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ABSTRACT

Micro-blogging services have become indispensable com-
munication tools for online users for disseminating break-
ing news, eyewitness accounts, individual expression, and
protest groups. Recently, Twitter, along with other on-
line social networking services such as Foursquare, Gowalla,
Facebook and Yelp, have started supporting location ser-
vices in their messages, either explicitly, by letting users
choose their places, or implicitly, by enabling geo-tagging,
which is to associate messages with latitudes and longitudes.
This functionality allows researchers to address an exciting
set of questions: 1) How is information created and shared
across geographical locations, 2) How do spatial and linguis-
tic characteristics of people vary across regions, and 3) How
to model human mobility. Although many attempts have
been made for tackling these problems, previous methods
are either complicated to be implemented or oversimplified
that cannot yield reasonable performance.

It is a challenge task to discover topics and identify users’
interests from these geo-tagged messages due to the sheer
amount of data and diversity of language variations used on
these location sharing services. In this paper we focus on
Twitter and present an algorithm by modeling diversity in
tweets based on topical diversity, geographical diversity, and
an interest distribution of the user. Furthermore, we take
the Markovian nature of a user’s location into account. Our
model exploits sparse factorial coding of the attributes, thus
allowing us to deal with a large and diverse set of covariates
efficiently. Our approach is vital for applications such as
user profiling, content recommendation and topic tracking.
We show high accuracy in location estimation based on our
model. Moreover, the algorithm identifies interesting topics
based on location and language.
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1. INTRODUCTION
Micro-blogging services such as Twitter, Tumblr and

Weibo, have become very important tools for online users to
share breaking news and interesting stories. They are even
used for organizing flash mobs and protest groups. For ex-
ample, Twitter was used extensively in a number of events
and emergencies, ranging from elections, earthquakes and
tsunamis to playing an instrumental role in facilitating po-
litical upheavals in the Middle East.

Key Questions: In addition to its use as a content shar-
ing platform, micro-blogging services like Twitter, along
with other location sharing services such as Foursquare,
Gowalla, and Facebook Places are nowadays supporting lo-
cation services. That is, users are able to specify their lo-
cation in messages, either explicitly, by letting users choose
their place, or implicitly, by enabling geo-tagging functional-
ity. This presents an exciting opportunity to answer a range
of questions:

1. How is information created and shared in different ge-
ographic locations? What is the inherent geographic
variability of content?

2. What are the spatial and linguistic characteristics of
people? How does this vary across regions?

3. What is a good model for human mobility? Can we
discover patterns in users’ usage of micro-blogging ser-
vices.

There exists a considerable body of research addressing these
issues [12, 15, 7, 5, 4]. However, the analysis of data still
poses a considerable challenge due to its size and due to the
integration of a range of different attributes. To our knowl-
edge this is the first paper to address both scale, location
and language modeling in an integrated fashion. That is,
we customize the model to be sufficiently sparse to allow for
a large scale in terms of users and locations. Furthermore,
we design an accurate and scalable inference algorithm.

Our algorithm allows us to discover language patterns and
to extract users’ interests from geo-tagged messages. We



achieve this thanks to (and despite of) the sheer amount of
data and the diversity of language variations used on Twit-
ter. In addition, there are many factors to influence the
language used in a tweet with a particular location. For ex-
ample, words used in a tweet certainly depend on the author
and the location where the tweet is written.

A user in New York City might be interested in entirely
different matters compared to a user in Beijing. Moreover,
the choice of words is clearly influenced by the topic of the
tweet. Finally, location specific language will cause the same
event to be reported quite differently in different locations
(e.g. a soccer game between Brazil and Italy being reported
quite differently in those two countries). Thus, different geo-
graphical regions have different language variations and top-
ics have different chances of being discussed in these regions.

It turns out that users tend to appear only in a handful of
geographic locations [5]. This is useful in improving location
accuracy in estimates. The arising challenge is how to best
integrate all these strands of information into a single model.

Prior work falls into two groups: Some work only models
certain aspects of the problem described above while ignor-
ing the remainder. For instance [17] investigated how loca-
tion information can be used to better understand patterns
in social photo sharing services. A Gaussian mixture model
and a probabilistic topic model are combined to learn clus-
ters of locations and latent topics. However, no regional lan-
guage models are learned and user preferences are also not
taken into account. Thus, models developed for such data
are usually limited and cannot easily be applied to content-
rich social media. Similarly [5] proposed a two component
Gaussian mixture model to study the mobility of users in a
number of location sharing services. However, their model
does not incorporate content at all.

At the other end of the spectrum we find rather complex
models, however, without the ability to scale to industrial
size. For instance [7] propose a model to predict locations of
users in Twitter. Their model has a global topic matrix and
each region has different variation of this matrix. However,
the inference algorithm is complex. Furthermore, the prob-
lem of over-parametrization makes it nontrivial to perform
inference accurately. Furthermore, previous models ignore
user preferences.

Our Contribution: We propose a model that is both
flexible enough to embed all reasonable components of con-
tent and geographical locations, as well as user preference
modeling. Moreover, it scales to real-world datasets to han-
dle millions of documents and users.

In this paper, we address the problem of modeling geo-
graphical topical patterns on Twitter by introducing a novel
sparse generative model. It utilizes both statistical topic
models and sparse coding techniques to provide a princi-
pled method for uncovering different language patterns and
common interests shared across the world. Our approach is
vital for applications such as user profiling, content recom-
mendation and topic tracking and the method can be easily
extended in a number of ways. We show that interesting
topics can be identified by the model and we demonstrate
its effectiveness on the task of predicting locations of new
messages and outperform non-trivial baselines. The main
contributions are as follows:

• An additive generative model of content and locations

that incorporates multiple facets of micro-blogging en-
vironments in an integral fashion.

• Sparse coding techniques and Bayesian treatments are
smoothly embedded in our modeling, resulting in an
efficient and effective implementation.

• Our model outperforms several state-of-the-art algo-
rithms in the task of location predictions and it demon-
strates interesting patterns in real-world datasets.

The paper is organized as follows. In Section 2 we will
briefly discuss some recent related work in terms of geo-
graphical modeling in micro-blogging environments. In Sec-
tion 3 we proceed with detailed description of the proposed
model with implementation notes. In Section 4 we compare
our model with several state-of-the-art algorithms in a num-
ber of tasks and demonstrate its effectiveness. Finally, we
conclude in Section 5 with discussions and future work.

2. RELATED WORK
We briefly review two lines of related research. The first

is a range of papers which use geographical language mod-
eling in general while the second is a set of works which
are specifically tuned for Twitter data. We are particularly
interested in models and approaches that combine geograph-
ical modeling and language modeling to discover topics from
geographical regions. We summarize some of representative
work here:

• Mei et al. [12] propose a model based on Probabilis-
tic Latent Semantic Indexing (PLSA) [11]. It assumes
that each word is either drawn from a universal back-
ground topic or from a location and time dependent
language model. Inference is performed via EM. How-
ever, the mixture coefficients between the background
topic and other spatio-temporal topics ones is tuned
manually. Since the model uses PLSA, no prior distri-
bution is (or could be) assumed. Evaluation is carried
out by showing anecdotal results.

• Later, Wang et al. [15] introduce a fully Bayesian gen-
erative model to incorporate locations. Rather than
working with real latitudes and longitudes, they have
a fixed number of region labels and they assume that
each term is associated with a location label. For each
word in a document, a topic assignment is first gener-
ated according to a multinomial distribution. Then
the term and the location are generated dependent
on this topic assignment, according to two different
multinomial distributions. The inference is performed
by Variational EM. Again the evaluation is limited to
anecdotal results.

• Sizov [13] propose a similar model to [15]. Rather than
using a multinomial distribution to generate locations
they replace it with two Gaussian distributions for gen-
erating latitude and longitude respectively. For infer-
ence, this work uses Gibbs Sampling and the evalu-
ation is done by showing anecdotal results, by mea-
suring Deviation Information Criteria (a model com-
plexity criterion similar to BIC), as well as classifica-
tion accuracy using manually labeled data. One of the
drawbacks of the work is that they only use data from
Flickr restricted to the greater London area.



• Hao et al. [10] propose a model built upon Wang et
al. [15]. However, they introduce the notion of global
topics and local topics where more general terms are
grouped into global topics and terms related to local
events going to local topics. The inference is performed
by Gibbs Sampling. Hao et al. [10] evaluate their
model based on anecdotal results and some heuristic
measurements.

• Yin et al. [17] propose a model is similar in spirit to
Eisenstein et al. [7]. The terms and the location of a
particular document are generated by a latent region.
The location is generated from a region by a normal
distribution and the region is sampled from a multi-
nomial distribution. The prior is also placed into the
model, however the inference is done by MAP-style
EM rather than a fully Bayesian fashion. The model
is evaluated using perplexity and by showing anecdotal
results.

• Wing and Baldridge [16] use an even simpler ap-
proach where documents are assigned to geodesic grids
and thus a supervised learning method is utilized, es-
sentially yielding to build näıve Bayes classifiers on
geodesic grids.

Although there exists such attempts of modeling language
patterns and geographical locations, most prior work does

not consider users at all.

A second line of work covers models directly designed to
work on Twitter data. For instance, Eisenstein et al. [7] pro-
pose a model utilizing the correlations between global and
local topics. In their model, each author is assigned a latent
region variable and an observed GPS location. Terms and
the actual GPS location are both conditioned on the latent
region variable. The topics to generate terms are local top-
ics, which are derived from global topics. The inference is
done by Variational EM and the evaluation is done by mea-
suring the accuracy of predicted location and showing anec-
dotal results. Finally, Cho et al. [5] studied the problem of
human mobility in location sharing services. Their findings
include that users tend to appear in a very limited number
of places (e.g., office and home). They demonstrated that it
might be effective enough to use a two component Gaussian
mixture model to estimate users’ locations.

It has been an active research area to incorporate dif-
ferent information sources into topic modeling. For exam-
ple, Chemudugunta et al. [3] propose a method to combine
corpus-wide topics and document-specific language patterns
together by using a “switch” variable for each term in the
document, becoming a popular scheme in topic modeling
literature. We use a “switch-free” approach in this work
and therefore reduce the number of variables used in the
model. Last, for general patterns and analysis of social lo-
cation sharing services, please refer to Cheng et al. [4].

3. MODEL
We now introduce our model that addresses the problems

raised in the previous sections. We start with an overview of
the basic components in Section 3.1 by discussing generative
models without explicit switch variables. This allows us to
describe the basic aspects of our model in Section 3.2. In or-
der to learn more discriminative features, in Section 3.3, we
impose L1 penalty on certain parts of our model, resulting

Table 1: Notation

Symbol Size Usage

η0 1× R global region distribution
ηuser U× R user-dependent region distribution
θ0 1×K global topic distribution
θgeo R×K region-dependent topic distribution
θuser U×K user-dependent topic distribution
φ0 1× V global term distribution
φgeo R× V region-dependent term distribution
Π K× V a global topic matrix
µ R

2 mean location of a latent region
Σ R

2×2 covariance matrix of a latent region

in a sparse modeling approach. For geographical modeling,
non-informative prior distributions are discussed in Section
3.5. More implementation details follow in Section 3.6.

3.1 Preliminaries
Our model is closely related to the Sparse Additive Gen-

erative model (SAGE). The basic idea of the SAGE model is
that the outcome variable is generated by the mixture of all
components without any explicit indicator variable. The key
difference to traditional mixture models is that the mixture
occurs not in terms of the expectation parameters (i.e. the
distribution) but in terms of the natural parameters of the
exponential family model. Such a model has the advantage
that it can easily take a large number of aspects into ac-
count without having to infer a complex indicator variable
distinguishing the set of causes.

To be more concrete, we take language modeling as an
example. Suppose we have a vocabulary V where each term
v is generated by a background language model φ0, a per-
user background language model φu and a regional language
model φg . A conventional mixture model would attempt to
represent the joint influence of the three components by a
linear combination of the associated densities. Denote by
p(v|φ) an exponential family model of the form

p(v|φ) = exp (φv − g(φ)) where g(φ) = log
∑

v

exp (φv)

Here g(θ) is often referred to as the log-partition function as
it ensures that the distribution is properly normalized. In
particular for the discrete distribution φ(v|φ) is well-defined
for all choices of φ. We now combine the factors via

P (v|φ0,φu,φg) := p(v|φ0 + φu + φg) (1)

Unlike in traditional topic models, the formalism above does
not require an indicator variable to specify which component
to use in generating v. In addition to additive modeling,
different language models can be constructed in such a way
as to incorporate more discriminative terms. More specif-
ically, in our model we choose φ0 to denote the (baseline)
log frequency of v in the dataset while other components
are used to model the differences between the baseline and
the background model. This idea is explored in [18, 6] to
model topics. Here, we extend it to model regions and topics
jointly and to propose an efficient inference procedure.

3.2 Model Description
We start the discussion with some notations in our model.

Each tweet d = {wd, ld, ud} consists of three parts: Here



wd is the word vector for the tweet, following a simple bag
of word assumption, ld is a real-valued pair ld = {l0, l1},
representing the latitude and longitude where this tweet is
written and ud is the user id for the author of the tweet. For
simplicity, we assume that all the tweets in our dataset are
generated by a fixed vocabulary V and a fixed user base U .
Moreover, we assume that the geographical locations have
been clustered into R latent regions. Each region r ∈ R
is characterized by a mean location µr and a covariance
matrixΣr. We assume that there are three types of language
models: a) a background language model φ0, b) a per-region
language model φgeo and c) a topical language model Π.
All these language models are over the vocabulary V. Each
tweet is influenced by these three factors simultaneously.
Before describing the generative process of our model, on a
high level, our model encodes the following intuitions:

• Words used in a tweet depend on both the location
and topic of the tweet.

• Different geographical regions have different language
variations. Topics have different chances to be dis-
cussed in different regions (e.g. bullfights in India are
unlikely to occur; likewise Spaniards are unlikely to
discuss Divali).

• Users tend to appear in a handful geographical loca-
tions.

For each tweet, the model generates the location, the topic
and terms in the tweet consecutively. In our model, all loca-
tions are categorized into R latent regions. For each tweet,
we first choose from which latent region this tweet is writ-
ten. To generate the region index r, we utilize a multinomial
model as follows:

P
(

r|η0
,η

user
u

)

= p
(

r|η0 + η
user
u

)

(2)

Here η0 is a global distribution over latent regions and ηu

is a user dependent distribution over latent regions for user
u. Each location ld is drawn from a latent region r by a
region-dependent multivariate normal distribution

ld ∼ N (µr,Σr). (3)

Once the region and the location is generated, a topic z is
selected dependent on both the latent region and the author
of tweet:

P
(

z|θ0
,θ

user
u ,θ

geo
r

)

= p
(

z|θ0
j + θ

user
u,j + θ

geo
r,j

)

(4)

Here θ0 is a global distribution over topics, θuseru is a user-
dependent distribution over topics and θ

geo
r is a regional

distribution over topics. The intuition is that the topic is
heavily influenced where this tweet is written and user pref-
erences. After generating the topic index z each word w in
the tweet is generated by drawing from the aggregate distri-
bution:

P
(

w|z,φ0
,φ

geo
r ,Πz

)

= p
(

w|φ0 + φ
geo
r +Πzd

)

. (5)

In this case φ0 parametrizes a global distribution over terms,
φgeo describes the a region-dependence and Π ∈ R

K×V is
a topic matrix where each row is a distribution over terms.
With the above specification the generative story for a single
tweet d can be expressed as follows:

η0 ηuser θuser

r z

wl

θ0

θgeo

φgeo

φ0
Π

µ

Σ

A

Da

W
R

R

Figure 1: A graphical representation of our model

• Draw a latent region index

rd ∼ p(rd|η
0 + η

user
u )

• Draw a topic index

zd ∼ p(zd|θ
0 + θ

user
u + θ

geo
r )

• Draw a location

ld = {l0, l1} ∼ N (µr,Σr)

• For each token w in wd draw

w ∼ p(w|φ0 + φ
geo
r ,Πzd)

This generative process applies to all tweets in the corpus.
The graphical representation of the generation process is
shown in Figure 1.

3.3 Sparse Modeling
As discussed in Section 3.1, the benefit of our approach is

to learn discriminative features from data, rather than ob-
taining redundant ones in different components of the model.
In order to achieve this goal, we also impose prior distri-
butions over certain parts of our model. More specifically,
for the following components in the model, we impose zero-
mean Laplace distributions.

The rationale is that users in certain regions are likely
to draw their words either from a location independent dis-
tribution or from a small, i.e. sparse corpus of additional
terms which are more prevalent in a given location rather
than globally. Likewise, we assume that topics consist of a
background distribution of generic words plus a sparse set of
additional words which are characteristic for the particular
topic. Note that we do not require these words to be unique.
That is, the word “jaguar”might for instance be more preva-
lent in the “animals” and in the “cars” topic. However, we
do not expect it to be prevalent in a large number of topics
beyond what a background language model would indicate.



We have

η
0
r ∼ L(0, ω0) η

user
u,r ∼ L(0, ωu)

θ
geo
z ∼ L(0, λl) θ

user
u,z ∼ L(0, λu) θ

geo
r,z ∼ L(0, λr)

φ
0
v ∼ L(0, ψ0) φ

geo
r,v ∼ L(0, ψl)

Πz,v ∼ L(0, ψt)

where L(µ, b) is a Laplace distribution with mean µ and scale
parameter b. A zero-mean Laplace prior has the same effect
as placing an L1 regularizer on these components, resulting
in a sparse solution to the model. Here, a sparse modeling
approach does not only encourage more discriminative fea-
tures to be learned, but also leads to a more efficient learning
algorithm, which will be introduced below. We use ISTA [2]
algorithm to do sparse optimization in our work.

Note that besides Laplace distributions used in this paper,
other distributions could be employed, too. For instance
using a normal distribution as prior on all elements amounts
to a latent Gaussian process induced by the parameters.

3.4 Inference Algorithm
Before we proceed with the inference algorithm, we intro-

duce the following shorthands to simplify our notation:

P (zd = k|θ0
,θ

user
u ,θ

geo
r ) = αu,r,k

P (w = v|zd,φ
0
,φ

geo
r ,Π) = βr,z,v

P (r = t |η0
,η

user
u ) = ρu,t

We treat topic assignments z and latent region assignments
r as latent variables and all other variables as model param-
eters. A mixture between EM and a Monte Carlo sampler
is utilized to effectively learn all parameters for the model
along the lines of [14]. In the E-step, we sample latent re-
gion assignments and topic assignments by fixing all other
parameters by Gibbs sampling. In the M-step, we optimize
model parameters by fixing all latent region assignments and
topic assignments. We iterate this until convergence.

More specifically, in the E-step, we iteratively draw latent
region assignments and topic assignments for all tweets. For
each tweet, a latent region r is firstly drawn from the follow-
ing distribution, conditioned on the old topic assignments:

r ∼ P (ld|µj ,Σj)× ρu,j ×αu,j,k ×

Nd
∏

i=1

βj,k,v (6)

where P (ld|µj ,Σj) is the pdf function for a multivariate
normal distribution and k is the old topic assignment. After
r is sampled, we sample the topic assignment z for the same
tweet, conditioned on the newly sampled r:

z ∼ αu,r,k ×

Nd
∏

i=1

βr,z,v (7)

where r is the new region index. In the M-step, we maximize
the log likelihood of the model with respect to model param-
eters by fixing all region and topic assignments obtained in
the E-step. For geographical modeling, the maximum like-
lihood estimation (MLE) of parameters can be obtained in

closed form:

µj = N̄j =
1

#(d, j)

D
∑

d=1

I(rd = j)ld (8)

Σj = Sj =
1

#(d, j) − 1

D
∑

d=1

(ld − µj)
T (ld − µj) (9)

where #(d, j) is the number of tweets assigned to region j.
Indeed, µj is set to the sample mean and Σj is set to the
sample variance. For other parameters, unfortunately, no
closed-form solutions exist. Therefore, we adopt gradient-
based optimization methods to maximize the likelihood. Let
L be the likelihood of the model. The gradients of model
parameters can be obtained as follows. For η0 and ηuser,
we have:

∂η
0
t (L) =

U
∑

u=1

d(u, t)−
U
∑

u=1

d(u)ρu,t

∂η
user
u,t (L) = d(u, t)− d(u)ρu,t (10)

where d(u, t) is the number of tweets produced by user u
are assigned to the region t and d(u) is the total number
of tweets generated by user u. For the global topic distri-
bution θ0, user topic distributions θuser and regional topic
distributions θgeo, we have:

∂θ
0
k(L) =

U
∑

u=1

d(u, k)−
U
∑

u=1

R
∑

t=1

d(u, t)αu,t,k (11)

∂θ
user
u,k (L) = d(u, k)−

R
∑

t=1

d(u, t)αu,t,k (12)

∂θ
geo
t,k (L) =

U
∑

u=1

d(u, t, k)−
U
∑

u=1

d(u, t)αu,t,k (13)

where d(u, k) is the number of tweets produced by user u
assigned to the topic k and d(u, t, k) is the number of tweets
written by the user u in the region t assigned to the topic k.
For the global language model φ0, regional language models
φgeo and topical language models Π, we have:

∂φ
0
v(L) =

R
∑

t=1

n(t, v)−
R
∑

t=1

K
∑

k=1

n(t, k)βt,k,v (14)

∂φ
geo
t,v (L) = n(t, v)−

K
∑

k=1

n(t, k)βt,k,v (15)

∂Πk,v(L) =

R
∑

t=1

n(t, k, v)−
R
∑

t=1

n(t, k)βt,k,v (16)

where n(d, v) is the number of times term v appearing in
tweet d, n(t, k) is the number of terms associated to the topic
k in region t, n(t, v) is the number of times term v appearing
region t, n(t, k, v) is the number of terms v assigned to the
topic k appearing in the region t. These gradients have an
intuitive interpretation as the difference of the true counts
and their expected counts.

3.5 Geograpical Location Modeling
In the previous section, we use a point estimate of re-

gional means and covariance matrices in each M-step based
on samples obtained in the E-step. However, this process is
not very stable since only one sample of regional assignments



for each tweet is taken into account. One way to reduce this
instability would be to draw multiple samples per tweet and
to use a set of samples for estimation purposes. However,
this would introduce an inner loop in the E-step for each
tweet, thus significantly increasing sampling time.

Instead, we apply a Bayesian treatment to mean vectors
and covariance matrices and do not estimate them explic-
itly in M-step. The standard practice in multivariate nor-
mal distribution is to endow them with a set of conjugate
parameters, that is, with a Gauss-Wishart prior. This is
computationally expensive.

A cheaper (and equally reliable) approach is to place a
non-informative Jeffrey’s prior over the values of the mean
parameters, that is

µ ∼ Unif.

and a Jeffrey’s distribution over the values of the covariance
matrices to penalize large covariance matrices:

P (Σ) ∝ |Σ|−(3/2)
.

The same treatment is also used in [1, 8]. By imposing these
prior distributions, we can effectively integrate out µ and Σ,
resulting in a collapsed Gibbs sampler for locations, similar
to [9]. More specifically, we sample r from the following
distribution:

r ∼ T

(

N̄r, Sr
(n+ 1)

n(n− 2)
, n− 2

)

ρu,jαu,j,k

Nd
∏

i=1

βj,k,v (17)

Here T (a, b, n) is a multivariate Student-T distribution with
the location as a, the scale matrix as b and n degree of
freedom. Here, N̄r and Sr are sample mean and sample
respectively, as defined in (8). Sampling r does not require
us to re-estimate the values of mean and covariance matrix
in the M-step and hence reduce the computation cost of the
inference algorithm.

3.6 Implementation Notes
Several implementation notes warrant a detailed discus-

sion here. Firstly, the bottleneck of sampling z is to evaluate
many exponential functions as we expand Equation (7):

exp
(

θ0
k + θuseru,k + θ

geo
r,k

)

∑K
i=1 exp

(

θ0
i + θuseru,i + θ

geo
r,i

)

Nd
∏

i=1

exp
(

φ0
wi

+ φ
geo
r,wi

+Πk,wi

)

∑V
j=1 exp

(

φ0
j + φ

geo
r,j +Πk,j

)

The key to speed up the sampling procedure here is to reduce
the number of exponential functions to be evaluated. We re-
write the above equation as:

exp
[

θ
0
k + θ

user
u,k + θ

geo
r,k +

Nd
∑

i=1

(

φ
0
wi

+φ
geo
r,wi

+Πk,wi

)

− log

K
∑

i=1

exp
(

θ
0
i + θ

user
u,i + θ

geo
r,i

)

−Nd log

V
∑

j=1

exp
(

φ
0
j + φ

geo
r,j +Πk,j

)]

(18)

The logarithm of a sum of components can be efficiently
computed as log

∑

i exp(xi) = m+log[
∑

i exp(xi−m)] where
m is the maximum element in xi and can be cached since
they are constant in the E-step. Therefore, we only need to
calculate one exponential function for sampling z per tweet,
which significantly reduces the computational cost.

The second technique to speed up the inference algorithm
is to efficiently calculate gradients (14), (11), and (10). A
näıve calculation would lead to a very inefficient implemen-
tation. Taking the gradients of Π as an example, the ex-
panded form of gradients is as follows:

R
∑

t=1

n(t, k, v)−
R
∑

t=1

n(t, k)
exp(φ0

v + φ
geo
t,v +Πk,v)

∑V
i=1 exp(φ

0
i + φ

geo
t,i +Πk,i)

where the second part of the gradients, which is the expected
counts, requires the calculation for all the possible combi-
nations of topics and latent regions. However, because of
sparse modeling in Section (3.3), we can effectively calcu-
late the second parts by utilizing the sparsity of the model
as follows:

n(k, v)− exp(φ0
v)

R
∑

t=1

n(t, k)
1

Ct,k

−
R
∑

t=1

n(t, k)
1

Ct,k
exp(φ0

v)
[

exp(φ
geo
t,v )− 1)

]

−
R
∑

t=1

n(t, k)
1

Ct,k
exp(φ0

v) exp(φ
geo
t,v )

[

exp(Πk,v)− 1
]

where Ct,k =
∑V

i=1 exp(φ
0
i + φ

geo
t,i + Πk,i). The gradients

are decomposed into three parts. The first part is a global
term for all terms and therefore can be calculated once and
cached. The second part only exists for those φ

geo
t,v are not

zero. Similarly, the third part is non-zero only when both
φ
geo
t,v and Πk,v are not zero. Thus, if we employ a reasonable

L1 regularizer on both regional and topical language models,
most of those elements would be driven to zero and therefore
the second and third parts can be very efficiently calculated.
Similar decomposition also works for other gradients.

The last but not the least important technique is how to
initialize the model. Different initialization values of param-
eters can lead to significantly different results. Here, we use
the following initialization steps. Again, taking language
models as an example, we firstly initialize φ0 as log frequen-
cies of terms in the whole corpus and φgeor as log frequencies
of terms in region r minus the same term in φ0. Then, we
initialize Π as all zero and optimize over Π by fixing φ0

and φgeo. Similar strategy can be also applied to η and θ

values. For latent regions, we initialize them by a K-Means
algorithm.

4. EXPERIMENTS
In this section, we demonstrate the effectiveness of our

model on real-world datasets. We compare our model with
several state-of-the-art models. Our dataset is a sample of
the Twitter Firehose stream1, issued to Yahoo!. In Twitter,
two types of location information are associated to tweets:
1) geographical locations and 2) Twitter Places2. For geo-
graphical locations, each tweet is associated to a real-valued
latitude and longitude vector. For Twitter Places, we con-
vert them into real-valued latitudes and longitudes. After
doing this, we remove all tweets without locations. We also
preprocess all the remaining tweets by detecting whether

1https://dev.twitter.com/docs/streaming-api/methods
2http://blog.twitter.com/2010/06/twitter-places-more-
context-for-your.html



0 200 400 600 800 1000 1200 1400 1600 1800 2000
120

125

130

135

140

145

150

155

160

The number of latent regions

A
ve

ra
ge

 E
rr

or
 (

km
s)

 

 

Baseline Topics Topics + Region Full Model (w/o Bayesian)

Figure 2: The comparison of location prediction on
Yahoo! dataset. The X-axis is the number of latent
regions and Y-axis is the average Euclidean distance
in kilometers (kms) between predicted locations and
true locations.

a tweet is in English. This step is done by a dictionary
based method. We randomly sample 10,000 users from the
dataset, with their full set of tweets between January 2011
and May 2011, resulting 573,203 distinct tweets. The size
of the dataset is significantly larger than the ones used in
some similar studies (e.g, [7, 17]).

4.1 Location Prediction
In addition to demonstrating that our model can discover

interesting topics and users’ geographical patterns, we also
wish to show that our model can be used in a quantitative
fashion. Here, we focus on the task of location prediction
for tweets. Differing from the work done by Eisenstein et
al. [7] where their aim is to predict the location for a user
and the way they defined the location of a user may not be
very appropriate (the first location shown in their dataset),
our goal is to predict the location for each new tweet, based
on the words used in the tweet and its authors’ information.
Based on our statistics, only 1% ∼ 2% of tweets have either
geographical locations (including Twitter Places) explicitly
attached, meaning that we cannot easily locate a majority
of tweets. However, it has been shown (e.g., [5, 4]) that ge-
ographical locations can be used to predict users’ behaviors
and uncover users’ interests and therefore it is potentially
invaluable for many perspectives, such as behavior targeting
and online advertisements. In addition to our dataset,
we also apply our model to an open source datasest3, de-
noted as CMU dataset, and compare the best reported results.

Evaluation Metric: For each new tweet, we predict
its location as l̂d. We calculate the Euclidean distance
between predicted value and the true location and average
them over the whole test set 1

N

∑

Dis(̂ld, ld) where Dis(a, b)
is the Euclidean distance function and N is the total
number of tweets in the test set.

Baselines: The following methods are used as base-
lines in our dataset to compare with the full model
proposed in Section (3).

• Yin et al. [17]: Their method is essentially to have
a global set of topics shared across all latent regions.
There is no regional language models in the model.

3http://www.ark.cs.cmu.edu/GeoText/
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Figure 3: The comparison of non-Bayesian models
and Bayesian models on the task of location predic-
tion on Yahoo! dataset. The X-axis is the number of
latent regions and Y-axis is the average Euclidean
distance in kilometers (kms) between predicted lo-
cations and true locations.

Besides, no user level preferences are learned in the
model. The prediction is done by two steps: 1) choos-
ing the region index that can maximize the test tweet
likelihood, and 2) use the mean location of the region
as the predicted location. We re-implemented their
method in our work. This method is denoted as Base-
line.

• Our model without φgeo, ηuser and θuser: This is es-
sentially very similar to Baseline. The only difference
is that Baseline is under PLSA formalism and our
model is in SAGE formalism. We denote this method
as Topics.

• Our model without ηuser and θuser: This variation
of our model can learn regional language models while
user preferences are still missing here. We denote this
method as Topics + Region.

For the comparison on the CMU dataset, we compare with:

• Eisenstein et al. [7]: The model is to learn a base topic
matrix that can be shared across all latent regions
and a different topic matrix as the regional variation
for each latent region. No user level preferences are
learned in the model. The best reported results are
used in the experiments.

• Eisenstein et al. [6]: The original SAGE paper. The best
reported results are used in the experiments.

• Wing and Baldridge [16]: Their method is essentially
to learn regional language models per explicit regions.
The best reported results are used in the experiments.

For our model, the prediction is conducted in two steps.
Firstly, a region index that can maximize the likelihood
of test tweet is chosen. Next, the mean location of the
corresponding region is used as the predicted location.For
Bayesian treatment of geographical modeling discussed in
Section (3.5), the mean vectors are estimated after the
whole inference algorithm finishes.

Experimental Results: Firstly, we show the basic
comparison between our model and other baselines dis-
cussed above on the Yahoo! dataset. The results are shown
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Figure 4: The comparison of models with different
number of topics by fixing the number of latent re-
gions (as 400) on Yahoo! dataset. The X-axis is the
number of topics and Y-axis is the average Euclidean
distance in kilometers (kms) between predicted lo-
cations and true locations.

in Figure (2). In this experiment, we fix the number of
topics to 50 for all models. For all models, we adopt a
five-fold cross validation setting. The numbers reported
here are averaged across different folds. One major impres-
sion is that the average error decreases as the number of
latent regions increases, although it becomes flat after 500
latent regions. This makes sense because we predict the
locations based on the mean locations of latent regions.
Therefore, the more regions the model has, the more flexible
the prediction would be. As we discussed above, Topics

method is very similar to Baseline method and therefore,
not very surprisingly, the performance of these two models
is approximately the same. For Topics + Region model,
the performance is significantly better over Baseline model
and Topics model. The main reason might be that regional
language models learn special terms for different regions
and therefore these terms become discriminative when we
perform location predictions. Moreover, our sparse mod-
eling approach also contributes to learned discriminative
terms in regional language models. By incorporating user
regional preferences (ηuser), our full model performs the
best on the Yahoo! dataset. This partially validates that
users might have stable mobility patterns in their usage of
micro-blogging environments and therefore we can learn
this pattern through their historical content. Indeed, Cho et
al. [5] found that users who frequently use location sharing
services demonstrate surprisingly stable patterns and they
successfully used a two-component Gaussian mixture model
to predict users’ locations in the future. Note that the full
model used in this experiment is the one without Bayesian
geographical modeling that is discussed in Section (3.5).

The next set of experiments is to show whether the
Bayesian treatment of geographical modeling can lead to
additional improvements of predication performance. As
we previously discussed, non-Bayesian modeling in locations
may lead to unstable results. The experimental setting fol-
lows the one used above and results are shown in Figure
(3). Two observations can be made from the figure. Firstly,
all models with Bayesian modeling lead to significantly im-
provements over their non-Bayesian counterparts. The sec-
ond observation is that, although Bayesian modeling can
improve the performance, major improvements still comes
from whether certain components are “on” or “off”. In short,
Bayesian modeling in locations enjoys better predictive per-
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Figure 5: The comparison of models with randomly
selected users on Yahoo! dataset. The X-axis is the
number of latent regions and Y-axis is the average
Euclidean distance in kilometers (kms) between pre-
dicted locations and true locations.

formance and a more efficient inference algorithm, as dis-
cussed in previous sections.

All previous experiments are the ones with fixed topics
and different latent regions. Here we show how the predic-
tive performance varies for different number of topics. The
basic setting remains the same as the previous two sets of
experiments and the results are shown in Figure (4). The
main observation is that the performance does not change
too much as the number of topics varies. As we mentioned
before, all these models make predictions based on the mean
vectors of latent regions. Therefore, a fixed number of re-
gions will limit the predictive power of these models and
hence the performance is sort of bounded in a range. In
other words, enlarging the number of topics does not give
models the flexibility to learn regions well.

Another interesting experiment is not to randomly sam-
ple tweets but randomly sample users. In this setting, all
users in the test set are never shown in the training set
and therefore we do not have sufficient user preference data.
This setting might be more realistic in Twitter because the
majority of users never use geo-related features and hence
it is highly likely that some users will adopt this feature
in the future. In order to effectively predict locations, we
use the following strategy to learn a “prior” distribution for
users. Taking ηuser as an example, since the test user is
not in our training set, we optimize over ηuser by fixing all
other parameters on the fly. Therefore, the obtained val-
ues for this user is essentially the prior regional distribution
for this user, without any tweets observed. After having
this prior distribution, we can effectively predict locations
as usual. We do this optimization for users on the fly for
all other user-related parameters. The results are shown in
Figure (5). The main observation from the figure is that the
performance from all models is significantly worse than the
experiments with randomly selected tweets. This partially
validates that all these models suffer from certain difficulties
for “new” users and “new” content. However, the relative
improvement of performance remains the same as previous
experiments, suggesting that our model can learn reason-
able prior distributions for users, in order to achieve better
predictive performance.

For the CMU dataset, we download their dataset and run
our model on it. Note that previous models (e.g., [7, 16]) are
designed to predict the locations for users. In our case, we
can do finer grained predictions on tweet level. To make fair



# of latent regions [[7]] [[16]] [[6]] Topics Topics + Region Full Model

10 494 479 501 540.60 481.58 449.45
20 494 479 501 522.18 446.03 420.83
40 494 479 501 513.06 414.95 395.13
60 494 479 501 507.37 410.09 380.04
80 494 479 501 499.42 408.38 374.01
100 494 479 501 498.94 407.78 372.99

Table 2: Comparison of models on CMU dataset. All numbers are Kilometers. For [7, 16, 6], the median number
reported in the paper is used. We do not re-run their models and only report numbers from corresponding
papers.

comparisons, two strategies can be applied here: 1) obtain
the predicted location for each tweet and take the mean lo-
cations over them and 2) obtain the dominant region index
for tweets by the same user and use the mean value for it
as the prediction. In our experiments, we have tried both
strategies and found no significant difference between them.
Therefore, we only report the results from the first strat-
egy. The results are shown in Table (2). Firstly, we see that
our full model outperforms all previous models significantly.
In addition, as the number of latent regions increases, the
predictive performance increases, which also validates the
results in our Yahoo! dataset. Here is some analysis why
our model outperforms others. For [7] and [6], they used a
topic-variation matrix per region, which might be too ex-
pensive to be applied over a large number of regions while
the authors in those papers found that their model peaks
at around 50 regions and 10 topics and the predictive per-
formance deteriorates otherwise for excessive number of pa-
rameters, resulting in over-fitting. In our case, we use global
topics and background topics to factor out common words.
In addition, we use two signals: regional topic distribution
and regional word unigrams. For [7, 6], their model has a
single location for all tweets per user. On the contrary, our
model assumes that each user has a distribution over regions
and each tweet is associated with a region, thus we can ac-
commodate user movements. Also, their models used a two-
stage training which does not enable the language model to
influence how many regions are needed. However, we use
a joint training procedure for both regions and topics and
we re-sample the user regions in our training phase where
their models assume that regions assignments are given at
the first place.

4.2 Qualitative Study
In this section, we take one run of our full model on Ya-

hoo! dataset as an example to demonstrate what kinds of
topics can be obtained. Firstly, we show some samples of
regional language models. As we see in the previous section,
these language models play a vital role in location predic-
tions. Since in our model, regions are latent variables and
do not correspond to cities or regions in the real-world. It
might be difficult to demonstrate topics. Here, we assign
the mean vectors of latent regions to nearest existing cities
and manually pick 5 cities as an example, shown in Table
(3). Terms are the ones with largest magnitudes in φgeo.
It is very interesting to see that most top ranked terms are
actually the name of these locations. Remember that our
method is fully unsupervised. In addition, we can see that
top ranked terms in different regions vary significantly. An-
other interesting observation is that users tend to tweet with
their locations when they are in airports. This can be seen

Entertainments

lady bieber album music beats artist video listen
itunes apple produced movies #bieber lol new songs
Sports

yankees match nba football giants wow win winner game
weekend horse #nba
Politics

obama election middle east china uprising egypt russian
tunisia #egypt afghanistan people eu

Table 4: Examples of Π, global topic matrix. The
terms are top ranked terms in each language model.

in region “United States->California->San Francisco” and
“United Kingdom->England->London”. In addition to ge-
ographical language models, we also show some examples
from the global topic matrix Π. These language models are
designed so that broader topics will be captured here. The
examples are shown in Table (4). Again, these topics are
manually picked and the “title” of these topics is assigned
by the authors of the paper since these topics are learned
without any explicit labels. We can see that these topics
are relatively broad, compared to regional language models
and widely discussed across regions. Some topics might have
captured recent unrest in the Middle East.

5. CONCLUSIONS
In this paper, we address the problem of modeling geo-

graphical topical patterns on Twitter by introducing a novel
sparse generative model, which utilizes both statistical topic
models and sparse coding techniques to provide a principled
method for uncovering different language patterns and com-
mon interests shared across the world. Our approach is vi-
tal for applications such as behavior targeting, user profiling,
content recommendation and topic tracking and the method
can be easily extended in a number of ways. We show that
interesting topics can be identified by the model and we
demonstrate its effectiveness on the task of predicting loca-
tions of new messages and outperform non-trivial baselines.
Main contributions of this work include a) a sparse addi-
tive model of content and locations that incorporate mul-
tiple facets of micro-blogging environments without switch
variables, b) sparse coding techniques and Bayesian treat-
ments are smoothly embedded in our modeling, resulting
in an efficient and effective implementation and c) outper-
forms several state-of-the-art algorithms in the task of loca-
tion predictions and demonstrate interesting patterns from
real-world datasets. For future work, we wish to model hu-
man mobility explicitly by introducing user level regional



Location with Top Ranked Terms

United States->New York->Brooklyn

brooklyn ave flatbush avenue mta prospect 5th #brooklyn spotlight carroll bushwick museum broadway madison
vanderbilt coney slope eastern subway new york pkwy #viernesnayobon #mets otsego greenwich starbucks

United States->California->San Francisco

sfo francisco san airport international millbrae terminal flight burlingame bart mateo boarding bayshore telecommute
landed heading bay airlines united bound flying #sfo camino groupon caltrain moon tsa baggage california engineer valley

United States->Pennsylvania->Philadelphia

philadelphia #philadelphia phl #jobs market others #job street philly walnut septa chestnut the cherry
sansom arch spruce citizens locust btw temple pennsylvania rittenhouse passyunk bitlyetq7a6 bookrenters pike international

United Kingdom->England->London

winds lhr hounslow terminal the cloudy mph ickenham bath heathrow temperature airport car only airways uxbridge sun
splendid fair london british lounge tothers harmondsworth speedbird whens for stars day flight dominos navigation brunel

Australia->New South Wales->Sydney

sydney #sydney bondi george street mascot domestic syd surry station cnr platforms harbour darlinghurst qantas hoteloxford
eddy haymarket terminal wales australia chalmers uts pitt #marketing junction darling centre #citijobs citigroup druitt

Table 3: Examples of φgeo, geographical language models. The terms are top ranked terms in each language
model.

components. In addition, temporal factors should also be
considered for the task of location prediction.
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