
Discovering Heuristic Strategy for
Solving Scheduling Problems

Rasaiah I~oganantharaj
Center for Advanced Computer Studies

USL, Lafayette, LA 70504

rasaiah@cacs.usl.edu

Abstract

Optimally solving a scheduling problem is computationally
intractable, hence varieties of techniques and methods have
been explored to obtain sub-optimal solutions to such
problems. In this paper we introduce a technique that
effectively combines appropriate heuristics so as to find a
quality solution when used with a hill climbing algorithm.
We will demonstrate the proposed approach by applying it
to solve some single machine scheduling problems. We
compare the quality of the solutions with the ones obtained
by using randomized techniques.

1. Introduction

Scheduling of tasks invoh’es allocating time slot t,) each
task while satist~,ing their resource requirements and
temporal constraints, such as, predecessor successor
relationships. Such assignments lead to feasible schedules.
An optimal schedule is a t~.asible schedule that satisfies the
given objective function. Finding an optimal solution to
many scheduling problems is computationally intractable,
hence sub optimal solutions are being sought. There are
two major approaches to finding sub-optimal solutions to
scheduling problem: applying heuristics, or applying
randomized techniques, which include simulated annealing
and genetic algorithm. In this paper we focus on
discovering heuristic .strategy. which is a weighted average
o[" some heuristic parameters, to solve certain class of
scheduling problem.

A solution to a scheduling problem can be modeled as a
heuristically guided search of a path from the initial node
to a goal node. The path ti’om the initial to the goal node
represents a feasible solution. From each node of the
search space, there can be multiple branches in the
exploration and the het,ristic values help to select the most
promising branch that leads to the next node. [’here are
t~,o search methods: local and global. While a global
search method, such as A* is guaranteed to obtain the
optimal solution when it is combined with permissible
heuristics, the search space Ibr such method grows
exponentially. On the other hand, local search methods,

Copyright O 1998, American Association for Artificial Intelligerce (~.aaai.org). All dghts reserved.

such as hill climbing takes linear space, but do not
guarantee the optimal solution. The success of using hill
climbing method depends of the quality of heuristics
applied to guide the search, in this paper we learn such
useful heuristics anti compare the results with the one
obtained by applying randomized technique especially
genetic algorithm.

This paper is organized as following. We describc the
problem in section 2, and it is followed by an introduction
of genetic algorithm. In section 4 we describe our
approach to learning heuristic strategy. In section 5, we
apply the learning method to obtain sun-optimal solution
to some NP-hard single machine scheduling problem. The
paper is concluded with a summary and a discussion.

2. Description of problem

To study our technique, we consider conceptually simple
problem of scheduling a single machine. In a typical single
machine scheduling problem, jobs will be arriving at
different time, each job will be l:aving different duration,
and there will be a non zero preparation time to make the
appropriate changes in the machine configuration to make
it ready for the incoming job. Let us consider a simplified
version of the problem: All the jobs arrive at the same
time, and there is no preparation time.

We will use the following notation for the rest of this
paper.

Description Notation
duration of job k Dur(k)
completion time of job k Comp(k)
scheduled time/start time of job k Sch(k)
due date of job k Due(k)

Suppose fllere are N jobs and the objective Ihnction is to
minimize the average completion time.

average =)2, I.Sch (j) ÷ Dur(j))
completion time

68 Loganantharaj

From: Proceedings of the Eleventh International FLAIRS Conference. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Optimally achieving this objective function is polynomial;
when jobs are scheduled in the ascending order of their
duration. We will show that our method will discover the
strategy of favoring the shortest job in’st.

Not all the single machine scheduling problems can be
solved polynomially. C.onsider an objective function of
minimizing the total tardiness. A job is said to be tardy if it
is completed after its due date. The total tardiness is given
by Y.j max(0, (Sch (i) 4 Dur(j) - Due(i))) where
returns the maximum of a and h. If a job completes before
the due date we assume that there is no reward and the
penalty is zero. It has been shown [Du90] that even this
simplified scheduling problem is NP-hard.

We will be using genetic algorithm to learn the heuristic
strategy as well as to solve the same scheduling problem
tbr comparison of the results. We, therefore, introduce
genetic algorithm in the next section.

3. Introduction to Genetic Algorithm

A genetic algorithm [Davi87, Mich96] starts with an initial
population consisting of a set of chromosomes. Each
chromosome in the population corresponds to a feasible
solution of a problem that we are trying to solve. Each
c,~’omosome consists of a sequence of genes. Typically a
binary, string represents a gent, though other
representations are also possible. New solutions are created
from the population by selecting a pair of chromosome and
mating them or mutating a chromosome.

As the population grows with new offspring, the stronger
ones are kept while r~noving the weaker chromosomes. A
single or a multiple crossover operation performs a mating
of a pair of chromosomes. Linear interpolation between a
pair of chromosome is also used for producing offspring.
The ~rossover points are randomly selected. [st us
illustrate it with an example. Consider the pair of
chromosomes G,,, G~:, G,~, G14, Gts, Gib and G,,, G::, G:3,
(~,~, G_,.~, G:6. Suppose a single crossover takes place after
the second gene. The offspring are G,~, Gt:. G:~, G:4, G_-s,
G,e and G.,,, G::, Gt,, G~.4, G~5, Gtr. This is illustrated in
Figure i.

A double crossover operation after genes 2 and 4 on these
two chromosomes is illustrated in Figure 2.

A chromosome ofk gene is considered to be a point in a k-
dimeusional space. Mating of a pair of chromosome can be
considered as linear interpolation of these two points
corresponding to th~.se chromosomes. The gene j of the
offspring generated by linear interpolation of chromosome

I and 2 (of the above example) with distance d from the
first chromosome is given by Gj = G~j + d*(G2i- Gt~).

4. Our approach to discovering heuristic
strategy

Let us illustrate our approach with an example. Consider a
single machine scheduling problem with the objective of
minimizing the total completion time. That is, to minimize

Figure I

Figure 2
g~ (Sch (i) ÷ Dur(j)) / N. The objective thnction
dependent on the duration and the scheduled time, which
in turn dependent on the duration of the previously
scheduled jobs. Therefore, duration is the only independent
variable. The heuristic can be (1) favoring the shortest job,
(2) favoring the longest job, or (3) favoring
combination of both. Suppo~ the heuristic parameter h t
and h2 respectively refers to the shortest first and the
longest first. The weighted summation of the heuristics is
w~*h~ + w:*h,. We apply hill-climbing method with the
weighted summation of the heuristic. At each step of the
search, job with the highest combined heuristic value is
scheduled and the process continues until the entire jobs
are scheduled.

How do we discover the weights of the relevant heuristic
that find the best solution to a problem’? To discover the
appropriate weights wc apply genetic algorithm.

Evolutionary Computation 69

4.1 Chromosome

if we have k heuristics, we will have to discover k weights
(W,n for heuristic hm). We generate chromosome of length
k of which each gene corresponds to each weight. Each
gene’s value varies from 0 through 1. We randomly
generate a pool of chromosomes each of length k.

4.2 Fitness value

In our model, each gene of a chromosome corresponds to
Ihe weight of the corresponding heuristic parameter. For
each ~.hromosome, we apply the weights and obtain the
corresponding schedule. The objective function is
evaluated tbr each schedule and it becomes the fitness
value of the chromosome. 111e best chromosome is the one
that associates with tile lowest fitness value.

4.3 Operations

Single crossover operation or linear interpolation (we
provide equal chances) creates the oft~pring. Further,
mutating randomly selected gene modifies a chromosome.
The percentage of mutation is controlled by a parameter
(in our experiment we use 10%).

4.4 Fine Tuning

’1’o allow the possibility of one heuristic vale to dominate
the other;, we generate the first k chromosome each has
zero ~eights except for one position, say m, that
corret.pond to heuristic m. For example, the chromosome
000100 corresponds to the one with m-4 and k=6.

4.5 Discovering Strategy

After generating the initial chromosome and evaluating
their fitness value, the convergence phase is started. After
wc generated offspring of four times the mating pool size,
the mating pool is updated with the best of the total
population. The generation is continued until there i,~ no
improvement in the best chromosome. When the algorithm
converged, the best chromosome has the best weights to
combine the heuristics. This is how a heuristic strategy is
discovered.

5. Applications

[x’t u.’; apply this lechnique to discover the strategy tbr
single machine scheduling problem with the objective
function of minimizing the average completion time. As
we have discussed before, there are two possible heuristic

parameters: shortest job and longest job. The normalized
values of the shortest and the longest jobs are obtained as
in table 1, where MaxD and MinD respectively reefers to
maximum and the minimum duration of the jobs of the
training set. We randomly generated a training .set of
arbitrary duration. A portion of the training set is given in
the following table.

Jobs Duration Shortest Longest
normalized Normalized

! 20 0.5 0.5
2 15 0.75 0.25
3 25 0.25 0.75

In the complete table, the maximum and the minimum
duration of the jobs are 30 and 10 units respectively. We
have applied the techniques to learn the strategy to solve
the problem. The algorithm converged with the best
chromosome of i 0 indicating that favoring the shortest job
is the best strategy in minimizing the total summation of
the completion time. This experiment is repeated for jobs
ranging from 10 to 100. We consistently obtained the same
result confirming that the shortest job first achieves the
minimal average waiting time as we have expected.

Let us apply the same technique to learn the strategy for
minimizing the tardiness. Since there is no polynomial
solution to solve this problem optimally, we have to
compare the results with randomized technique to quantify
the quality of the result. We have generated a set of jobs
and their duration and due dates randomly. The objective
function is to minimize the total tardiness, which is given
by g.i max(0, (Seh (j) * o) - Due(j)). A c areful
examination revels that the objective function is dependent
on the duration of the jobs and their due dates. The
heuristics are, therefore, longest and the shortest jobs and
the due dates.]’he data we used for training is given in
Table I. Shortest and the longest jobs are normalized as
before. Similarly, the shortest and the longest due dates are
defined as

shortest(k) = 1 - (Dur(k)-MinD)/(MaxD -MinD),

longest(k) :1 - (MaxD-Dur(k))/(MaxI)-MinD).

Where, MinDu and MaxDu are the minimum and the
maximum due dates.

Let h~, h.,, h.~ and h4 respectively represent the normalized
attributes shorter duration, longer duration, shorter due
dates and longer due dates.

70 Loganantharaj

After convergence, we got the weight vector for the
training set as [0.93, 0. i 3, 0.93, 0.08]. We ran the learning
algorithm for randomly generated data set for jobs ranging
from l0 through 90. The weight vector changes with the
data set, but it lies closer to the vector [I, 0,1,0].

i____J°bsI Duration i Due date
/

i
10 33
12 41

3 13 59
4 15 103
5 11 95
6 12 32
7 12 15
8 11 19
9 12 33I

10 [18 40
I

Table 1

We use the weight vector [1,0.1,0] to schedule jobs m
minimize the total tardiness. That is, the priority for each
.lob is computed as the summation of the following
parameters: normalized shorter job and shorter duration.
The schedule is obtained by arranging the jobs in the
descending order of their priority. The total tardiness of
each schedule is computed. The qualities of the schedules
(total tardiness) are compared with the ones obtained
applying randomized technique. To get the best result from
the randomized scheduling algorithm, we applied random
key encoding [Norm94] and feature-based encoding
[Leon95]. We considered the fi.~llowing t~:atures of the job:
duration of a job, and the interval corresponding to the
difference between the due date and the duration. "[be
results art" shown in Table 2.

Jobs heuristic Randomized technique
random duration due

10 200 205 206 222
10 116 96 99 127
10 172 95 93 141
50 14,038 14,201 ~3,271 16,188
50 12,306 11,992 12,098 15,635
50 15,521 15,100 14,715 17.822
90 35,702 36,818 36,111 49,322
90 26300 30,688 31,178 42,148
90 20,564 30,564 30,610 44,097

¯ Fable 2

Each problem is generated randomly using the parameters
minimum and maximum duration of jobs, and the
maximum due dates. Feasible due dates are those that are
grater than their the duration of jobs. The cost in the table
2 represents the total tardiness for each run using the given
encoding technique. There is no relation between different
rows and the result must be compared akmg each row.

6. Summary and Discussion

In this paper we have proposed a technique to discover
heuristic strategy that effectively solve problem. We have
demonstrated our strategy to a certain class of scheduling
problems. We applied to a single machine scheduling
problem with two different objective functions. In the first
instance, the objective function is to minimize the average
completion time of jobs. This problem has a polynomial
solution; scheduling the task in the ascending order of the
duration will achieve the optimal solution. Our training
program consistently generated the weight vector [1,0.0,0]

¯ for all the training data sets. The weight vector indicates
the highest priority to the shortest job, which is exactly the
same result as the one obtained by solving the problem
optimally.

When the objective function is to minimize the total
tardiness, optimally solving the problem is no longer
computationally tractable. We have applied our technique
to train and discover a strategy to solve the problem sub-
optimally. We found that the weight vector varies with
training date set, which did not surprise us since the
optimal solution of the problem is computationally
intractable. Even though the weight vector is dependent on
the training set, it varies around the vector [1,0,1.0]. We
use this vector to schedule tasks heuristically. Using the
specification of a problem with the job duration and due
dates, a schedule is created by arranging the jobs in the
descending order of their priorities. The priority of each
job is the summatiou of the normalized shorter duration
and the shorter due date. Sorting the jobs according to their
priority computationally dominates other aspects of
normalizing the duration and the due dates, therefore, the
computational time complexity of scheduling jobs is same
as that of a quick sort, which is O(N log(N)L Where N
the number of jobs. Front the results of Table 2 it is quite
clear that the quality of the schedule using heuristic
strategy is better or as good as the one obtained from using
randomized technique. The heuristic strategy performs
better in larger problem than in smaller problem.

The technique we described in this paper is quite general
and it can be applicable to any problem that can be
modeled as a search problem. As we have shown, for a

Evolutionary Computation 71

computationally intractable problem, the trained weight
vector varies with training instances. It is reasonable to get
a median value of the weight vector and apply it to solve
other problems. We have applied similar technique to
improve the pertbrmance of a constraint-based scheduler
[Loga97]. This method of learning and applying it to find a
solution can be combined with any time good algorithm
[Dean88, Gras96]. The initial solution can be the one using
the heuristic strategy and the subsequent solutions can be
obtained by refining the initial solution using the methods
and techniques amenable to any time good algorithm.

Acknowledgment: The author would like to thank
Thomas Bushrod of USL and Kelvin Manning of NASA,
KSC tbr helpful hints and suggestions during the early
phase of this research.

References

[Davig7] !... Davis, Genetic Algorithms aml Simulated
Annealing. Re,~e’arch Nbtes in ArHficial Intelligent t",
Morg,’m Kaufinann, 1987.

[Dean881 -1. Dean and M. Boddy. An Analysis of Time
Dependent Planning, in Proceedings o[..IAAl-88, 1998.

[Du90] J. Du and J. Y. Leung, Mimmiziag Total Tardines:.;
on One Machine is NP-Hard, in Mathemat&’s c~/"
OFemtions Research, Vol. 15, pages 483-495.

[Gras96] J. Grass and S. Zilbe~tein, Anytime Algorithm
Development Tool, in Sigart Bulletin, Voi. 7. No. 2, 1996.

[Leon95] V. J. Leon and R. Balakrishnan, Strength and
Adaptability of Problem-Space based Neighborhoods fore
Resource-constrained Scheduling, in OR Spektrum 17,
1995, Springer Verlag, pages i 73- i 82

[Loga97] R. Loganantharaj and T. Bushrod, Improving the
Efficiency of the Ground Processing Scheduling System,
in N,4SA/ASb, E Summer./hculty Research Report. 1997.

[Norrn94] B. A. Norman and J. C. Bean, Random Keys
Genetic Algorithm for .lob Shop Scheduling, in Technical
Report 94-5, Dept. of Industrial and Operations
Engineering, The University of Michigan, 1994

[Mich96] Z. Michalewicz. Genetic Algorithms + Data
Solzctures - Evolution Programs. Third. Revised and
l-xtended Edition, Springer 1996.

72 Loganantharaj

