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Abstract

Designers who are experts in a given design domain are well known to be able to Immediately focus on “good designs,”

suggesting that they may have learned additional constraints while exploring the design space based on some functional

aspects. These constraints, which are often implicit, result in a redefinition of the design space, and may be crucial for dis-

covering chunks or interrelations among the design variables. Here we propose a machine-learning approach for discover-

ing such constraints in supervised design tasks. We develop models for specifying design function in situations where the

design has a given structure or embodiment, in terms of a set of performance metrics that evaluate a given design. The func-

tionally feasible regions, which are those parts of the design space that demonstrate high levels of performance, can now be

learned using any general purpose function approximator. We demonstrate this process using examples from the design of

simple locking mechanisms, and as in human experience, we show that the quality of the constraints learned improves with

greater exposure in the design space. Next, we consider changing the embodiment and suggest that similar embodiments

may have similar abstractions. To explore convergence, we also investigate the variability in time and error rates where

the experiential patterns are significantly different. In the process, we also consider the situation where certain functionally

feasible regions may encode lower dimensional manifolds and how this may relate to cognitive chunking.
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1. INTRODUCTION

It is well known that a designer who is an expert in a particular

design domain is “confident of immediately choosing a good

[design] based on experience” (Gross, 1986) or that they “in-

tuitively know that [their] interpretation of the problem and

solution . . . is the correct one” (Lloyd & Scott, 1994). This

rapid convergence to good solutions is a common hallmark

of expertise across a large number of domains ranging from

chess, medicine, computer programming, and bridge to phy-

sics (Ericsson & Lehmann, 1996). Cognitive models of ex-

pertise suggest that these constraints among the parameters

of the task may result in a set of chunks, which provide a

more compact description of the problem (Chase & Simon,

1973; Gobet et al., 2001). For example, experienced padlock

designers may discover that to balance strength evenly, the

U-bolt diameter must increase roughly in proportion with

body size. Thus, these sets of parameters can be combined

in a single chunk, reducing the dimensionality of the design

space. Although this reduces search, it is more important

that it also enables a shorter description of the design problem

and a restructuring of the design representation (Campbell

et al., 2003; Bor & Owen, 2007).

In a cognitive sense, from chess players to human design-

ers, the chunking process is more often implicit than explicit.

Expert chess players often do not see the poorer moves (Go-

bet & Wood, 1999), so that only the better options appear to

be coded. Human designers in think-aloud sessions may use

terms like “looks right” or they may refer to past experience

merely by saying that it “worked before,” although the design

is obviously for a novel task (Ahmed et al., 2003). It has been

suggested that these experiences may also guide the forma-

tion of design knowledge and are related to schema emerg-

ence (Oxman, 2002; Janssen, 2006). At a later stage, some

of this knowledge may become explicit; but even in the early

stages, it may help the designer make quick conjectures that

she moves on to verify (Cross, 2004).

Constructing computational models for these cognitive

processes remains an important challenge for computational

design. In this paper, we suggest that these patterns may be

discovered using machine-learning techniques focusing on

the fact that “good” designs often lie along a limited range

in the design space, which we call the functionally feasible re-
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gion (FFR). As with chunking, the constraints underlying the

FFR may be implicit; that is, the designer may find it difficult

to articulate them or provide reasons for them (Schon, 1983).

Discovering and characterizing FFRs (the regions in the

design space that correspond to good designs), is a critical

first step in the discovery of chunks. This paper explores

this process, and investigates how the patterns underlying

the FFRs may be discovered, how these may be similar across

similar design experiences, and how the process of learning

these patterns may converge. After discovering the FFRs, it

may be seen that these “good solutions” actually occupy a

lower dimensional subspace, in which case they may be good

candidates for chunks. In the language of machine learning,

these chunks lie along a m-dimensional manifold that is a

subspace of the original N-dimensional design space, where

m� N; hence, any point in this m-dimensional space can be

described using m parameters, as opposed to the original N.

Sometimes, when the performance criteria lie over a nar-

row band, the FFR may be easily seen to yield a chunk. For

example, the padlock latch–bolt design fragment dealt with

in Section 3.1, has a two-dimensional design space w, t.

One may consider two performance metrics: strength of the

lock pstr measured as a maximal force and the ease of inser-

tion pease measured in terms of clearance. If the ease of inser-

tion has a tight range of acceptability, the “good designs” for

the latch–bolt fragment are seen to lie along a one-dimen-

sional line (a manifold) with invariant w – t (Fig. 1). This

line can be discovered through design exploration (Fig. 1b),

where the gray region represents the FFR generalized from

a set of feasible design instances (pluses) and black is the in-

feasible region generalized from failed instances (open boxes).

Here the FFR yields a lower dimensional manifold that is

easy to discover, but more generally, it may be nonlinear or

high dimensional and is a difficult problem on its own. How-

ever, the first step in the process is clearly to discover the pat-

tern inherent in the good designs, similar to what Oxman has

called a “perceptual act” operating on a visual memory of de-

signs in his model of design conceptualization (Fig. 2). In this

work, we consider the process of discovering such FFRs and

their implications, and do not consider the manifold learning

step required for discovering chunks per se.

The discovery of underlying patterns while executing de-

signs repeatedly is of value not only because one can quickly

find the good designs, but as an important cognitive discovery

at the core of design expertise. Quite often similar patternsmay

hold in other design situations with similar characteristics.

Sometimes the implicit pattern discovered may draw the de-

signer’s attention to those aspects of behavior, which may

help formulate an explicit awareness of certain interrelations,

what has been called ”situated invention” (Suwa et al., 2000).

However, this process of discovering implicit patterns de-

pends on the particular experimental history of the designer.

Differences in evaluating functions (e.g., subjectivity, as in

aesthetics) or differential explorations of the design space (ex-

perience in different classes of products) may lead to differ-

ences in learned patterns, which possibly constitutes one of

primary factors behind differentiations in design style.

The pattern underlying good functional performance is

usually discovered initially in well-defined problems spaces,

what Janssen (2006) calls niche environments. Here we also

limit ourselves to “familiar” classes of designs, similar to an

apprenticeship situation. The set of design variables, the

workings of the design, and ultimately a set of function evalu-

ation metrics are available to the learning system. However,

these evaluation functions are often complex and may require

intermediate computations [e.g., configuration space (C-

space) computations for mechanical devices as in the exam-

ples here]. Hence, identifying the subspace of good designs,

the key task in functional emergence, remains a difficult prob-

lem, and this is what we focus on here.

Fig. 1. Functionally feasible regions (FFRs) for a padlock design fragment. (a) 100 N, pstr , 1000 N and 3.5 mm, pease , 4.5 mm. (b)

Learning with 400 data points. The acceptable performance criteria have tight bounds on the ease of insertion. The functionally feasible

region is discovered as a thin elongated region in the design space. It may be viewed as a one-dimensional manifold in the two-dimensional

design space (w, t). This may lead to the discovery of a chunk relating w and t, say, w – t.
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Another key question for the emergent patterns or FFRs is

whether the constraints that are learned for one design gener-

alize to other similar design domains. In order to investigate

this question, we consider two locking mechanisms similar to

our main padlock example. We first consider a change in a so-

lution mechanism (embodiment), from a translational lock

(padlock) to a rotational lock (slotted wheel), and show that

for the latch–groove design fragment, the basic pattern of

FFRs remains similar (Section 4.1). Next, we consider a dif-

ferent design space, where an extra degree of freedom (DOF)

is added to the design (Section 4.2).We also find that for small

values of this new parameter, the behavior remains similar

to the earlier patterns. These initial explorations suggest that

there is a possibility that the patterns underlying these good

designs may apply to families of functional similarity, as op-

posed to the single embodiments on which they are learned.

Although these similarities are apparent, they indicate the

power of methods that can be deployed based on FFRs. How-

ever, the construction of computational formalisms for dis-

covering similarities is beyond the scope of this work.

Because the learning of patterns is based on randomly

drawn instances from the design space, a question may arise

about the stability of the learned pattern. Does the learned pat-

tern always converge to the same pattern? This question is ex-

plored empirically in Section 5. Next, we correlate our search

for patterns in the function space to the models of cognitive

design suggested by Schon, Oxman, and others.

1.1. Design space exploration, sketching, and

emergence

The human designer often uses sketching as the mechanism

of choice for his preliminary exploration of the design space,

which results in patterns of functional effectiveness. During

this process, various design choices are quickly evaluated

for functional feasibility, often using additional visual con-

structs that operate on the sketches themselves (Goel, 1995).

An early insight into this process by Schon (1983) suggests

that the designer shapes a situation, which then talks back.

By observing and evaluating this situation, often through an

external representation, the designer forms new appreciations

that further guide his decisions. This process has been investi-

gated qualitatively by Oxman (2002), who equates perceptual

exploration with recognition or reformulation of the cognitive

models relevant to the design (Fig. 2). This is a key insight

into the design process, but it is expressed rather imprecisely.

It is our goal in this work to suggest a computable model for

the first phases of this insight-generation process.

Recently, Janssen (2006) proposed that computer-aided

design (CAD) models may be able to learn designer precon-

ceptions through evolutionary design ideas. Our model goes

further and proposes a general machine learning model that

actually generates the first preconceptions: the functionally

emergent constraints on the design space. However, the terms

emergent and function have been used in many senses in the

design literature, and it is necessary to clarify the sense in

which we are using these next.

1.1.1. Three types of emergence

The term emergence has various uses in the design litera-

ture, usually involving some form of the exploration–abstrac-

tion process. We observe (at least) the three following usages:

1. Creative emergence:Adding newdimensions of explora-

tion, or expanding the design space. This is the result of

observations of certain possible configurations that

were not present in the original specification. A typical

example from Soufi and Edmonds (1996) is how a trian-

gular construction may be suggested while exploring a

space defined by the intersection of squares (Fig. 3). Rep-

resenting the new shapes require additional design vari-

ables to be introduced (Cagan & Agogino, 1991).

Fig. 2. Learning constraints through exploration. (a) Looking at designs one has evaluated is a recognition, resulting in an abstract pattern

(based on Schon, 1983; Oxman, 2002). The first step in this abstraction process is learning the functionally feasible region. (b) Through

design explorations, the initial design space Vs, bounded by a set of specification constraints fs, shrinks to an emergent design space Ve,

with the emergent functional constraint fe. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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2. Functional emergence: A shrinking or restructuring of

the design space based on a characterization of the space

of good designs may be an emergent pattern (Fig. 2b) or

an enabling prejudice or preconception (Janssen, 2006).

The functional constraints discovered may be implicit

(“similar stress worked for other turbine blades”;

Ahmed et al., 2003) or explicit (“A ticket office should

be close to an entrance”; Suwa & Tversky, 1997).

Where the functional constraint reflects a significant di-

mensionality reduction, the resulting abstraction may

get codified as chunks.

3. Symbol emergence: Some patterns arise repeatedly and

come into conscious awareness (are reified). Such pat-

terns may eventually acquire a label in linguistic con-

vention, in which case they become a symbol (Dabbeeru

& Mukerjee, 2010).

In this paper, we limit ourselves to the discovery of the pri-

mary form of functional emergence, the FFRs. Functional

emergence in this view involves the designer realizing that

most designs in the initial design specs are poor designs and

that the designs with superior performance lie in a restricted

region of this space. Thus, functional emergence results in

shrinking the design space to that region where high-perform-

ing solutions are seen to lie. Note that our investigation oper-

ates in an apprenticeship mode, and we do not consider

changes in the function space (i.e., the performance metrics

do not change) and we also do not enlarge the given design

specs. Thus, the aim is less ambitious than attempts such as

Poon and Maher (1996), who consider the simultaneous evo-

lution of both design space and the function space, requiring a

mechanism for abstract diverse functional specifications into

a compact genotype, and measures for evaluating the suitabil-

ity of the function metrics (selecting a problem space). Nor do

we attempt to discover similarities with known designs

(cases) in a design database (e.g., Yaner & Goel, 2008), in

which one assumes that certain symbolic mappings are al-

ready known that enable segmenting vector diagrams of a

design into constituent parts and determining the results of

compositions among these parts. As a simulation of a trainee

being told what to do by a master designer, our goals are more

modest; we merely wish to attempt to model the space of

well-performing designs, which may enable us to learn

some salient aspects of the design space such as how different

variables may have latent interrelations in order to arrive at

good designs. Our work proceeds in two steps. During the in-

itial learning process, it is perhaps appropriate to consider fa-

miliar design spaces, where the function space is stable and

well understood. In the second phase (Section 4) we consider

how these patterns are initially learned in a fixed setting and

how they may generalize to other, related task domains. The

objective here is to discover how good functional perfor-

mance may impose additional (emergent) constraints on the

design space. Before we proceed, however, it is necessary

for us to formally specify what we mean by “function.”

1.2. Function, performance, and embodiment

The term function is used in many senses by designers (Gero,

1990; Wolter & Chandrasekaran, 1991; Faltings, 1992;

Umeda & Tomiyama, 1997; Suwa et al., 2000). It is clearly

related to the user intent, often inchoate, and the designer’s

initial task is to understand its contours. Large problems may

be decomposed into some subtasks. At an early stage, several

solution mechanisms may be proposed, one of which is

adopted, what we call its embodiment. Once this is available,

the user may provide additional constraints on what it is that is

desired. Design is an ill-posed problem because the criteria

are not defined at the outset; these depend on the prejudices

brought to bear by the designer and on the solutions as they

are explored and are thus a part of the dynamics of design.

As the design progresses further, additional constraints be-

come clear. Thus, function is a role of the context in the de-

sign process, what has been referred to as “situatedness”

(Suwa et al., 2000; Gero & Kannengiesser, 2004): at each

stage of design, the meaning of function may be different.

We must distinguish two senses that are often conflated in

discussions of computable models of function. The first views

a set of functional needs as independent of embodiment [e.g.,

“provide illumination,” what Gero (1990) calls “function”].

The second considers how these functions are evaluated or

compared [e.g., “the light intensity variable in user’s room

must be above a certain lumens value” (Chandrasekaran,

2005), similar to what Gero calls expected behavior or Be].

In order to distinguish these more clearly, we use the term per-

formative behaviors for the former, which is the set of user

needs. These are the subset of any object’s behavior that is of

Fig. 3. Creative emergence (novel shapes). (a–c) The initial design space is

based on Boolean operations on two squares. However, while interacting

with these shapes, some other designs such as (d) may suggest themselves

(Soufi & Edmonds, 1996), which are representions that would require addi-

tional variables in the design space. Thus, creative emergence expands the

design space.
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interest to the user (e.g., torque, illumination), and they are gen-

eral characteristics without considering comparison or evalu-

ation.When we say that two design classes have the same func-

tion, we are interpreting function as performative behavior.

The second usage of function is evaluative; given a design

instance, this helps determine if it is satisfactory. This inter-

pretation is captured in what we call the performance metric,

whose construction is dependent on the type of embodiment.

Every performative behavior required of the design, is related

to a performative metric pi, which may be computed for any

design in the particular embodiment class. Different user

needs may result in different levels of satisfactory perfor-

mance, defined as a Boolean function on the set of perfor-

mance metrics, g(p1, p2, . . .), which must be true for the

design to be satisfactory. This acceptability condition (e.g.,

a range of acceptable strengths/light lumens) may also be ne-

gotiable, but here in this apprenticeship situation, we take it as

given.We note that, althoughwe use the termmetric and in the

examples below this function is always quantifiable, the pro-

cess we propose would also work if one had a relative mea-

sure or comparison that can order any pair of design instances.

Let us now also define what it means for the design prob-

lem to be familiar or well understood. First, we assume that

we know the solution mechanism to be used, which we call

its embodiment. Second, all designs in this familiar class

have the same set of independent design variables, constitut-

ing the design variable vector y. Third, and most signifi-

cantly, the designs in this class have the same set of perfor-

mance metrics pi(y). This is because designs in the

embodiment class, or the embodiment part family (EPF), in-

stantiate the function in a similar manner. For example, for the

domain of locking devices, the padlock embodiment uses a

latch sliding into a slot on a U-bolt. For all padlock designs,

the performance metrics (e.g., evaluation of strength) would

involve the same function that is ultimately linked to its inde-

pendent design variables. As we will see in the examples be-

low, this may involve some complex operations, for example,

the constructionofC-spaces formechanical assemblies,which

may be possible only for the class of designs that share the fa-

miliar embodiment. To take another example, if the problem

is to provide light and air in an architectural space, the em-

bodiment chosen may be a window, and one may define

the amount of light or air in terms of the dimensions of the

window. Although the performance metrics are same, clearly

different designs may have differing acceptability criteria.

Next we define the notion of “design class” based on the

above notion of function.

1.3. Design process

In its broadest generality, design deals with all possible arti-

facts (Fig. 4, top level), at which point, “function” is at its

most vague. Next, we may consider designs that use similar

principles to serve similar functional needs, which constitute

the phenomenological design domain (PDD), for example,

arranging for light and air in an architectural space or restrict-

ing access to some interior space. There are many ways in

which these design goals may be specified and met. Within

a PDD, the designs that are evaluated in terms of the same

performative behaviors are what we call the functional part

family (FPF). Thus, single-panel windows, multiple-panel

windows, possibly even rolling shutters, if evaluated using

similar performative behaviors, may belong to the same

FPF. However, some other structures, like fixed windows

(which do not have “letting in air” as a performative behavior)

would constitute a different FPF. Within a specific functional

class FPF1 the designs that meet a set of functions using the

same physical structures, so that the design variables map to

the performance metrics in the same way, constitute the EPF

(embodiment class).

The EPF is the niche class that we consider throughout this

paper. We also demonstrate how some of the patterns learned

on one EPF may be similar to those in other EPFs in the same

functional class (Section 4). However, we present a computa-

tional model for obtaining the FFRs only within an EPF, and

do not provide a process for the more difficult problem of

generalizing across EPFs.

For our example of locking devices, the phenomenological

level is based on some physical mechanism for restricting

access. Of these, some may share the same set of performative

behaviors (FPF). In Figure 4, FPF1 and FPF2 both involve keys

moving a latch in and out, except that in the latter the object that

will be constrained by the latch is external to the design object.

For FPF1 (padlocks, rotating barrel locks, etc.), shared perfor-

mance metrics may involve the maximum force it can resist

(strength), weight, ease of use, and so forth. In contrast, class

FPF2, which is intended to be fixed to something like a door

frame, the performative behavior may consider volume instead

of (or in addition to) weight; thus, the set of performative behav-

iors is different. The class of padlocks, which share the same

design structures, constitute an EPF within FPF1.

Each EPF is associated with a design space V, character-

ized by a n-tuple design vector y ¼ (x1, x2, . . . , xn) [ V,

where xi are the independent design variables or driving vari-

ables for the design. Any other variables needed for specify-

ing the final structure (dependent variables) are defined in

terms of these driving variables. At lower levels in the hierar-

chy there are fewer DOFs (i.e., number of design variables go

down), but the function becomes more crisply specified. At

the bottom of the hierarchy are specific design instances,

each of which is completely specified (0 DOF).

In this paper, we are given an EPF and will try to discover

patterns of functional feasibility in its design space. The range

of designs is initially given through a Boolean design speci-

fication function fs(y), and in Section 2 wewill see how tighter

constraints on this emerge after evaluating many designs for

their performance. Section 3 demonstrates this approach as

applied to our canonical example, the padlock. To investigate

how learning one FFR for a specific embodiment may help us

understand other similar designs, we consider two other de-

signs from the same FPF in Section 4. Finally, we consider

the question of convergence for the FFR in Section 5.
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2. IMPLICIT CONSTRAINT DISCOVERY

Since the origins of CAD, for example, in the very early ideas

of Ivan Sutherland (1963), there has been considerable em-

phasis on the process of discovering constraints in the design

space, often through computational imagery that simulates

the process of sketching (Gross et al., 1988). The idea of con-

straints on design parameters, originating in the work of Gos-

sard (Lin et al., 1981), revolutionized CAD by introducing the

notion of parametric modeling.

However, not much computational work has focused on

the task of discovering implicit constraints by exploring func-

tion in the design space. This is partly because of the diffi-

culty in understanding function. In this work, we only con-

sider design problems that are well understood, so that

function is definable and may be expressed in quantifiable

terms. We operate at the embodiment level and take functions

to be evaluatable in terms of performance metrics. For our ex-

ample class of locking devices (Fig. 5), possible performative

behaviors may be strength, weight, cost, and robustness

against jamming. For each such behavior of interest, we as-

sume that a performance metric is available, and we show

how exploration in this multifunction space results in identi-

fication of feasible subspaces (FFRs) in the design space.

2.1. Design space shrinking

Any general purpose function approximation algorithm can

be used to learn the implicit patterns that constrain the space

of “good designs.” Here we use multlayer perceptrons as our

vehicle for learning the FFRs. In practical systems, the result-

ing constraints may be of direct value to novice designers, es-

pecially in situations involving many choices (Gross, 1986).

This would constitute an important step if we are to enable

computers to have greater access to the range of creative im-

provements possible for the human designer (Janssen, 2006).

In a computational sense, the process of design, involving com-

putationally expensive analysis of aspects such as strength,

flow, or motion, can then be limited to a much smaller range.

It is more important, however, that it may be possible to dis-

cover abstractions in the design space leading to compact

representations.

Let Vs be the initial design space defined by the set of de-

sign specifications fs(y). Let fe(y) be an emergent constraint

that is learned through exploration, based on a function char-

acterized by a set of performance metrics pi(y). Whenever fe
is true, fs must also be true; otherwise, these designs y would

not have been explored at all. Now we provide the following

simple result, which motivates this work.

DEFINITION 1 (specification constraints): The specifica-

tion constraints fs( ) constrain the initial design space Vs,

which is defined as Vs ¼ {yj fs(y)}. B

DEFINITION 2 ( functional constraints): Acceptable

levels of performance are defined as a Boolean function of

the performance metrics g(py), for example, g(pi(y)) ¼

^i(pi(y) – mini) . 0. This ideal functional constraint g( )

is modeled by the emergent functional constraint fe(y) �
g(pi(y)), which is an approximation to g( ) learned over a

set of experienced design instances. B

Fig. 4. Hierarchy in design. Starting with all possible artifacts, the designs that share some principles of operation constitute the phenom-

enological design domain (PDD). Within these, those that have the same set of shared user needs constitute a functional part family (FPF).

Among these, designs with the same embodiment constitute the embodiment part family (EPF). [A color version of this figure can be

viewed online at journals.cambridge.org/aie]
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The functional constraint g( ) is trivial if it holds for all y[

Vs. For any nontrivial functional constraint g(pi(y)), there

exist some design instances y [ Vs, such that :g(pi(y)).

As experience increases (as more design instances are ex-

plored), fe( ) becomes increasingly precise in its approxima-

tion to g( ). In Section 5 we consider some measures for the

accuracy of this approximation.

DEFINITION 3 (FFRs): The ideal FFR is the constrained

design space Vi ¼ {yjg(pi(y))}. This ideal FFR Vi is ap-

proximated by the emergent FFR Ve ¼ {yj fe(y)}. B

THEOREM 1 (design space shrinking): A nontrivial func-

tional constraint g(pi(y)) narrows the design space from Vs

to Vi, where Vi , Vs. B

Proof: This follows from (9y){ fs(y) ^ :fe(y)}. B

BecauseVe is an approximation ofVi, it is also expected to

be narrower than Vs.

If one can obtain a measure for the cardinality of the de-

sign space, then one may also define the effectiveness of an

emergent constraint in terms of the degree of shrinking

kVek/kVsk. If this shrinking factor is observed to be high,

the designer’s conscious attention is drawn to it, and she

may explore the reasons for this behavior. This is possibly

one aspect of “interestingness” of the emergent relation.

Note that the set of performance metrics pi constitutes a

mapping from the design space to the performative behaviors.

The acceptable set of y, determined by g(pi(y)) is specified

based on user preferences, as encountered in the past (these

are given to us in the apprenticeship situation). The functions

pi(y) may be quite complex, for example, in products involv-

ing mechanical assemblies, the computation may involve rel-

ative motion of the subparts; these behaviors may be captured

using C-space. The learned emergent constraint fe(y) pro-

vides a more easily computed approximation.

We now demonstrate the process of computing the emerg-

ent design space (or the FFR) for several classes of locking

devices.

2.2. EPF: Locking devices

Let us consider the U-bolt and latch design fragment of a pad-

lock (Fig. 6). The design variables (i.e., the set of independent

variables that define a design instance) constitute the design

vector y, y¼ {w, t}. The dependent variables are the support-

ing length (l1) and the width of the latch (b). These are deter-

mined from the independent variables w, t as l1 ¼ 6 mm and

b ¼ 8 mm space of two-dimensional design vectors, as con-

strained by the design specifications, called specification con-

straints fs(y), is the initial design space Vs ¼ {yj fs(y)}.
Here the set of design variables, these constraints, and the

other design parameters (b, l1), are given to the system. The

design space is bounded by defining a set of specification

constraints fs(y) that must be true (here fs is taken to be Bool-

ean; one may consider these to be defined based on algebraic

functions, say, of the form p( ). min). Given this initial spec-

ification of the design space, and the performative metrics, our

task is to discover the emergent patterns in the design space

that determine good functional performance.

2.2.1. C-space

In designs such as padlocks that involve mechanical mo-

tion, relating functions to structure often involves abstractions

on the relativemotion of the subparts. C-space is awell-known

Fig. 5. Design change. Under the same functional part family (FPF), we consider design change at two levels: an embodiment change,

padlock to slotted wheel mechanism, and a design space expansion, adding an additional variable (e) to the slotted wheel mechanism.

Our objective is to see if the some aspects of the knowledge captured in the functionally feasible regions are similar in these new embodi-

ments. EPF, embodiment part family. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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approach for modeling such abstractions (Faltings, 1992).

However, computing the C-space for general motions re-

mains an intractable problem (Ji & Xiao, 2001). Further,

given a C-space, obtaining successful abstractions on it;

that is, segmenting the free space into behaviorally significant

regions; for example, using topologically different contact

types (Mukerjee & Bhatia, 1995), remains a considerable

challenge. Here, we assume that similar designs have been ex-

plored already, so that some understanding of the C-space and

its abstractions are available for the EPF under consideration,

such as the three locking device embodiments considered be-

low. Thus, a performance metric can be computed for any de-

sign instance in each EPF.

3. DISCOVERING PATTERNS OF FUNCTIONAL

FEASIBILITY

We adopt a supervised learning approach toward discovering

FFRs in the design space. The training set is the set of designs

explored in the design space: each visited design instance is

evaluated with the given performance metrics. Given a set

of acceptability criterion, design instances are categorized

as feasible or infeasible, and the learning system attempts to

construct a hypothesis for these accept/fail evaluations. We

have tested the system with several well-known pattern learn-

ing algorithms (Bishop, 2006): multilayer perceptron, radial

basis functions, and support vector machines. Within the

variability of the process, each of these converges to similar

output, especially where the training set is large. Here we pre-

sent the results from learning with the simplest multilayer

perceptron structure (essentially a steepest gradient learner),

where the input will be the design vector y, the oracle is the

acceptability condition g(pi), and the output is whether the

design instance is feasible. We use a single hidden layer with

50 neurons with a tan–sigmoid transfer function. The weights

and bias values in the backpropagation training are updated

according to the Levenberg–Marquardt optimization technique.

The commercial package Matlab has been used for this.

This process differs from the human designer’s function

emergence process in several significant aspects. For humans,

the process of arriving at the constraint operates at a more ab-

stract level than the design instance; each sketch, or imaged

design, is ambiguous and applies to a region in the design

space rather than a single design (Oxman, 2002). Thus, in hu-

mans this search rules out large subclasses of design at each

step; in the machine learning process adopted here, the ma-

chine can only evaluate designs at the design instance level,

so many more evaluation sequences are required. However,

it is posited that the human is able to operate at a more abstract

level because she already has many “preconceptions,” possi-

bly from exploring similar domains. It is these very precon-

ceptions that the machine is trying to learn at this point.

We demonstrate this process next with the example of the

padlock latch–bolt design fragment.

3.1. Padlock latch–bolt fragment example: Explicit

constraints

For discovering new functional constraints, we consider two

performative behaviors: ease of insertion and strength. We

consider how performance metrics for these may be specified

for several embodiments for locking devices, which are all in

the same FPF because they share the same set of performative

behaviors.

Considering the latch–bolt fragment of a padlock, we ob-

serve that ease of insertion will decrease as the clearance w

– t is reduced. Hence, we may define the performance metric

for ease of insertion (pease) as the clearance w – t. For the re-

gion of the design space where w , t, the latch cannot enter

into the slot, and the design is infeasible. Further, very low

values of w – t may also make it hard to insert. Acceptability

may then be defined as a minimum acceptable level of this

performance metric.

The strength of the lock depends on a number of factors,

such as the tensile strength of the U-bolt, the bending strength

of the latch, the groove on the U-bolt, the support for the latch

Fig. 6. The latch–bolt design fragment. (a, b) Padlock with U-bolt–latch mechanism. (c) Design variables exerting forces on latch: w, t;

design parameter variables: l1, supporting length; b, breadth of latch (into the page). [A color version of this figure can be viewed online at

journals.cambridge.org/aie]
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inside the lock, and so forth. Here we consider the latch as

supporting beam with roller support as shown in Figure 7a.

When the lock is hammered, an impact force is applied

near the left end of the latch shown as an upward arrow in

Figure 7c. Although the effect of this impact loading is

more difficult to model, a reasonable simplifying assumption

is that a lock that is strong in normal loading would also be

strong in impact loading. Thus, we seek to compute the max-

imum force F, by which the latch can withstand. The maximal

bending s ¼ 6Fl1/bt
2, and setting this equal to the yield

strength gives us the maximal sustainable F:

pstr ¼ sYbt
2=6l1;

where sY is the yield strength of the material (incorporating a

suitable factor of safety, etc.) and l1 and b are as defined above.

3.1.1. Discovery of functional feasible regions

for padlock

By applying different standards of acceptability for the per-

formance metrics to different instantiations in the design

space, one can obtain different bounds to the FFRs. The per-

formancemetric for ease of insertion is negative for the region

above the w ¼ t line, and this region is permanently infeasi-

ble. For increasing minimal acceptability levels of pease, the

feasibility region boundary shifts more to the right. Similarly,

for any given level of pstr, the material and other dimensions

remaining the same, the strength increases proportionally to

t2. Increasing acceptability levels for the combination of these

two performance metrics would result in the t-boundary shift-

ing upward and the w-boundary moving to the right. Figure 8

shows the ideal FFRs in the padlock design space for single or

combined performance metrics.

The ideal FFR is the region defined by the acceptability

condition g( ) defined on the performance metrics. Although

the functions given here are easy to compute, design evalu-

ation in practices is often a computationally expensive task.

In order to abstract patterns on these, it is therefore necessary

to evolve a separate abstraction mechanism, that trains on the

set of designs already explored (the design memory), to learn

a classifier that matches the underlying, ideal FFR as best as it

can. These learned FFRs, for differing levels of design expo-

sure, are shown in Figure 9, corresponding to the ideal FFRs

of Figure 8b and 8c. With very few instances, the system has

Fig. 7. The padlock example. (a) U-bolt moving vertically and latch horizontally and (b) the configuration space (X, Y ) for the latch–bolt

design fragment; the locking region is to the bottom left. (c) A, B, and C are three design instances in the w, t design space; their C-space

locking regions are shown. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 8. Ideal functionally feasible regions (FFRs) for latch–bolt fragment. (a) Ease of insertionmetricpease along a narrow range of 3.5 mm

,pease , 4.5 mm. (b) Combining both pease and pstr metrics at 3.5 mm, pease . 4.5 mm and 100 N,pstr , 1000 N. (c) The only lower

bounds for pease and pstr at pstr . 500 N and pease . 1 mm.
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very limited experience and the feasible regions learned at

this stage are ill defined. The learned pattern becomes clear

with more training points. In addition, we find that the process

takes longer to converge for narrow bands (as in Fig. 9c).

For the padlock, the evaluation computation involves two

simple closed-form equations; clearly, there are no limits to

the complexity of the performance metrics. For many prob-

lems, elaborate iterative computations such as finite element

method or finite difference computations over a mesh may

be needed. However, designers in such cases often invoke

“similar” tasks they have explored earlier, for example, “a

similar stress worked for other turbine blades” (Ahmed

et al., 2003). Thus, at least for some situations, there appears

to be a possibility of applying some of the learned abstrac-

tions to different but related embodiments. In the following

section we consider the slotted wheel mechanism and a var-

iant with a vertical shift in the latch axis and explore if there

may be some pattern similarity in these cases. However,

defining a computational procedure for identifying such sim-

ilarities is beyond the scope of the present work; we merely

indicate the possibility of transferring such mechanisms.

4. DESIGN CHANGE

In the previous section we have discovered some function-

based constraints on the design space in terms of the FFRs.

This was done for a specific embodiment (the latch–bolt

of padlocks), based on strength and ease of insertion as the

performative metrics. Next, we ask if it is possible that these

patterns, learned for one embodiment, may inform our per-

ception of such emergent constraints in related design prob-

lems. We explore this question in the context of two other

locking devices that have the same performative behaviors,

that is, they are in the same FPF. For this, we consider two

types of design change: embodiment change (Section 4.1)

and design space expansion (Section 4.2). In both situations,

a latch is inserted into a slot on a rotating barrel as opposed to

a translating U-bolt.

4.1. Design change 1: Slotted wheel mechanism

As a first step we consider a slotted wheel mechanism, with a

latch that enters a slot on a rotating barrel, thus preventing fur-

Fig. 9. Learning functionally feasible regions (FFRs): dependence design experience. Implicit constraints on “good designs” are learned

for (a) 25, (b) 100, and (c) 1000 design instances under the functional specifications 4.5 mm.pease . 3.5 mm and 1000 N.pstr . 100 N

(Fig. 8b). The decision surface learned after sufficient trials matches the ideal FFR very well, but convergence is slower for more complex

patterns. Similarly, other constraints are learned for (d) 25, (e) 100, and (f) 400 design instances for acceptability: pstr . 500 N andpease .

1 mm (ideal FFR, Fig. 8c).
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ther rotation. The design variables for this mechanism are

similar to the latch–bolt: slot width w and latch thickness t.

The other design parameters are the radius of the slotted

wheel (r) and the depth of the groove (bg). The performative

behaviors remain the same: strength and ease of insertion.

However, the kinematics is quite different (Fig. 10), and it be-

longs to a different EPF Figure 4. The latch moves horizon-

tally (X ) as in the padlock but the slotted wheel rotates

(DOF u). These two motion variables define the C-space

for this embodiment. In order to estimate the performance

metrics it is necessary to understand the motion space u, X

of these interacting objects. For this we compute the C-space

of the locking region (Fig. 11b) based on the contact state

graph as shown in Figure 11a. Here each node represents a

contact state between geometric elements (Fig. 10b). For ex-

ample, CS02 involves contacts between v4, ebc and e23, vb. A

contact state constrains the possible states of the contact pair,

removing 1 or 2 DOF. Thus, each CS is represented as a line

(–1 DOF) or point (–2 DOF) in the u, X C-space (Fig. 11b).

Note that, as in the padlock, the locking region in the C-space

is an indentation into the obstacle region, except that the deep

end of the indentation is flat for the padlock (Fig. 7b), and is a

shallow groove in the slotted wheel (Fig. 11b).

The strength performance metric for the slotted wheel is

derived from the maximal torque it can withstand, as opposed

to maximal force. The maximum torque t the latch can sup-

port is given as as pstr ¼ Fr (Fig. 10c), where F is the max-

imal force on the latch and r its moment arm. The maximal

sustainable F occurs when the bending stress 6Fl1/bt
2 equals

the yield strength pstr.

The ease of insertion is again determined by the clearance,

pease ¼ w – t. Based on these two performance metrics, the

ideal FFRs are shown in Figure 12.

Given different ranges of acceptability for the performance

metrics, we again obtain different FFRs. We observe that the

shape of the FFRs is similar to that for the padlock for similar

combinations of the performative behaviors, although the

embodiment was quite different; compare Figure 12a to

Figure 8c forpstr and Figure 12b to Figure 8a. The similarities

may be because the C-spaces of the two mechanisms remain

similar, although the embodiments are quite different.

Next, we investigate a second kind of design change. A

new dimension of variability in the design is introduced, re-

sulting in an additional design variable in the new embodi-

ment. If this new mechanism shares the same performative

behaviors, it will come under the same FPF as the padlock

and the slotted wheel. This is considered in the next section.

4.2. Design change 2: Slotted wheel with vertical shift

Consider that the latch of the slotted wheel has an additional

DOF e representing an upward shift in the latch axis

Fig. 10. The slotted wheel mechanism. (a) Design variables: degrees of freedom u, radius of the slotted wheel r, depth of the groove bg,

width w, horizontal movement X, and thickness of latch t. (b) Contact states can be described with sets of vertices and edges of the con-

tacting bodies. (c) The contact state here is the contact between the vertex v1 of the wheel and the edge of the latch eda. The strength pstr is

derived from themaximum torque t that it can withstand. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 11. (a) The contact state graph for computing (b) the configuration space. [A color version of this figure can be viewed online at

journals.cambridge.org/aie]
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(Fig. 13a). This results in a design spacew, t, e for this altered

slotted wheel mechanism. Now the translation axis of the

latch is above the slotted wheel center. This may arise as a re-

sult of some constraint in the installation, or as a result of

manufacturing inaccuracies. This shift will then affect the

quality of the penetration, and hence the strength. However,

the performative behaviors considered remain strength and

ease of locking, so that this constitutes a different EPF in

the same FPF.

With the addition of vertical shift e in the latch axis, the

motion behavior changes considerably. In the contact state

graph (Fig. 11a), a new contact state CS04a ¼ ke12, val is ob-

served (Fig. 13b); this causes the mechanism to experience

new set of behaviors at certain e values. The corresponding

C-space is shown in Figure 14 with contact state constraints

(for a detailed analysis, see Dabbeeru & Mukerjee, 2008).

Now we consider the mechanism for a fixed e¼ 0.3 for com-

puting the performative behaviors at a contact state CS04a.

As before, we consider the same performative behaviors

pstr and pease. For computing the performance metrics pstr

of the lock we consider the torque t, it can withstand that

can be determined by the contact force F and its moment

arm; this contact force is in turn limited by the latch strength.

The maximum force that can be supported by the latch is still

given by F ¼ sYbt
2/6l. The torque corresponding to this oc-

curs when the horizontal arm of the contact force moment is

given by d¼ (2e cosuþ t cosu –w)/2sinu, and u is the angle at

which this penetration is achieved. The corresponding maxi-

mal torque is then given by t, –F cosu d – F sinu (eþ (t/2)).

The presence of shift e affects the penetration depth and

hence the FFRs (Fig. 15a) would emerge differently for the

same range ofpstr, and similar forpease (Fig. 15b), for the val-

ues considered in unshifted slotted mechanism. The learning

pattern for Figure 15a is shown in Figure 15c.

4.3. Discussion

As humans looking at the FFRs emerging in the three locking

devices (Fig. 16a–c) we observe that the FFR for the padlock

is quite similar to the slotted wheel mechanism although the

performance metrics are different. At a second level of design

change with an additional design variable, for the same ac-

ceptability range for the performative behaviors the emergent

pattern is also quite similar though the lower boundary of the

FFR is now angled up because of the e shift.

To comprehend why this similarity arises although the em-

bodiments in these three instances are quite different, we ob-

serve that the physical principles by which these locking de-

Fig. 12. Ideal functionally feasible regions (FFRs) for the slotted wheel with various functional constraints: (a) pstr . 6 N m and pease .

0.1 mm, (b) pease . 0.3 mm and pease . 0.4 mm, and (c) learning with 600 instances.

Fig. 13. The vertical shift in the latch. (a) The slotted wheel mechanismwith shift e. (b) In addition to the contact formations of Figure 11a,

a new contact state ke12, val is seen for upward shift e in the latch. [A color version of this figure can be viewed online at journals.cambridge.

org/aie]
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vices work are similar, in that a latch is inserted into a slot pre-

venting motion of the bolt or barrel containing the slot. This

implies that in the locking region of the C-space, in each of

these, there is a constraint on the motion of the bolt/barrel (Y

or u) when the latch position (X ) is in a certain region. This

can be seen clearly in the C-spaces in the bottom row of Fig-

ure 16, where we observe that for certain values of X, the Y,

u values are constrained and may not increase, thus locking

the device. In contrast, once the latch is moved to the right

(X increases beyond the locking limit), the Y, umotion is unfet-

tered in the free space of the C-space. Thus, the lock can be

opened in these states. This type of similarity in the underlying

principles incorporating function often holds across many em-

bodiment differences, and in such situations one may expect to

see certain similarities in the emergent functional patterns.

It is possible that the designer’s intuitive feel for the degree

towhich such transfers are permissible is part of what Janssen

(2006) has called design stance, which involve a broader and

less specific type of preconception than Functional emerg-

ence being considered here. Eventually, it may be possible

that CAD systems would be able to discover such higher level

regularities, but clearly it would take much more experience

and would require as a prerequisite the type of functional pat-

tern abstraction being presented in this initial exploration.

5. VARIABILITY OF EXPERIENCE: ARE

IMPLICIT CONSTRAINTS STABLE?

One of the questions that arise is regarding the nature of the

convergence of the learned classifier function fe(y). We

know that if fe is a good characterization of g(pi) and if it

is well learned, then it will narrow the design space. However,

there are two questions this raises:

1. Degree of convergence: What does it mean to be well

learned, that is, when do we know that the learning pro-

cess has converged?

Fig. 14. The locking region configuration space (a) without axial shift or (b) when there is a upward shift in latch axis by shift e. [A color

version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 15. Evolving constraints for slotted wheel mechanism with shift. (a,b) Different functionally feasible regions (FFRs) in thew, t design

subspace for differing constraints on pstr and pease and (c) the learned FFR for (a).

Discovering implicit constraints in design 69



2. Stability of converged pattern:Will two different learn-

ing experiences that are exposed to different trajectories

of design instances end up in the same emergent space

Ve or different ones?

Both questions are classic problems in computational

learning theory. We are given a training sample D, that is, a

set of pairs y, y, where y is a bit indicating whether the design

y is a feasible design. The sample is drawn from a distribution

in the design space, and y is the noise free result, that is,

g(pi(y)). The function fe(y) is said to be a good generaliza-

tion of g if its expected error rate on data drawn from the same

distribution is less than 1 with probability 1 – d [Bishop,

2006]. Constructing such a theoretical analysis requires one

to model the distribution of designs as they are taken up for

exploration; even then, the results present a worst-case anal-

ysis that is often much poorer than actual experience.

In this work we therefore restrict ourselves to an empirical

investigation of these questions with data from the most com-

plex of the three locking devices: the slotted wheel mecha-

nism with axial shift. The first question, whether a learning

process has converged or not, can be determined by estimat-

ing the error rate. This is done using a dense sampling overVs

at several iterations during the learning process, and seeing if

a large fraction of samples have changed sign from an earlier

learned pattern. The function is said to have stabilized if the

fraction of samples changing signs between iterations is

less than some parameter 1.

In order to study convergence, we consider the error in the

learned function fe as the misclassified fraction, that is, those

design instances that are actually infeasible but show up as ac-

cepted in the learned function, which are false positives

(FPs), and those that are feasible but are rejected, which are

false negatives (FN). True positives (TP) are accepted design

instances and true negative (TN) are the ones rejected by the

learned function. Now we define error as the false results (FP

þ FN) over the whole region Vs (FP þ TP þ FN þ TN). As

we see in figures such as Figure 9a or 9d, patterns learned

based on a small sample of the design space tend to have large

areas that do not match the underlying functional constraint.

As with human designers, we find that our learned function

better reflects the underlying patterns of feasible designs as

the training set increases (Fig. 17 for the slotted wheel with

axial shift; see also Fig. 9 for the padlock). Next, we consider

variations in the learned pattern given a sparse training set (50

samples, Fig. 18a–c), and for a dense training set (500 sam-

ples, Fig. 19a–c). The patterns learned after greater exposure

are clearly more uniform and have a smaller error rate.

We now consider a statistical analysis of the error rate over

a large set of training runs (Fig. 20). All the classifiers here

are attempting to learn the FFRs (feasible region constraint)

for the slotted wheel, for the performance constraint pstr .

Fig. 16. The functional similarity in functional part families. (a,b) Different functionally feasible regions (FFRs) in thew, t design subspace

for differing constraints on pstr and pease at (a) pstr . 500 N and pease . 0.1 mm, (b) pstr . 6 Nm and pease . 0.1 mm, and (c) the learned

FFR for (a) at pstr . 6 N m and pease . 0.1 mm. There are certain similarities in the emergent functional patterns for three different em-

bodiments in thew, t design subspace for differing constraints onpstr and pease. The bottom row contains C-space mappings for the locking

regions. [A color version of this figure can be viewed online at journals.cambridge.org/aie]
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6 N m. Sample sizes for training are chosen in multiples of

two, from 23 to 210. The mean error and standard deviation

are computed from 25 trials with each sample size. We ob-

serve that even with a meager eight training samples, the error

(percentage of test cases classified wrongly) is only 13.2%.

Although the mean error keeps decreasing, the standard de-

viation remains quite high at about 2.2% up to N¼ 64. Even-

tually, the standard deviation becomes negligible as the train-

ing size approaches 1000 samples and the error percentage,

which is falling asymptotically, goes down to about 1.6%.

Thus, this analysis on these simple initial case studies show

that as expected, the learned function tends to converge closer

to the target function as training size increases. A significant

aspect of this analysis is that, as variance decreases, the sys-

tem acquires greater confidence in the validity of the learned

function; this replicates human experience. In the early

stages, the designer is unsure of her abstractions but becomes

increasingly confident after exploring a large number of de-

sign instances. This can also provide a measure for what con-

stitutes an “adequate” sample size. Clearly, for more complex

design spaces with higher dimensionality, this would still be a

very large number. Finding ways to reduce the dimensionality

and therefore the adequate sample size would be an important

challenge.

5.1. Differences with human sketching

An important difference between human and machine learn-

ing of these implicit constraints is that the program requires

hundreds of sample points to be explored even in this rela-

tively simple design space, whereas designers typically go

through only a handful of sketches even in more complex sit-

uations. This may be explained by three factors. Each sketch

is not a fully defined design instance, so it leaves many as-

pects undefined. Thus, a sketch represents a constrained re-

gion of the design space, and not just a single design. Reject-

ing or refining a sketch is equivalent to exploring hundreds of

design instances in our paradigm, and the human designer

Fig. 17. The quality of implicit constraints learned improves with experience.With increasing experiences of (a) 6 (error¼ 0.1570), (b) 60

(error ¼ 0.0689), and (c) 600 (error ¼ 0.0145) instances, the functionally feasible region (FFR) converges more toward the ideal FFR in

Figure 15a.

Fig. 18. Learning based on 50 design instances. With limited exposure, the functionally feasible regions (FFRs) exhibit wide variation: (a)

error ¼ 0.0592, (b) error ¼ 0.0608, and (c) error ¼ 0.0586.
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rules out large swathes of the design space in each evaluation,

leading to faster convergence. Of more importance, the hu-

man designer is not choosing the sketches randomly; models

that are quickly seen to be unlikely to serve the performance

requirements are not sketched at all. It may be argued that the

progression of sketches already incorporates some idea of the

functional constraints as has been abstracted by the early

experience. As seen above, even a few design explorations re-

veal a good bit about the structure of the space of good de-

signs; hence, using this pattern to drive new sketches, instead

of choosing randomly all of the time, makes for much faster

convergence. Finally, the human designer starts with a al-

ready available store of domain knowledge, defined in terms

of similar functional structures as seen earlier, whereas the

computational process identified here is (at least for now)

blind to such interrelations.

6. CONCLUSION: SCALABILITY AND FUTURE

WORK

In this paper, we have presented a computational process that

attempts to imitate an expert designer’s ability to quickly

come up with good designs via functional emergence, which

is modeled here in terms of FFRs. This is suggested as a first

step in the cognitive process whereby a designer redefines the

design problem in terms of new chunks and eventually sym-

bols, which are emergent properties of the design problem

that are discovered during exploration. Discovering these re-

gions of functional feasibility, the FFRs, is itself an early

form of functional emergence, because the patterns revealed

are novel and may result in considerable narrowing or in-

formation compression. We show how computational algo-

rithms can identify such FFR regions in an apprenticeship

mode, where well-defined problems are presented to it. We

demonstrate this process on a padlock embodiment. By con-

sidering two other embodiments in the same functional class,

we present empirical evidence that such patterns of functional

emergence may be similar across some set of designs in a

functional class, suggesting that one may also be able to learn

higher level patterns of functional emergence beyond the em-

bodiment level. Such a model may be thought of as a key step

in the shift from novice designer behavior, which considers

case-based similarity with a specific design problem, to ex-

pert behavior that schematizes for a class of designs (Linsey

et al., 2008). However, such schematization requires the sys-

tem to discover the kind of abstract representations for each

embodiment class that we are trying to develop here; thus,

the computational procedure for discovering such schemata

for larger classes of designs remains work that can only be

done after this step is well entrenched.

Obtaining the regions of functional feasibility is only the

first step in a long process of abstraction in design. Some-

times, the feasible regions constitute thin parts of the design

Fig. 19. Learning after 500 instances. The error is almost constant with a higher number of different experiences: (a) error ¼ 0.0254, (b)

error ¼ 0.0248, and (c) error ¼ 0.0251.

Fig. 20. The function quality with increasing exposure. The error is the per-

centage of the false region inVe to the total regionVi in the design subspace

w, t. The mean error of the learned constraint function, as well as its standard

deviation (s), decreases significantly as the number of training instances

increase from 16 to 1024. These data are based on 25 independent runs for

each sample set for the slotted wheel mechanism with e ¼ 0.3r. [A color

version of this figure can be viewed online at journals.cambridge.org/aie]
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space; in such situations they may readily yield lower dimen-

sional manifolds, an example of which is presented for a sim-

ple linear chunk. In other work, we have explored nonlinear

dimensionality reduction, especially as they may relate to

multiple-objective optimization of designs (Mukerjee &Dab-

beeru, 2009). The existence of such lower dimensional mani-

folds indicates the existence of tight interrelations between

the design variables that must hold in order to meet some func-

tional requirement. If these latent interrelations form a stable

pattern, they are likely to represent chunks. Chunking is often

suggested as a key step in the process of developing human ex-

pertise, because they significantly reduce the dimensionality

and hence the complexity of the design search. In our current

work, we are considering various models for discovering

chunks as low-dimensional manifolds in the design space.

The examples demonstrated here are rather simple, and an

important question is that of scalability as we consider increas-

ingly complex designs. Even inmore complex cases, for exam-

ple, involving many more design variables and performantive

behaviors, such a process would still be applicable as long as

the function is quantifiable in terms of performance metrics.

However, learning adequately accurate functions is likely to re-

quire a much larger training data in more complex spaces, and

the algorithmic complexity of this training process remains an

important consideration for future. Nonetheless, even as pre-

sented here, the system is possibly a great help to novice de-

signers, who may observe in the resulting patterns some expla-

nation in terms of the underlying parameters, which would add

to her design knowledge in this domain.

6.1. Learning “commonsense” knowledge

One of the aspects in this type of machine-learning process

differs from human design exploration lies in the fact that hu-

mans bring to bear a great degree of broad prior knowledge to

the design task. This helps the human avoid unnecessary

evaluation of thousands of unlikely design instances, where

each evaluation may involve extensive computations. With-

out a similar capability, machine abstraction would clearly

have difficulty in scaling up to larger problems. This much

richer conceptual base, sometimes known as commonsense

knowledge (e.g., that a fat peg cannot go into a thin hole),

may help select more likely candidate designs. In this sense,

the machine may be thought of as an infant first experiencing

such tasks (the peg-in-hole constraint is one of the early con-

straints learned by humans by age 5 months; Spelke & Hes-

pos, 2002). The approach posited here makes only a small

beginning, but it is supposed that in the long run, the func-

tional constraints learned hereby would be generalized to

much broader design systems.

As a simple example of how this may be working, let us

consider the peg-in-hole task a bit further. Consider an infant

playing with inserting sticks into holes, and a padlock de-

signer in the conceptual design stage, thinking about how

the latch enters in a slot in the U-bolt. Both are insertion tasks,

but compared to the infant, the designer has extremely sophis-

ticated abstractions of how objects fit into one another, the

constraints these impose on the relative motion of the parts,

and so forth. We propose that such learning may occur easily

using the paradigms presented here. As a side effect of ex-

ploring the w, t space demonstrated here, the system can

also learn the constraint, at least implicitly, that w , t. This

is shown in Figure 21 for 10, 50, and 200 instances. At this

point, the system is in no position to make any generalizations

from this behavior; after observing similar constraints in a

wide range of other mechanisms, it is possible that the system

may be able to generate a general constraint for insertion sit-

uations from a large number of ab initio explorations such as

this one. As opposed to the human-defined logical formal-

isms, such generalizations, when learned, would be grounded

and be able to “capture product semantics” (Brunetti & Go-

lob, 2000) in a far more flexible manner than the brittleness

of present knowledge-based systems. This work thus pro-

poses that, instead of attempting to preprogram such domain

knowledge, it may be better to acquire this knowledge as

patterns within the design space.

Fig. 21. Learning through experience that the latch must be smaller than the slot (w. t). The quality of the learned pattern improves with

experience: results after experiencing (a) 10, (b) 50, and (c) 200 instances. Crosses indicate feasible trained data, and boxes indicate infea-

sible trained data.
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6.2. Learning symbols

Thus far, we have considered only implicit knowledge, which

is knowledge that is understood as an unstable pattern that is

difficult to relate to newer experiences. In human usage, sym-

bols, which are grounded in experience and have a reference

label, serve the needs for indexing the knowledge structure so

that new experiences can associated with it and modify it. At

the same time, social conventions of symbol usage also tend

to stabilize the model; without it, newer experiences would

continue to shift the symbol, and there would be no stability.

The other aspect of symbols is that they are conscious or ex-

plicit; they are not the implicit functions we have been learn-

ing throughout this paper. We suggest that learning such sym-

bols may not be a very difficult step based on what has been

demonstrated here with FFRs.

Commonsense knowledge of the type shown above, after

being observed in a large number of instances, may become

reified or come into conscious awareness. At this point, if

one talks to human designers, one may learn a preexisting

term for the concept, or one may invent such a term oneself.

Thus, the concept comes to have both a grounded model, say,

a low-dimensional chunk defined on the variable space, and

a label by which it can be indexed in memory. Then new

experiences can attach to this meaning-label pair, which is

traditionally called a symbol. Thus, the process of symbol

emergence involves exploration of the design space, discov-

ery of low-dimensional chunks, and then interaction with (hu-

man) language users to discover preexisting labels, if any. We

feel this process is an important research direction for compu-

tational models of design, because it opens up a bridge from

the creative design models proposed by Schon (1983) to a

more structured knowledge system which can be usefully de-

ployed in design. By developing computational models for

the reflective practice of design, we feel the proposed ap-

proach opens many avenues for discovery of abstractions in

the design process.
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APPENDIX A: GLOSSARY

Design space V The n-dimensional space in which designs are

represented by points, where n is the

number of independent variables

Design variables y The set of independent variables that define

the design, sometimes called driving

variables

EPF Embodiment part family: a set of members, in

which each member will share the same set

of performance measures p and the

mapping from design variables to

performance measures is the same and

hence have the same performance metrics

FPF Functional part family: a set of members, in

which each member will share the same set

of performance behaviors but the specific

performance measure pi may be different

because the mapping from design variables

to performance measures can be different

Performative behaviors The subset of behavior space that is of interest

to the user

PDD Phenomenological design domain: has a set of

members, in which each member will share

some set of performance behaviors

Specification constraints

fs(y)

The specification constraints fs( ) constrain

the unbounded design space V
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