len � 3. By construction in
Steps 10-12, Flen contains only minimal features of
size len. Therefore, we have to show that every
feature � of size len of the form ½a1 . . . aj�� 6!h�;�i a

is in Flen. To this aim, it is sufficient to exploit the
completeness result in point (2) above, and notice
that a1 . . . aj is in L�

len�1 and aja is in L�
2 . tu

Now that all the procedures in the ProcessDiscovery

algorithm have been discussed, we can explicitly note that it

requires a number of scans on the log which linearly

depends on the parameters ‘, k, and m. This is a nice

property for scaling in real applications. To see why this is
the case, recall that, by Theorem 5.1, the algorithm makes
m iterations at most. At each iteration, the dominant
operation is the procedure refineWorkflow in which there is
one invocation of FindFeatures (for computing features
of length ‘) for each of the k different invocations of the
algorithm MineWorkflow. Then, by combining results in
Theorem 5.6 and Theorem 4.3, the following is obtained.

Corollary 5.7. Algorithm ProcessDiscovery requires
Oðm� k� ‘Þ scans of the log LP .

6 EXPERIMENTAL RESULTS

All the algorithms proposed in the paper have been
implemented and recently integrated in the ProM process
mining framework [36] as an analysis plug-in,2 where the
user is allowed to exploit any available mining algorithm to
equip each cluster with a schema.

In this section, we illustrate the results of experimental
activity aimed at assessing the practical effectiveness of the
proposed approach, the theoretical guarantee on the scaling
(cf. Corollary 5.7), and the effectiveness in deriving
conformant models (cf. Theorem 5.1).

6.1 Qualitative Results

We start our analysis by discussing the results of
ProcessDiscovery on some example scenarios. We
firstly considered the OrderManagement process, and we
randomly generated 5; 000 traces for the workflow schema
in Fig. 1. Notably, in the generation of the log, we also
required that task k could not occur in any trace containing

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

2. Available at http://www.icar.cnr.it/wfmining.

Fig. 7. Algorithm FindFeatures.

e, and that task j could not appear in any trace containing d,
thereby modeling the restriction that a fidelity discount is
never applied to a new customer and that a fast dispatching
procedure cannot be performed whenever some external
supplies were asked for.

As a matter of fact, these constraints determine different
usage scenarios, which are mixed up in the schema in Fig. 1,
thereby leading to a low value of soundness. For instance,
this schema admits that a discount is applied to a new
customer.

Conversely, by running ProcessDiscovery with
maxFeature ¼ 5, maxLevels ¼ 1, k ¼ 4, � ¼ 0:05, � ¼ 0:01,
and ‘ ¼ 5, the four schemas associated with the discovered
clusters are the two of Fig. 2 plus the two reported in Fig. 8a.
Each of these schemas captures, in fact, exactly one of the
possible usage scenarios for the process (which are
determined by the type of customer and the availability in
stock) and models one of the clusters discovered in
Example 5.5. The resulting mined model is both 1-sound
and 1-complete and yields a clearer picture of the behavior
and of the organizational rules of the process.

As a further example, let us consider the ReviewPaper
process of handling the revisions for a paper submitted to
a scientific conference. The process consists of the
following tasks: (rs) receiving the submission, (sri,
1 	 i 	 5), sending the paper to the reviewers, (rd)
receiving the revisions and taking a decision, (d) discuss-
ing on the paper in the case revisions are not uniform,
(a) accepting the paper, and (r) rejecting the paper.
Actually, in the case where the paper is authored by a
program committee member, it has to be reviewed by five
reviewers and it is immediately rejected in the case in
which a reviewer does not want it to be accepted for
publication. Otherwise, only three reviewers are assigned
to the paper. A possible workflow schema for the process
is reported on the left of Fig. 8b—notice, e.g., that rs is an
or-fork. According to it and to the above specified rules, a
log (of 5,000 traces) was randomly generated and
ProcessDiscovery was invoked with maxFeature ¼ 2,
maxLevels ¼ 1, k ¼ 2, � ¼ 0:05, � ¼ 0:01, and ‘ ¼ 5. The
two resulting schemas are shown on the right of the same
figure. It should be clear that one schema is, in fact, the
1-sound model for handling the revision of a paper

written by a program committee member, while the other
is the 1-sound model for handling the revision of all the
other papers—notice, e.g., that, for both schemas, rs is an
and-fork task, now.

The examples above evidenced that the clustering
technique is very effective in providing insights into a
process, especially in the case where the enactments are
constrained by some kinds of behavioral rule, possibly
involving information which is beyond the pure execution
of activities (e.g., stored in some database). This is quite a
common situation in practical applications. In fact, research
in modeling languages already evidenced the importance of
these properties that cannot be captured by a graph model
and that, in the current workflow management systems, are
either left unexpressed or modeled by means of some form
of logics.

We conclude by noticing that, even in the case where no
behavioral rules are defined and, hence, there is only one
usage scenario, the ProcessDiscovery algorithm is still
useful in order to identify some (hidden) variants which
correspond to anomalies and malfunctioning in the system.
In these cases, the effect of the algorithm is to identify the
“normal” behavior of the process and to single out the
instances that are deviant with regard to it.

This intuition has been confirmed by several experiments
on real data sets available at http://www.processmining.
org. For the sake of completeness, in Fig. 9, we report the
hierarchy built for an example log file (cf. a12f5n20.xml,
maxFeature ¼ 3, k ¼ 3, � ¼ 0:01, � ¼ 0:4, and ‘ ¼ 5) and the
models associated with each node in the first level of the
hierarchy. The algorithm discovered one large cluster R0
whose schema coincides with the one the root R is equipped
with. Moreover, clusters R1 and R2 (containing 17 and
37 traces, respectively) may, indeed, be perceived as outliers
with regard to the discovered main behavior.

6.2 Quantitative Results

Besides qualitative tests, we performed an extensive
experimentation on synthetic logs, produced by means of
a generator which takes advantage of ideas exposed in [33]
and extends the one described in [23]. Notably, the
generator can be used to produce a log of traces which
are compliant with a given workflow schema, as well as to
generate random workflow schemas.

GRECO ET AL.: DISCOVERING EXPRESSIVE PROCESS MODELS BY CLUSTERING LOG TRACES 13

Fig. 8. Results for the ProcessDiscovery algorithm on example processes.

6.2.1 Text Procedure

In order to assess the effectiveness of the technique, we
defined a simple test procedure for comparing available
workflowmodelswith the output of theProcessDiscover
algorithm. LetWS be a given workflow schema and LP be a
log of traces compliant with WS, produced by means of the
generator. Then, the result of each test is a disjunctive
workflow schema WS_ extracted by providing the Pro-

cessDisovery algorithm with LP as input. Notice that, for
evaluating the quality of a mined schema, we are only
interested in computing its soundness, since it was proven,
by Theorem 5.1, that any schema discovered bymeans of our
technique has maximal completeness. Specifically, the
soundness ofWS_ is estimated by computing the percentage
of the traces in a log Ltest (randomly generated from WS_)
that are also compliant with the original schemaWS. Ideally,
when Ltest contains all the possible traces of WS_, the
estimate and the actual value coincide.

In light of Corollary 5.7, the experiments mainly focus on
the influence of the branching factor k and on the number of
levels (maxLevels) in the hierarchy of clusters—notice that
maxLevels and k in fact determine the size of the mined
disjunctive schema (m). The parameter ‘, i.e., the length of the
features, is instead kept fixed to 5 since, after several
experiments, this appeared to be a good compromise
between running time and quality of results. And, in fact,
for ‘ > 5, the soundness of the mined schema rarely
improves.

All the tests were conduced on a 1600MHz/256MB
Pentium IV machine running Windows XP Professional.

6.2.2 Results

A first set of experiments was conducted to assess the
soundness of the mined models. To this purpose, we
considered a fixed workflow schema at time and some log
traces randomly generated according to it. This first set of
experiments was repeated for different synthetic and real
schemas and the algorithm performed quite similarly under
all the circumstances. Moreover, for each schema, we
generated a number of different training logs. Here, we
report the average values and their associated standard
deviation.

For a process with 40 tasks, the soundness values of the
mined model are graphically illustrated in Fig. 10, which
reports the mean and standard deviation of the soundness
obtained with different values of k and maxLevels over
input logs consisting of 1,000 traces (on the left) or
10,000 traces (on the right). Both charts in the figure show
that the quality of the mined schema generally gets better
when either of these parameters increases, up to achieving
the maximum value of soundness. It is interesting to
express a further remark about the way the branching
factor k impacts on soundness. As a matter of fact, observe
that, for k ¼ 1, the algorithm degenerates in computing a
unique schema and, hence, the soundness is not affected by
the parameter maxLevels. On the contrary, for k > 1, the
algorithm is able to rediscover the original schema after
performing a suitable number of iterations—see, in parti-
cular, Fig. 10b.

Notice that the case where k ¼ 1 is that of all classical
process mining algorithms (see the next section) because no
clustering is performed. However, since the aim of the
paper is to demonstrate the effectiveness of the clustering
approach (independently of the way MineWorkflow is
carried out), we are not interested in a thorough comparison
here. We only evidence that, while we often get a low value
of soundness in the case where k ¼ 1, mined schemas are
always guaranteed to be 1-complete no matter what the log,
whereas most of the previous algorithms either assume that
the log itself is complete or accept incompleteness as a
manifestation of noise. Thus, these approaches in process
mining are orthogonal and enjoy specific advantages and
their comparison is left as a subject for further research.

A second set of experiments was aimed at providing
more insight on the impact of k on effectiveness and
efficiency. Input data are the same as those used for above
experiments. Fig. 11 shows the results. Specifically, the left
side of the figure confirms that k strongly impacts the
soundness, almost independently of the log size jLP j,
provided that it is big enough to reduce the effects of
statistical fluctuations in the log composition. Moreover,
Fig. 11b shows that the total time needed for building a
schema also increases when we use higher values for either
k or maxLevels. However, as expected, the scaling is linear
in both parameters. In particular, higher values for

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

Fig. 9. Results on log data available at http://www.processmining.org.

maxLevels only mildly increase the running time; this
observation and the behavior shown in Fig. 10a are
arguments in favor of using small values for k (see the
discussion in Section 5.1).

In Fig. 12, we report the trend of the mining time with
respect to the log size. In particular, in Fig. 12a, several
curves are plotted which correspond to different values of
maxLevels, with a fixed branching factor (k ¼ 2); analo-
gously, in Fig. 12b, it is k to be varied, while maxLevels is
always set to 2. All these curves substantiate the good
scalability of the approach, which takes a time that depends
linearly on the number of traces used as input.

In the last series of experiments, we randomly generated
several workflow schemas with a different number of tasks
and precedence relationships. In Fig. 13, we report the
results obtained with four workflow schemas. Observe in
Fig. 13a that, for a fixed value of k, the soundness of the
mined schema tends to become lower as the schema
complexity augments, i.e., the number of activities, links,
and constraints increases. This testifies to the fact that, in

order to have an effective reconstruction of the process, it is
necessary not only to fix k > 1, but also to deal with several
levels of refinements. Obviously, for complex schemas, the
algorithm takes more time, as shown in Fig. 13b.

7 OVERVIEW OF PROCESS MINING ALGORITHMS

We next briefly review some previous works on process
mining, which constituted a fundamental source of inspira-
tion for our research. In fact, these approaches solve the
MPDðLP ; 1Þ problem and may be even used in our
algorithm in place of MineWorkflow. A broader, and up-
to-date enough, overview on this topic can be found in [1].

Process mining was first introduced in a software
engineering setting by [37] and subsequently extended in
[5], [38]. The paper proposes three techniques, namely, 1) a
statistical approach, based on neural networks, 2) a purely
algorithmic approach, and 3) a hybrid approach, based on
Markov models, for automatically deriving a formal model
from execution’s log. The model is a Finite State Machine

GRECO ET AL.: DISCOVERING EXPRESSIVE PROCESS MODELS BY CLUSTERING LOG TRACES 15

Fig. 10. Fixed workflow: Soundness with regard to (a) number of levels and (b) k.

Fig. 11. Fixed workflow: (a) Soundness and (b) mining time with regard to k.

(FSM) model, where the activities are associated with the
edges and specify transitions between states.

In [8], processes are more naturally represented through
pure directed graphs, which are allowed to express
precedence relationships only, by disregarding richer
control flow constructs, such as concurrency, synchroniza-
tion, and choice. Notably, techniques in [8] have been
designed to work even in the presence of cyclic dependen-
cies between activities.

A special kind of Petri nets, named Workflow nets (WF-
net), was adopted in [39], [40], [1], [21] for modeling and
mining workflow processes. There, each transition repre-
sents a task, while the relationships between the tasks are
modeled by arcs and places. Importantly, WF-nets allows
for recursive schemas and iterated executions. A basic
algorithm, called �-algorithm, is introduced in [21], which is
able to derive a WF-net from a workflow log, under the
assumption that the log is complete and free of noise.
However, the �-algorithm can easily deal with cycles, which

is a functionality currently missing in our approach.
Actually, the capability of the algorithm to mine WF-net
workflow models and its limitations are analyzed in [1],
where the concept of structured workflow (SWF) net is
introduced to capture a class of WF-nets which a process
mining algorithm should be able to rediscover. Some
extensions to the approach are presented which address
these problems. Specifically, in [40], simple statistics are
exploited in the construction of the ordering relations in
order to cope with noise in the logs, whereas specific
preprocessing and postprocessing strategies for capturing
short loops are devised in [41].

A further approach to mining a process model from
event logs is described in [7], [42], where a subset of the
ADONIS language [43] is adopted to represent a process
model. An important peculiarity of the approach mainly
resides in its capability of recognizing duplicate tasks in the
control flow graph, i.e., many nodes associated with the
same task.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

Fig. 12. Fixed workflow: Scalability with regard to log size, varying the (a) number of levels and (b) k.

Fig. 13. Variable workflow: (a) Soundness and (b) mining time with regard to k.

Yet another approach is adopted in [9], where a mining
tool is presented which is able to discover hierarchically
structured workflow processes. Such a model corresponds
to an expression tree, where the leaves represent tasks
(operands) while any other node is associated with a control
flow operator. In this context, the mining algorithm mainly
consists of a suitable set of term rewriting systems.

The possibility of grouping workflow traces has been
previously explored by [11]. The basic idea is to exploit a
multiphase process mining approach, where individual
models are first generated for each process instance by
means of the technique in [10] and, subsequently, aggre-
gated into aggregation graphs. These graphs may be even-
tually translated into EPCs or Petri nets. Interestingly, the
first phase can be possibly avoided in the case where logs
are registered by some tools such as ARIS PPM [44], where
individual models are already available in terms of instance
graphs and do not need to be preliminary mined.

As a matter of fact, the technique in [11] can be used to
aggregate any predetermined set of instance graphs and,
therefore, it does not fit our setting where the traces to be
aggregated are not known in advance (in fact, clusters are
the result of an automatic partitioning on the log based on
some suitably extracted features). Yet, the grouping
technique can still be used to implement some kinds of
agglomerative clustering algorithm. Indeed, an algorithm
may start with each instance graph associated with an
aggregation graph and, at each step, it may select the most
similar aggregation graphs (according to some suitably
defined metric) whose instances are in turn fused into a
more general aggregation graph. In this way, the hierarchy
of schemas may be defined in a bottom-up fashion, rather
than in a top-down one. We believe that the above sketched
approach is worth formalizing and analyzing in order to
assess its practical effectiveness.

8 CONCLUSIONS

In this paper, we have proceeded to investigate data mining
techniques to discover process models from event logs. We
have devised a novel framework that substantially differs
from previous approaches for it performs a hierarchical
clustering of the logs in which each trace is seen as a point
of a properly identified space of features. The resulting
model is a disjunctive schema that explicitly takes care of
variants of the process. The computational complexity of
the different problems involved in our investigation has
been thoroughly investigated. It turned out that even
checking whether a given model at hand is conformant is
a difficult task so that any efficient algorithm for computing
the best schema has to search into the space of the possible
solutions by never checking for the soundness. Our solution
to this problem was a smart algorithm that stepwise refines
a starting schema by guaranteeing that each refinement
leads to an increasingly sound schema. The performances of
the proposed approach were analyzed over a number of
data sets, thereby getting some appreciable evidence for its
effectiveness and scalability.

Notably, the proposed approach is, to a large extent,
independent of the adopted workflow model and is,
indeed, modular and able to benefit from other results
available in the literature for dealing with more elaborate
features, such as cyclicity in the log. And, in fact, our
clustering algorithm has been made recently available as an

analysis plug-in for the ProM process mining framework,

which allows for the exploitation of well-established

process mining algorithms to equip clusters with models.

An extensive investigation of this kind of integrated

approach constitutes an avenue of further research.
We conclude by observing that the whole framework

proposed in the paper is essentially propositional as it

assumes a simplification of the schema and of the

enactments in which many real-life details are omitted.

This is a standard assumption in current research in process

mining. Therefore, another interesting avenue for further

research is to extend our techniques to take care of the

environment so that clusters may reflect not only structural

similarities among traces, but also information about, e.g.,

users and data values.

REFERENCES

[1] W.M. P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G.
Schimm, and A.J.M.M. Weijters, “Workflow Mining: A Survey of
Issues and Approaches,” Data and Knowledge Eng., vol. 47, no. 2,
pp. 237-267, 2003.

[2] A. Rozinat and W.M.P. van der Aalst, “Conformance Testing:
Measuring the Fit and Appropriateness of Event Logs and Process
Models,” Proc. Int’l Workshop Business Process Intelligence (BPI ’05),
pp. 1-12, 2005.

[3] F. Casati, M. Castellanos, and M. Shan, “Enterprise Cockpit for
Business Operation Management,” Proc. 23rd Int’l Conf. Conceptual
Modeling (ER ’04), pp. 825-827, 2004.

[4] D.-R. Liu and M. Shen, “Workflow Modeling for Virtual
Processes: An Order-Preserving Process-View Approach,” Infor-
mation Systems, vol. 28, pp. 505-532, 2003.

[5] J.E. Cook and A.L. Wolf, “Event-Based Detection of Concurrency,”
Proc. Sixth Int’l Symp. Foundations of Software Eng. (FSE ’98), pp. 35-
45, 1998.

[6] A.J.M.M. Weijters and W.M.P. van der Aalst, “Rediscovering
Workflow Models from Event-Based Data Using Little Thumb,”
Integrated Computer-Aided Eng., vol. 10, no. 2, pp. 151-162, 2003.

[7] J. Herbst, “Dealing with Concurrency in Workflow Induction,”
Proc. European Concurrent Eng. Conf., 2000.

[8] R. Agrawal, D. Gunopulos, and F. Leymann, “Mining Process
Models from Workflow Logs,” Proc. Sixth Int’l Conf. Extending
Database Technology (EDBT ’98), pp. 469-483, 1998.

[9] G. Schimm, “Mining Most Specific Workflow Models from Event-
Based Data,” Proc. Int’l Conf. Business Process Management, pp. 25-
40, 2003.

[10] B.F. van Dongen and W.M.P. van der Aalst, “Multi-Phase Process
Mining: Building Instance Graphs,” Proc. Int’l Conf. Conceptual
Modeling (ER), pp. 362-376, 2004.

[11] B.F. van Dongen and W.M.P. van der Aalst, “Multi-Phase Process
Mining: Aggregating Instance Graphs into Epcs and Petri Nets,”
Proc. Int’l Workshop Applications of Petri Nets to Coordination,
Worklflow and Business Process Management (PNCWB) at ICATPN
’05, 2005.

[12] H. Davulcu, M. Kifer, C.R. Ramakrishnan, and I.V. Ramakrishnan,
“Logic Based Modeling and Analysis of Workflows,” Proc. 17th
ACM Symp. Principles of Database Systems (PODS ’98), pp. 25-33,
1998.

[13] P. Muth, J. Weifenfels, M. Gillmann, and G. Weikum, “Integrating
Light-Weight Workflow Management Systems within Existing
Business Environments,” Proc. 15th IEEE Int’l Conf. Data Eng.
(ICDE ’99), pp. 286-293, 1999.

[14] P. Senkul, M. Kifer, and I.H. Toroslu, “A Logical Framework for
Scheduling Workflows under Resource Allocation Constraints,”
Proc. 28th Int’l Conf. Very Large Data Bases (VLDB ’02), pp. 694-702,
2002.

[15] H. Schuldt, G. Alonso, C. Beeri, and H. Schek, “Atomicity and
Isolation for Transactional Processes,” ACM Trans. Database
Systems, vol. 27, no. 1, pp. 63-116, 2002.

[16] W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek, “An
Alternative Way to Analyze Workflow Graphs,” Proc. 14th Int’l
Conf. Advanced Information Systems Eng., pp. 534-552, 2002.

GRECO ET AL.: DISCOVERING EXPRESSIVE PROCESS MODELS BY CLUSTERING LOG TRACES 17

[17] M. Kamath and K. Ramamritham, “Correctness Issues in Work-
flow Management,” Distributed Systems Eng., vol. 3, no. 4, pp. 213-
221, 1996.

[18] W.M.P. van der Aalst, “The Application of Petri Nets to Worflow
Management,” J. Circuits, Systems, and Computers, vol. 8, no. 1,
pp. 21-66, 1998.

[19] W.M.P. van der Aalst, J. Desel, and E. Kindler, “On the Semantics
of EPCS: A Vicious Circle,” Proc. EPK 2002: Business Process
Management Using EPCs, pp. 71-80, 2002.

[20] G. Keller, M. Nuttgens, and A.W. Scheer, Semantische Processmo-
dellierung auf der Grundlage Ereignisgesteuerter Processketten (EPK).
Univ. of Saarland, Saarbrucken, 1992.

[21] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster,
“Workflow Mining: Discovering Process Models from Event
Logs,” IEEE Trans. Knowledge and Data Eng., vol. 16, no. 9,
pp. 1128-1142, Sept. 2004.

[22] L. Pontieri, G. Greco, A. Guzzo, and D. Sacca, “Discovering
Expressive Process Models by Clustering Log Traces [Appendix],”
http://www.icar.cnr.it/wfmining, 2005.

[23] G. Greco, A. Guzzo, G. Manco, and D. Sacca, “Mining and
Reasoning on Workflows,” IEEE Trans. Data and Knowledge Eng.,
vol. 17, no. 4, pp. 519-534, Apr. 2005.

[24] G. Greco, A. Guzzo, and L. Pontieri, “Mining Hierarchies of
Models: From Abstract Views to Concrete Specifications,” Proc.
Int’l Conf. Business Process Management, pp. 32-47, 2005.

[25] R.J. van Gabbeek and W.P. Weijland, “Branching Time and
Abstraction in Bisimulation Semantics,” J. ACM, vol. 43, no. 3,
pp. 555-600, 1996.

[26] T. Basten and W. van der Aalst, “Inheritance of Workflows: An
Approach to Tackling Problems Related to Change,” Theoretical
Computer Science, vol. 270, nos. 1-2, pp. 125-203, 2002.

[27] V. Guralnik and G. Karypis, “A Scalable Algorithm for Clustering
Sequential Data,” Proc. IEEE Int’l Conf. Data Maning (ICDM ’01),
pp. 179-186, 2001.

[28] J. Han, J. Pei, B. Mortazavi-Asl, U. Dayal, and M. Hsu, “Freespan:
Frequent Pattern-Projected Sequential Pattern Mining,” Proc. Int’l
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining
(KDD ’00), pp. 355-359, 2000.

[29] Y.S. Kim, W.N. Street, and F. Menczer, “Feature Selection in
Unsupervised Learning via Evolutionary Search,” Proc. Sixth ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD
’00), pp. 365-369, 2000.

[30] N. Lesh, M.J. Zaki, and M. Ogihara, “Mining Features for
Sequence Classification,” Proc. Sixth ACM SIGKDD Int’l Conf.
Knowledge Discovery and Data Mining (KDD ’00), pp. 342-346, 1999.

[31] H. Motoda and H. Liu, “Data Reduction: Feature Selection,”
Handbook of Data Mining and Knowledge Discovery, pp. 208-213,
2002.

[32] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” Proc. ACM
SIGMOD, pp. 207-216, 1993.

[33] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules,” Proc. 20th Int’l Conf. Very Large Databases,
pp. 487-499, 1994.

[34] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
11th Int’l Conf. Data Eng. (ICDE ’95), pp. 3-14, 1995.

[35] B. Padmanabhan and A. Tuzhilin, “Small Is Beautiful: Discovering
the Minimal Set of Unexpected Patterns,” Proc. Sixth ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD
’00), pp. 54-63, 2000.

[36] B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M.
Weijters, and W.M.P. van der Aalst, “The Prom Framework: A
New Era in Process Mining Tool Support,” Proc. 26th Int’l Conf.
Applications and Theory of Petri Nets (ICATPN ’05), pp. 444-454, 2005.

[37] J.E. Cook and A.L. Wolf, “Automating Process Discovery through
Event-Data Analysis,” Proc. 17th Int’l Conf. Software Eng. (ICSE
’95), pp. 73-82, 1995.

[38] J.E. Cook and A.L. Wolf, “Software Process Validation: Quantita-
tively Measuring the Correspondence of a Process to a Model,”
ACM Trans. Software Eng. Methodology, vol. 8, no. 2, pp. 147-176,
1999.

[39] W.M. P. van der Aalst and K.M. van Hee, Workflow Management:
Models, Methods, and Systems. MIT Press, 2002.

[40] W.M. P. van der Aalst and B.F. van Dongen, “Discovering
Workflow Performance Models from Timed Logs,” Proc. Int’l Conf.
Eng. and Deployment of Cooperative Information Systems (EDCIS ’02),
pp. 45-63, 2002.

[41] A.K.A de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and
A.J.M.M. Weijters, “Process Mining: Extending the A-Algorithm
to Mine Short Loops,” Technical Report, Univ. of Technology,
Eindhoven, BETA Working Paper Series, WP 113, 2004.

[42] J. Herbst and D. Karagiannis, “Integrating Machine Learning and
Workflow Management to Support Acquisition and Adaptation of
Workflow Models,” J. Intelligent Systems in Accounting, Finance, and
Management, vol. 9, pp. 67-92, 2000.

[43] S. Junginger, H. Kuhn, R. Strobl, and D. Karagiannis, “Ein
Geschafts-Prozessmanagement-Werkzeug der Nachsten Genera-
tion—adonis: Konzeption und Anwendungen,” Wirtschaftsinfor-
matik, vol. 42, no. 3, pp. 392-401, 2000.

[44] I.D.S. Scheer, “Aris Process Performance Manager (Aris PPM):
Measure, Analyze and Optimize Your Business Process Perfor-
mance (whitepaper),” http://www.ids-scheer.com, 2002.

Gianluigi Greco received the Laurea degree in
computer science engineering from the Univer-
sity of Calabria, Italy, in 2000. Currently, he is an
assistant professor of computer science in the
Department of Mathematics at the University of
Calabria. His main research interests are across
the areas of databases and artificial intelligence
and focus on database theory, knowledge
representation, nonmonotonic reasoning, com-
putational complexity, and deductive databases.

Antonella Guzzo received the Laurea degree in
engineering from the University of Calabria and
the PhD degree in system engineering and
computer science from the DEIS Department
at the University of Calabria. Since January
2005, she has been a research fellow at the High
Performance Computing and Networks Institute
(ICAR-CNR) of the National Research Council of
Italy. Her research interests include workflow
management, process mining, data mining, and

knowledge representation.

Luigi Pontieri received the Laurea degree in
computer engineering in July 1996 and the
PhD in system engineering and computer
science in April 2001 from the University of
Calabria. He is currently a senior researcher
at the High Performance Computing and
Networks Institute (ICAR-CNR) of the National
Research Council of Italy and a contract
professor at the University of Calabria, Italy.
His current research interests include informa-

tion integration, data mining, and process mining.

Domenico Saccà received the doctoral degree
in engineering from the University of Rome in
1975. Since 1987, he has been a full professor
of computer engineering at the University of
Calabria and, since 1995, he has also been
director of the CNR (the Italian National Re-
search Council) Research Institute ICAR (In-
stitute for High Performance Computing and
Networking). In the past, he was a visiting
scientist in the IBM Laboratory of San Jose,

California, in the Computer Science Department at the University of
California at Los Angeles, and in the ICSI Institute of Berkeley,
California; furthermore, he was a scientific consultant at MCC, Austin,
and manager of the Research Division of CRAI. His current research
interests focus on advanced issues of databases such as scheme
integration in data warehousing, compressed representation of data-
cubes, workflow and process mining, and logic-based database query
languages. He has been a member of the program committees of
several international conferences, director of international schools and
seminars, and leader of many national and international research
projects. He is a member of the IEEE Computer Society.

18 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 8, AUGUST 2006

