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ABSTRACT

A major problem in social network analysis and link discovery is
the discovery of hidden organizational structure and selection of
interesting influential members based on low-level, incomplete and
noisy evidence data. To address such a challenge, we exploit an
information theoretic model that combines information theory with
statistical techniques from area of text mining and natural language
processing. The Entropy model identifies the most interesting and
important nodes in a graph. We show how entropy models on
graphs are relevant to study of information flow in an organiza-
tion. We review the results of two different experiments which are
based on entropy models. The first version of this model has been
successfully tested and evaluated on the Enron email dataset.

Categories and Subject Descriptors

H.4 [Link Discovery, Data Mining, Social Network Analysis]:
Miscellaneous; D.2.8 [Graph Theory]: Social Networks

General Terms

Graph theory

Keywords

Entropy, Link Discovery

1. INTRODUCTION
A new challenge in the area of Link Discovery (LD) [18]. and

social network analysis (SNA) is to exploit communication pat-
tern information and text information within knowledge discovery
processes such as discovery of hidden organizational structure and
selection of interesting prominent members. An interesting exam-
ple of such a challenge is to discover hidden groups and prominent
people by analyzing their email logs.

Email logs have been considered as a useful resource for research
in such areas. Email logs are of prime importance and relevance
in the study of information flow in an organization. Email has be-
come the vital means of communication in the information commu-
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nity. Inherent advantages like ease of sending an electronic mail,
archiving communications and the ability to reference past com-
munications have made email the most acceptable and widely used
means of communication. Though it is highly used in the business
and professional domain its scope is not confined to it. Email is
the most archived evidence data on interpersonal communication
in electronic form. It can also act as an evidence database for law
enforcement and intelligence organizations in their effort to detect
hidden groups in an organization which are engaged in illegal activ-
ities. All these advantages make email a perfect test bed for relevant
research like the study of information flow in an organization.

The study of information flow in an organization is germane to
issues of productivity, efficiency and drawing some useful conclu-
sion about the business processes of the organization. It can lead to
insights on interaction patterns of employees within an organization
at different levels of the organization hierarchy. Most of the experi-
ments in this domain are performed on synthetic data due to lack of
an adequate or real life benchmark. The recent availability of large
datasets of human interaction like the Enron email dataset can be
a touchstone for such research. This dataset shows intercommuni-
cation between employees of an organization hence it is perfect to
study flow of information in an organization. This dataset is also
similar to the kind of data collected for fraud detection or counter
terrorism and hence it is a perfect test bed for testing effectives of
techniques used for fraud detection and counter terrorism.

In this paper we adopt event based graph entropy (we refer to
this as both ”event based graph entropy” or ”graph entropy”) to
determine the most prominent yet interesting people in the Enron
email dataset.

The rest of this paper is organized as follows. We begin with
the problem of order in networks. Next, we describe our novel
event based graph entropy model. At the end, we report our results
of exploitation of such techniques on Enron dataset followed by
related work and conclusion remarks.

2. ORDER IN NETWORKS
Most of the work in SNA nd LD represent their environment with

a graph or network. We use both terms in this paper frequently. The
question is what sort of mathematical model would work best. One
way to describe a threat organization, or a social network is in terms
of a graph. In this model, each node would represent an individual
member and an edge linking two nodes would indicate direct com-
munication between those two members. Mathematically, we may
ask how many nodes must we remove from a given graph before it
splits into two or more separate sub-graphs? For graphs of various
sorts, it’s possible to estimate the probability that the removal of
a certain number of nodes would split the graph into two or more
separate units based on a set of policies and criterias. However, a
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Figure 1: Leaders and Followers Example. L2 is leader, M1,

M2 and M3 are middlemen; F1, F2, F3, F4 and F5 are follow-

ers. Up: example of a network. As it shows removing M2 splits

the graph to three disconnected subgraphs Down: the same net-

work after information about leaders,middlemen and followers.

As it shows even though M2 splits the graph to three discon-

nected subgraphs, there are at least 2 pathes form Leaders to

followers while removing L1 destroy such path.

graph model might not be the best representation of organizations
such as drug dealers, terrorist organization and threat groups. In
his recent work, Jonathan Farley explains clearly [6] that modelling
terrorist networks as graphs does not give us enough information to
deal with the threat. Modelling these networks as graphs ignores
an important aspect of their structure, their hierarchy, and the fact
that they are composed of leaders and followers. Hence, it is not
enough to split the network since the remnant may contain a leader
and enough followers to pursue their plans. [6] assume the net-
work structure is known and authors try to find the optimum way to
disrupt communication between leaders and followers. However,
in our work we try to identify those important nodes as much as
possible.

Figure 1 illustrates an example of such a phenomenon. The
graph in the left shows a network consisting of three leaders: L1,
L2 and L3; three middlemen: M1, M2 and M3; and three fol-

lowers F1, F2 and F3. The graph in the right illustrates the same
network without M2. As it is clearly seen that though such a re-
moval splits the graph into two separate remnants, each sub-graph
has leaders, middlemen and followers to carry orders and and ex-
ecute the plan. Hence in this type of networks the relationship of
one individual to another in a network becomes important. Leaders

are represented by the topmost nodes in a diagram of the ordered
set representing a network and followers are nodes at the bottom.
Disrupting the organization would be equivalent to disrupting the
chain of command, which allows orders to pass from leaders to
followers.

Hence, the interesting problem here is to determine important
nodes or leaders in a network. In other word, we are looking for
those nodes whose removal has the maximum effect on the com-
mand chain.

3. GRAPH ENTROPY
We assume we have an evidence database (EDB) full of trans-

actions among individual such as email, Phone Call etc. After ex-
ploiting the various explicit and implicit evidence fragments given
in the EDB, we try to identify prominent members in a graph by

looking at their transactions with others. To find prominent peo-
ple in a network, we need to aggregate links between them and
discover which node has the most effect on such a network. The
entropy model can identify an entity or a set of entities which has
the most effect on the graph entropy and thus provide a ranked list
based on such effect. To do this we need to exploit facts such as in-
dividuals sharing the same property (e.g., having the same address)
or transactions like being involved in the same action (e.g., sending
email). Since such information is usually recorded by an observer
we refer to it as evidence. Without loss of generality we only focus
on individuals’ actions in this paper, but not on their properties.

We transform the problem space into a multigraph G =< V, E >
in which each node represents an entity (such as a person or orga-
nization) and each link (edge) between two entities represents an
action they are involved in. The term multigraph refers to a graph
in which multiple edges between nodes are either permitted. For
abstraction we summarize the set of actions (e.g., emails, phone
calls etc in each edge and refer them as link) . Hence each link

represent a set of actions in a vector. For instance an edge e7 could
be a set of two actions as e7 = [a2, a5]. Also please note that it’s
possible to distinguish between email sender and receiver.

V = {v1, . . . , v|V |} Number of vertices
E = {e1, . . . , e|E|} Number of edges
A = {a1, . . . , a|A|} Type of actions

The EDB consist of tables representing individuals and actions
among them at a given time. The table in Figure 2 shows an exam-
ple of such data.

Assume we have a small society of 4 people who have been in
contact with each other through actions. Figure 2 shows an ex-
ample of such a database. There are four people and three possi-
ble actions: sending Email ,making aPhone Call and participating
in aMeeting. When a person is not involved in any of the above-
mentioned actions at a particular time we show with action ϕ.

Hence V = {v1, v2, v3, v4} , E = {e1, e2, e3e4} and A =
{Email, phoneCall, Meeting, ϕ} . For the matter of represen-
tation we show A as A = {E, C, M, ϕ} . The table in 2 illustrates
actions among these individuals along with the action time.

This graph has a major conceptual difference with well-known
Bayesian and other similar graphical representations. Unlike such
conventional techniques in which nodes are variables and links are
statistical relation among variables (causal relations), here nodes
represent entities, and links are relations among entities.

3.1 Graph Entropy
There is no commonly used definition of graph entropy. Indeed,

one can define the graph entropy as the Kolmogorov complexity of
its adjacency matrix and one can even use this definition to obtain
interesting theoretical bounds for several important graph charac-
teristics , but the Kolmogorov complexity is incomputable [4].

In the following we adopt the notion of graph entropy which is
equal to Korner definition [13]of graph entropy when the graph is
complete. Korner definition of graph entropy also has this limi-
tation that all elements of the graph are being emitted by a dis-
crete memoryless and stationary information source according to
the probability distribution P . We show how we add memory
to graph entropy definition by looking at sequences with length
greater than 1.

Korner gave several descriptions of graph entropy H(G, p) in-
cluding the following.
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Figure 2: MI Example. V1, V2, V3 and V4 represent people. E, C, Mand ϕ stand for Email, phoneCall, Meeting and doing nothing

respectively. The table on the right shows activities among people and the graph on the left illustrates such network.

H(G, P ) = minx∈StableSet(G)

∑

v∈V (G)

pvlog(pv) (1)

Where StableSet(G) denotes the family of stable sets in ver-
tices of G. A subset of vertex set is called stable set if it does not
contain any edge. Stable sets in graphs form one of the impor-
tant models in integer programming and have various applications.
However, the stable set problem is NP-hard and also not easy to
treat in practice. Even though there are some approximate ways to
calculate such a set our definition of graph entropy is a special case
of such a definition. However we extend such a definition to cover
dependencies in the graph.

Let G =< V, E > be a graph. Let P be the probability distri-
bution on the vertex set V (G). We will think of V (G) as a finite
alphabet. How we define such a alphabet depends on the nature of
the problem. This definition has similarities with [16].

H(G, P ) =

|V |∑

i=1

p(vi) log(1/p(vi)) (2)

In general if we plot H(x) in terms of p(x) there are two sides
of the curve that play an important roles. Those x with high prob-
ability and x with lower probabilities. We believe our model finds
those instances. Figure 3 illustrates such phenomenon.

A great concern in LD domain is that elements of the data are
not independent. For instance if the link AsendemailtoB and link
BsendsemailtoC are dependent to each other, this means B may
forward A′s email to C. Hence, we can change the probability
space from length = 1 to length = 2 and more. This means our
space consists of sequence of emails if the second one is dependent
to the first one and so on.

Since discovering such dependency is not easy we provide three
approaches to address such an issue. In the following we describe
these cases.

• For every single transaction (for example email) we examine
if it is similar to other received emails by a given individual.
i.e. if she forwards an email, or copy and pastes a major part
of an email.

• If a transaction happens immediately right after a given trans-
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Figure 3: (P (x) is a normal distribution, and the bell curve is

the distribution of H(x). We are mostly interested in right and

left part of the H(x).

action (for instance if

T ime(transactioni) − Time(transactionj) < window

we consider that a dependent transaction.

• Another alternative is exploitation of Markov Blanket type
of model. In this model we assume an event (link) between
two nodes is only dependent to those node’s events (links
connected to those nodes). For instance in Figure 3.1 we
assume red (dark) event is only dependent to rest of the black

links. In a more advanced model for any event e we can drive

a set of dependent events such as De = {d1
e, · · · , d

|D|
e } each

with the probability of Pe = {p1
e, · · · , p

|D|
e }which shows

the probability of dependencies to e. This probability could
be derived from domain knowledge.

We extend this notion to cover deeper levels of dependencies.
For example, consider the domain of emails. A first level mea-
sure of graph entropy would be the predictability of an arbitrary
email within that graph. In this approach, X would be the set
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of all emails such as AemailB contained in the graph. Further-
more, P (AemailB) as the number of occurrences of AemailB in
the graph, divided by the size of the graph.

A more sophisticated approach would be to let X be all sub-
strings of a certain length n. P (X) would then be the number of
occurrences of sequence X , divided by the total number of possi-
ble sequences with length n in the graph. As an example, let us
choose length of n = 2. Hence we are counting sequences such
as AemailBemailC and BemailDemailE and p(AemailBemailC)
would be the number of occurrences of such sequence over all pos-
sible sequences with length equal to 2 in the graph.

There are couple of issues associated with this definition. First
of all it is obvious from entropy definition that more the regular-
ity in sequence of events, the lower its graph entropy will be. As
certain sequences occur more frequently, the probabilities of these
sequences will increase, and probabilities for other sequences will
decrease subsequently. As we mentioned earlier entropy is highest
when the probabilities are uniform, and it decreases as the prob-
ability distribution becomes less uniform. Second, based on our
definition there is no single entropy measure for a given graph;
the value is dependent on the selected alphabet size, n. The value
of n depends on the nature of the database and comes form intu-
ition and domain knowledge. n = 1 only measure the entropy of
nodes labels, without considering relationships between individu-
als. On the other hand very large number of n make the whole
calculation very expensive and the interpretation will be very dif-
ficult.Finally, we consider the time of an event when we make our
alphabet. Hence if T ime(AemailB) > Time(BemailC) we do
not consider AemailBemailC as a sequence.

3.2 Important Nodes
Our interpretation of important nodes are those who have the

most effect of the graph entropy when they are removed from the
graph. The intuition for this idea is that those who send more com-
mands through the network and their messages are forwarded are
important. In addition those who send unusual messages through
the network also might be important people. To do this we exe-
cute the following procedure. First we calculate the entropy of the
whole graph. Next for all nodes in the graph we remove them one
by one and recalculate the graph entropy for the remnant graph.
Following table illustrates such procedure.

Pseudo Code for Discovering Important Nodes

1. Compute the graph entropy using 2 as Entropyall

2. For all nodes N(i) in the do the following

3. • Compute the entropy of one node N(i) by calcu-
lating the entropy of all of its edges as E(i)

• Drop N(i) from the graph

• Calculate the entropy or remnant graph as EN(i)

• Calculate the cross entropy of EN(i) and E(i)

• Effect(i) = EN(i)/log(EN(i)/E(i))

4. Rank nodes based on Effect(i)

4. EXPERIMENTAL RESULT
Below we report the results of applying the graph entropy model

to the Enron Email Dataset 1. There are many reason for using En-
ron dataset to evaluate our techniques. First of all, it is probably
the only actual corporate email dataset available to public. Second,
email logs are of prime importance and relevance in the study of
information flow in an organization. Third, the study of informa-
tion flow in an organization is germane to issues of productivity,
efficiency and drawing some useful conclusion about the business
processes of the organization. Finally this dataset is also similar to
the kind of data collected for fraud detection or counter terrorism
and hence it is a perfect test bed for testing effective of techniques
used for fraud detection and counter terrorism.

The Enron email dataset was made public by the Federal En-
ergy Regulatory Commission during its investigation. Database
was later collected and prepared by Melinda Gervasio at SRI for the
CALO (A Cognitive Assistant that Learns and Organizes) project;
most of the integrity problems in the dataset had been resolved.
It contains all kind of emails personal and official. Some of the
emails have been deleted as part of the redaction effort due to re-
quests from affected employees. William Cohen from CMU has
put up the dataset on the web for researchers 2. This version of
the dataset contains around 517,431 emails from 151 users distrib-
uted in 3500 folders. The dataset contains the folder information
for each of the 151 employees. Each message present in the folders
contains the senders and the receiver email address, date and time,
subject, body, text and some other email specific technical details.

We created a MySql database 3 for the dataset to catalyze the
statistical analysis of the data and cleaned the dataset by remov-
ing a large number of duplicate emails. Folders such as discus-

sion threads and all documents were generated by the computer
and were not user created. We cleaned up the whole data to make it
ready for our purposes. For detail of the data cleaning please refer
to [19]. Our cleaned Enron email dataset contains 252,759 mes-
sages from 151 employees distributed in around 3000 user defined
folders. Our prototype is written in Java and visualization made ei-
ther by in-house developed Java Applet or using NetDraw [2]. The
prototype is applicable to apply to any similar dataset. The database

1This database contains private emails, while reading this paper
please be considerate about the privacy of the people who were not
involved in any of the actions which precipitated the investigation.
Authors do not attach any label to anyone in this dataset by no
means. The main purpose of this study is to evaluate some novel
techniques on actual real world dataset.
2http://www-2.cs.cmu.edu/ enron
3http://www.isi.edu/ adibi/Enron/Enron.htm



Figure 5: Enron Database distribution. Left: distribution of the messages per user. Right: distribution of the emails over time

scheme is very intuitive and general which make it easy to map to
any other email dataset. A report on Enron database schema and
dataset characteristics is available at [19].

Figure 5 (left) shows the distribution of the messages per user.
The x-axis represents the number of email messages in log scale.
The y-axis represents the number of Enron employees in log scale.
The graph clearly shows that the messages are not evenly distrib-
uted between the users. A small number of users have a large num-
ber of messages. However, there are employees distributed through
out the y-axis which reflects that the dataset contains employees
with all amount of email messages. Figure 5 (right) shows the dis-
tribution of the emails over time. The figure clearly reflects that
most of the emails have been sent and received in the year 2001.
The x-axis represents the year in which the email has been sent or
received and the y-axis shows the number of emails.

To illustrate the Enron network, we transform the Enron database
into a graph as we discussed; each vertex of this graph represents
an Enron employee. An edge exists between two employees if the
two employees have exchanged emails. This graph constitutes of
151 employees of Enron. The graph is shown in Figure 6. We found
out the position of every employee in the ex organization hierarchy.
The color of the nodes stands for the position of the employee in
the ex organization. The major type of communication are ”TO”
and ”CC”.

The Enron email database has more than 70K emails which are
referenced emails; these are emails which refer some other emails.
But another scenario is where a particular email doesn’t technically
refer some other email but has relevant information. This bring up
a very interesting phenomenon with the original Enron graph, the
edges which represent exchange of information don’t end at the re-
ceiver node but the information flows much deeper into the Enron
graph involving a lot of other nodes. Here we expand the scope
of influence of nodes to every such node which share a particular
information. There are certain intricate issues involved in detecting
referenced emails and in particular detecting a pattern of how some
particular information was conveyed to other nodes in the graph.
There is no evidence in the database about the generator node or
transient nodes of the forwarded emails. Also when some informa-
tion is conveyed further there is some more information added or
the original information changed. We detect the referenced emails
based on the percentage similarity with the original email.

4.1 Enron Important Nodes
We compute the entropy of the entire Enron graph. We then

drop a node and also drop the edges fanning in and out that partic-
ular node and recalculate the entropy. We measure the change in
graph entropy. We do this for each node present in the graph. We
generate a ranked list based on the change in graph entropy. We
conclude that the node whose absence brings maximum change in
graph entropy is the most influential node in the graph.

We repeated such procedure for the following two experiments.

1. Sequence of length = 1. Here we only consider emails among
individuals as our space. This is the procedure for detecting in-
fluential nodes in the graph using the entropy model at length =

1. The model at length = 1 limits the scope of influence of every
node in the graph to directly connected nodes. But past work using
epidemic models [1] on social networks show that information is
passed by hosts in a social network to other interested people in the
network. This shows that when certain people are engaged in some
activity in a network they pass information amongst each other and
might not be in direct contact with each other.

2. Sequence of length = 2. In a network like the Enron graph there
is a possibility that information might be hopped through nodes
deliberately. This expands the scope of influence of nodes over
other nodes. In the next step we calculate the graph entropy at
length = 2. If a node in the graph is not directly in contact with
some other node, but receives information from it through a third
node, then its presence in the graph has influence over though they
are not directly in contact with each other. This influence is taken
into consideration in the length = 2 computation of entropy.

To measure if an email is dependent to one of the the previous
emails in a mail box we conducted the following procedure.

We created an Enron dictionary which contains all the words
in the organization vocabulary, there are certain words which are
not there in traditional dictionaries like organization jargons, some
proper nouns etc. These words in the dictionary don’t contain stop
words and are stemmed words. Stop words are those words like
conjunctions, prepositions and articles which do appear often in the
document yet alone carry little meaning. We used the porter stem-
ming algorithm for stemming the words. The porter stemming al-
gorithm is a process of removing the commoner morphological and
in flexional endings from the words in English. Its main purpose is
as part of the term normalization process that is used when stepping
up information retrieval systems. We normalized all emails using
this. We generate a vector representation for each email. Then we
compare the vectors using the Jaccards Algorithm.



Figure 6: Enron Network

Similarity(X, Y ) =
X
⋂

Y

X
⋃

Y
(3)

The percentage similarity of the Jaccards algorithm is ratio of
intersection of two vectors and their union. Thus the emails refer-
enced by the original emails are all those emails which have more
than 60% Jaccard score. We take the threshold as 60% based on
emperical results. We performed experiments on the referenced
emails in the Enron database and calculated their percentage text
similarity. The average percentage text similarity between refer-
enced emails in the Enron database is 63.71%. So we conclude that
if any two emails are more than 60% similar the context of talk is
same, and is thus linked.

The emails are further ordered based on the time stamp. This
gives a hierarchy for each email if it has been referenced and the
nodes at each hierarchy can be obtained from the database. Thus
we can relate the influence of nodes to those edges which are not
in direct contact. This is used in computing the entropy at level 2.
In level 2 computation we calculate the entropy of the entire graph
in the same way as we did for level 1. But then when we drop each
node, we not only drop the edges spanning in and out from this
node but we also drop those edges which have used this node in its
path of information flow. So we drop edges which are not directly
in contact with this node but they have either been originally gen-
erated from this node or used this node as a transient, and calculate
the change in entropy. Then we generate a ranked list/seed group
based on the change in graph entropy. The results of this for the
Enron graph are shown in next section.

The results for length = 1 are shown in Table 1. Louise Kitchen

the ex president of Enron online is the most influential node in the

Table 1: Most Important Nodes length = 1
Rank Name Designation at Enron

1 Louise Kitchen President

2 Mike Grigsby Manager

3 Greg Whalley President

4 Scott Neal Employee

5 Kenneth Lay CEO

Enron graph based on the entropy model at length = 1. The second
most influential node in the Enron graph is Mike Grigsby who is
an ex manager at Enron, followed by Greg Whalley ex president,
Scott Neal ex employee and Kenneth Lay ex CEO. We now generate
the ranked list/seed group based on the entropy model at length =

2 as discussed earlier. At length = 2 we take into consideration
the information which has not been received from a direct contact
but the information has been forwarded from some other node in
the graph. Here again we show only the first five members in our
ranked list/seed group. The results for length = 2 is illustrated in 2.

In the ranked list group generated based on the entropy model for
level 2 members like Greg Whalley and Kenneth Lay have a higher
rank. Louise Kitchen and Mike Grigsby get lower ranks. The length

= 2 computation expands the scope of influence of each node over
other nodes in the graph.

Table 4 compares graph entropy model result with some other
conventional techniques such as betweenness centrality. Clearly
betweenness centrality capture those nodes that are in the center of
the graph but not necessarily those with higher authorities. Though
since Louis Kitchen had a crucial role in Enron and several VPs and



Table 2: Most Important Nodes length = 2
Rank Name Designation at Enron

1 Greg Whalley President

2 Kenneth Lay CEO

3 Louise Kitchen President

4 Mike Grigsby Manager

5 Harry Arora VP

Table 3: List of people with high number of sent emails

Rank Name Designation at Enron

1 Jeff Dasovich N/A

2 Kay Mann Employee

3 Sara Shackleton N/A

4 Tana Jones N/A

5 Chris Germany N/A

Managers used to report to her she is in the betweenness centrality
list as well.

In addition, we compare the result of our model with a simple
frequency counting of those individuals who have sent most emails
comparing to the rest of the Enron employees. Table 3 illustreates
these people.

5. RELATED WORK
As illustrated by our experiments the main focus of our work is to

find important nodes in a graph. We further use this to find relations
and connections among entities and individuals. Our approach does
not look for similarities among individuals as a classification task
such as the work by Getoor et. al [8].

Graph entropy has different definition in various literature de-
pending on the nature of the data [13] [11] [14]. We use a different
notion of graph entropy and consider dependencies among links as
well. Similar notion of such definition is introduced in [16].

In his recent work [3] Borgatti address the problem of discover-
ing key players in a network. His approach is based on measuring
explicitly the contribution of a set of actors to the cohesion of a net-
work. In addition, he identifies two separate conceptions or func-
tions of key players which reflect different analytical goals, and
develop separate measures of suitability for each type of goal. In
addition our approach has a fundamental difference with [3]. While
Borgatti finds key players in a network, we try to find leaders. Our
example at the beginning of this paper illustrates that key players
are different with influential nodes. Freeman [7] in his work ad-
dress centrality issues in social networks. As we discussed earlier
the concept of centrality is close to key players and it is different
with our view and definition of important nodes.

In [20] they address the problem of most important nodes in the
network. One major difference of this work with our work is that
we do not consider the Google referral type of links. Their example
of bibliographical is based on reference which make the problem
somewhat different. Famous works such as Google Page Rank [17]
and HITS [12] are also in this category.

In [5] a linear model is used based on well-known electrical cir-
cuits formulas to represent a graph. They produce approximate,
but high-quality connection subgraphs in real time on very large
graphs. [9] also uses the same approach and exploits Kirchhoff
laws to model the social network graph. Other approaches such as
[15] which use betweenness and centrality to find crucial central
nodes.

Table 4: Most Important Nodes Betweenness Centrality

Rank Name Designation at Enron

1 Bill Williams Broker

2 Steven Merris N/A

3 Eric Linder Employee

4 Kay Mann Employee

5 Louise Kitchen President

Another issue is that event based graph entropy is scalable. We
do not need to explore more than 3 or 4 levels to find important
nodes. We can explore the graph around those nodes and run the
engine recursively to find more important nodes. Approaches sim-
ilar to betweenness centrality are also effective but may fail when
applied to large networks, since the order of the algorithm is at least
N2 where N is the number of nodes.

Scale-free network also has been discussed extensively recently
in literatures. One of the major line of work in scale free net-
works is gossip modelling and finding the most influential nodes

to either broadcast a gossip or to prevent a virus distribution over a
given scale free network. Kempe et al in their work [10] they con-
sider the problem of selecting influential nodes. Using an analysis
framework based on submodular functions, they show that a nat-
ural greedy strategy obtains a solution that is provably within 63%
of optimal for several classes of models. Our work differentiates
from this work since they do not have the notion of order in their
model and their definition of most influential nodes is somewhat
different with our definition of important nodes.

Our work is inspired by [6] in which he introduces the notion
of order in networks and graphs. However we used a different ap-
proach comparing to [6].

6. CONCLUSION
The Enron email dataset is the largest real email dataset present

in the public domain; other datasets haven’t been public because of
privacy concerns. This dataset contains all kind of emails personal
and official. This is a valuable resource for many diverse fields.
Social network analysis, link discovery are the most relevant fields
where this can be used.

In this work, we defined and addressed the problem of important
nodes and finding closed group around them. Additional contribu-
tions are the following:

• We proposed a novel yet simple intuitive way to measure the
graph entropy as event based graph entropy. We showed that
approaches like betweenness centrality lead to poor answers
when our network consist leaders and followers.

• We provided a systematic way to find important nodes in a
graph based on their effect on graph entropy.

• Moreover, we implemented our algorithms in a working pro-
totype, complete with an interactive Java-based interface, on
a real graph that we derived from the Enron Dataset. The
graph has about 150 nodes and more then quarter million
links.

In this paper we focused on using event based entropy to find
influential nodes in a graph. We tested an evaluated the results
on the Enron graph. Enron graph being a representation of a real
life ex organization there was some evidence available to validate
some facts revealed from our experiments. There are certain basic
assumptions on which the entropy model claims its results, like the



evidence data is complete and there is no noise in the data. The
result gets deteriorated when used on noisy data. Our main focus
was to exhibit how an entropy model can act as a good means for
detecting influential nodes in a graph.

There are several lines of ongoing and future work, such as, de-
termining group leaders by measuring their entropy over time to
capture the change in such entropy in a given period. In addition
we would like to exploit sampling, randomization and data streams
techniques to deal with very large datasets.
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