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Abstract

This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and
analysis. Summaries are presented on twenty different species, with each overview discussing the organisms
fundamental and practical significance, environmental habitat, and its role in fermentation, bioprocessing, or
probiotics. For those projects where genome sequence data were available by March 2002, summaries include
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a listing of key statistics and interesting genomic features. These efforts will revolutionize our molecular view
of Gram-positive bacteria, as up to 15 genomes from the low GC content lactic acid bacteria are expected to
be available in the public domain by the end of 2003. Our collective view of the lactic acid bacteria will be
fundamentally changed as we rediscover the relationships and capabilities of these organisms through genomics.

Introduction (contributed by Todd Klaenhammer)

The lactic acid bacteria (LAB) represent a group of
bacteria that are functionally related by their ability
to produce lactic acid during homo- or heteroferment-
ative metabolism. The acidification and enzymatic
processes accompanying the growth of LAB impart
the key flavor, texture, and preservative qualities to
a variety of fermented foods. Industrial applications
of the LAB rely on six key beneficial and non-
pathogenic species; Lactococcus (milk), Lactobacillus
(milk, meat, vegetables, cereal), Leuconostoc (veget-
ables, milk), Pediococcus (vegetables, meat), Oeno-
coccus oeni (wine) and Streptococcus thermophilus
(milk). Other members of the LAB, notably lacto-
bacilli, occupy important niches in the gastrointest-
inal tracts of humans and animals and are considered
to offer a number of probiotic benefits to general
health and well being. These benefits include a pos-
itive influence on the normal microflora, competitive
exclusion of pathogens, and stimulation/modulation
of mucosal immunity. More recently, LAB are be-
ing used in the production of industrial chemical
and biological products including biopolymers (Leu-
conostoc spp.), bulk enzymes (Lactobacillus brevis),
ethanol, and lactic acid (Lactobacillus casei, lactis,
delbrueckii, brevis) (Gold et al. 1992; Hofvendahl &
Hahn-Hagerdal 2000). The LAB are also strong can-
didates for development as oral delivery vehicles for
digestive enzymes and vaccine antigens (Wells et al.
1996; Pouwels et al. 1998; Steidler et al. 2000). Their
innate acid tolerance, ability to survive gastric pas-
sage, and safety record during human consumption,
are key features that can be exploited to effectively
deliver biologics to targeted locations and tissues.

Realizing their practical significance in ferment-
ation, bioprocessing, agriculture, food, and more
recently, medicine, the LAB have been the subject
of considerable research and commercial development
over the past decade. Contributing to this explosion
have been the recent efforts to determine the genome
sequences of a representative collection of LAB spe-
cies and strains. The first complete genome of the LAB
group was published on Lactococcus lactis subsp. lac-
tis IL1403 by Bolotin et al. (2001). The genome was

2.4 Mb in size and revealed a number of unexpected
findings: biosynthetic pathways for all 20 amino acids,
albeit not all are functional, a complete set of late com-
petence genes, five complete prophages, and partial
components for aerobic metabolism. Noting that some
of these systems are not functional or complete, the
genomic analysis of Lactococcus suggests an evolu-
tionary trend toward minimization of the chromosome
and elimination of unnecessary systems during adapt-
ation to nutritionally complex environments, such as
milk. At this writing, four other LAB genomes have
been completed, (L. plantarum, L. johnsonii, L. acido-
philus, S. thermophilus), and >20 more are in progress
(Table 1) with expected completions for sequencing
by the end of 2002. Additional genome sequencing
is underway for microbes that are not considered as
members of the LAB, but contribute important LAB-
like properties either as probiotics (Bifidobacterium
longum, B. breve, and Brevibacterium linens) or fla-
vor adjuncts (B. linens, Propionibacterium freuden-
reichii). Among the total genome projects ongoing,
there are several cases where genome sequences will
become available for multiple strains of the same spe-
cies, notably L. lactis (three strains), L. casei (two
strains), L. delbrueckii (three strains), S. thermophilus
(three strains), Oenococcus oeni (two strains) and B.
longum (two strains).

Of the 29 genomes listed in Table 1 on LAB-
type microbes, 11 genomes are being sequenced
by the Department of Energy–Joint Genome Insti-
tute (JGI) in collaboration with the Lactic Acid
Bacteria Genome Consortium (LABGC), composed
of 10 US scientists representing seven universit-
ies in the U.S. As part of their microbial genomes
program (see http://www.jgi.doe.gov/JGI_microbial/
html/index.html) JGI will carry out genome sequen-
cing of LAB species representing considerable di-
versity in ecological habitat (milk, meat, plants, GI
tract) and roles (probiotic versus fermentation). All
of the microbial genomes will undergo the same pro-
cessing; first to generate a 10× coverage of each gen-
ome with a random shotgun small-insert library (3 kb),
and to supplement this with ∼5× coverage of a large
insert (40 kb) cosmid library. These data will be incor-
porated into an assembly and the assembled scaffolds
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Table 1. Genome sequencing projects of lactic acid bacteria

Species Strain genome Contact person Institution

size (Mb)

Sequencing completed
Lactococcus lactis IL1403 2.3 A. Sorokin INRA and Genoscope, FR

Lactobacillus plantarum WCFS1 3.3 M. Kleerebezem WCFS, NL

Lactobacillus johnsonii NCC533 2.0 D.Pridmore Nestlé, CH

Lactobacillus acidophilus ATCC700396 2.0 T. Klaenhammer, R. Cano North Carolina State University and Cal-

NCFM Poly Technical University, USA

Bifidobacterium longum NCC2705 2.3 F. Arigoni Nestlé, CH

Sequencing ongoing
Lactococcus lactis MG1363 2.6 O.Kuipers, M.Gasson, University of Groningen, NL; IFR, UK;

ssp. cremoris D. van Sinderen UCC, IRL

Lactococcus lactis MG1363 2.4 A. Sorokin, A. Bolotin INRA, FR

ssp. cremoris

Lactobacillus delbrueckii ATCC11842 2.3 E. Maguin, M.vd Guchte Genoscope and INRA, FR.

ssp. bulgaricus

Lactobacillus delbrueckii DN-100107 2.1 T. Smokvina Danone Vitapole, FR

ssp. bulgaricus

Lactobacillus sakei 23K 1.9 M. Zagorec, S. Chaillou INRA, FR.

Lactobacillus casei BL23 2.6 J. Deutscher, A. Hartke INRA/CNRS, Caen University, FR

Lactobacillus helveticus CNRZ32 2.4 J. Steele University of Wisconsin, USA

Lactobacillus rhamnosus HN001 2.4 M. Lubbers Fonterra Research Center (formerly NZDRI)

and ViaLactia BioSciences, NZ

Streptococcus thermophilus. LMG18311 1.9 P. Hols UCL, Belgium

Streptococcus thermophilus CNRZ1066 1.8 A.Bolotin INRA, FR, Integrated Genomics Inc, USA

Oenococcus oeni IOEB84.13 1.8 J. Guzzo Universities Dijon and Bordeaux-INRA-

GENOME Express, FR

Bifidobacterium breve. NCIMB8807 2.4 D. van Sinderen University College Cork (UCC), IRL

Propionibacterium ATCC6207 2.6 H. Pel, J. Sikkema DSM Food Specialties, Friesland Coberco

freudenreichii Dairy Foods, NL

Joint Genome Institute/Lactic Acid Bacteria Genome Consortium (JGI/LABGC)
Lactobacillus gasseri ATCC33323 1.8 T. Klaenhammer North Carolina State University, USA

Lactobacillus casei ATCC334 >2.2 J. Broadbent Utah State University, USA

Lactobacillus delbrueckii ATCCBAA-365 2.3 J. Steele University of Wisconsin, Madison, USA

ssp. bulgaricus

Lactobacillus brevis ATCC367 2.0 M. Saier University of California, San Diego, USA

Lactococcus lactis SK11 2.3 B. Weimer, L. McKay Utah State University and University of

ssp. cremoris Minnesota, USA

Leuconostoc mesenteroides ATCC 8293 F. Breidt, H.P. Fleming USDA, North Carolina State University,

USA

Oenococcus oeni PSU1 1.8 D. Mills University of California, Davis, USA

ATCC BAA-331

Pediococcus pentosaceus ATCC25745 2.0 J. Steele, J. Broadbent University of Wisconsin, Madison, Utah

State University, USA

Streptococcus thermophilus ATCC BAA-491 1.8 R. Hutkins University of Nebraska, USA

Brevibacterium linens BL2/ ATCC 9174 3.0 B. Weimer Utah State University, USA

Bifidobacterium longum DJ010A 2.1 D. O’Sullivan University of Minnesota, USA



32

ordered by PCR primer walking to fill gaps. The scaf-
folds will undergo an automated annotation which will
be performed by Oak Ridge National Laboratories.

It is noteworthy that as these sequences are gener-
ated, they will be placed in the public domain on the
JGI website for common use. The timely and public
availability of genome information for various LAB
species will catapult our collective efforts to carry on
with comparative and functional genomic analyses of
the LAB group.

The explosion of available genome sequences for
LAB will accelerate their exploitation in both tradi-
tional and non-traditional arenas. While phylogenet-
ically closely related by their small genomes (∼2–4
Mb), the LAB occupy a diverse set of ecological
niches suggesting that considerable genetic adapta-
tion has occurred during their evolution. Comparison
of the genome sequences of multiple LAB species
and strains is expected to provide a critical view of
microbial adaptation and genetic events leading to
their adaptation to specialized environments. Compar-
ative genomics among the microbes sequenced thus
far has already illustrated that essential housekeeping
gene functions are widely conserved among microbes
and horizontal gene transfer commonly occurs. An
expected outcome of comparative genomics of LAB
will be the definition of conserved and unique ge-
netic functions in LAB that enable core functions,
e.g., production of lactic acid, proteolytic and pepti-
dase activities, survival at low pH , stress tolerance,
production of antimicrobials, transport systems, cell
signaling, and attachment/retention in dynamically
mobile environments.

It is anticipated that IS-elements, bacteriophages,
and mobile genetic elements provide the major routes
through which horizontal gene transfer occurs, and the
roadmap to the most interesting and practically signi-
ficant genetic regions that underscore the unique and
beneficial properties of the LAB. It is well documented
that the LAB undergo conjugation, exist in phage-
contaminated environments where gene transfer may
occur by transduction, and harbor sets or remnants
of competence genes for transformation (Bolotin et
al. 2001). Understanding gene transfer, particularly
in environments where LAB coexist, or compete,
will provide one important view of their evolution,
adaptation, and potential for unique applications. Con-
jugation has played a key role in the evolution and
adaptation of L. lactis to a milk environment noting
that many attributes for growth in milk, including
lactose and casein utilization and bacteriophage res-

istance, are encoded by conjugative plasmid DNA in
this species (Broadbent 2001).

With the availability of genomic maps of more than
25 LAB, comparative genomic analysis will identify
critical similarities and differences and is expected to
identify ‘islands of adaptability’, defined as key ge-
netic regions that may be instrumental in the evolution
of the various species to their specialized habitats, and
their functions within those environments. Compar-
isons of food-grade LAB with other related Gram-
positive pathogens (Enterococcus faecalis, Strepto-
coccus agalactiae, Streptococcus equi, Streptococ-
cus pneumoniae, Streptococcus mutans, Streptococcus
pyogenes, Listeria monocytogenes) has already re-
vealed many common features and will most certainly
define the essential genetic differences between patho-
gens, non-pathogens, and commensals. Over the next
year, our scientific community will be fundamentally
empowered by the availability of numerous related,
yet distinct genomes, to make these comparative ana-
lyses and define the similarities and differences that
characterize the genomes of LAB.

This chapter presents a collection of summaries
on the LAB organisms that are now in genomic se-
quencing or analysis. Each summary describes the
organism and its roles in the environment or biopro-
cessing, the status of the sequencing effort as of March
2002 and, for some, selected interesting features that
have been uncovered (Tables 2 and 3). Our view of the
LAB will be fundamentally changed as we discover
the relationships and capabilities of these organisms
through genomics.

SUMMARIES OF SEQUENCING PROJECTS

Lactococcus lactis subsp. cremoris SK11
(contributed by Larry L. McKay and Bart
Weimer)

Lactococci are mesophilic LAB that were first isol-
ated from green plants. However, today they are used
extensively in food fermentations, which represent
about 20% of the total economic value of fermen-
ted foods produced throughout the world. This group
of bacteria, previously designated the lactic strepto-
cocci (Streptococcus lactis subsp. lactis or S. lac-
tis subsp. cremoris) was placed in this new taxon
in 1987 by Schleifer. Lactococci gained notable in-
terest because many of their functions important for
successful fermentations are linked to plasmid DNA
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(McKay 1985). Plasmids are commonly exchanged
between strains via conjugation (McKay 1985; Dunny
& McKay 1999) and with the chromosome by IS ele-
ments (Hughes 2000). Presumably, these exchanges
and rearrangements mediate rapid strain adaptation
and evolution but also add to the instability of import-
ant metabolic functions.

These bacteria are selected for use in fermenta-
tions based on their metabolic stability, their resistance
to bacteriophage, and their ability to produce unique
compounds – often from amino acid catabolism. The
study of their physiology in adverse conditions such
as low pH and high NaCl indicates that they adapt to
these environments quickly and change their metabol-
ism as a result of carbohydrate starvation (Stuart &
Weimer 1998). Recent genome studies and physical
maps indicate that bacterial genomes are very dynamic
(Hughes 2000). These rearrangements are mediated by
IS elements and result in gene duplication, transloca-
tion, inversion, deletion and horizontal transfer events.
For example, an inversion encompassing approxim-
ately one-half of the chromosome of L. lactis ML3
occurred by homologous recombination between two
copies of IS905 (Daveran-Mingot et al. 1998). The
response to these stresses, particularly to exposure to
bacteriophage (Forde & Fitzgerald 1999), highlights
the plasticity of the genome (Le Bourgeois et al. 1995;
Delorme et al. 1994; Davidson et al. 1996). Estab-
lishing the links between environmental conditions,
genome organization, and cellular physiology in lacto-
cocci will provide new and exciting information about
the molecular mechanisms of these important bacteria.
Advances that define the fundamental knowledge of
the genetics, molecular biology, physiology, and bio-
chemistry of lactococci will provide new insights and
applications for these bacteria.

The importance of lactococci, specifically L. lactis
subsp. cremoris, is demonstrated by its continual use
in food fermentations (Garvie et al. 1981; Beimfohr
et al. 1997). L. lactis subsp. cremoris strains are pre-
ferred over L. lactis subsp. lactis strains because of
their superior contribution to product flavor via unique
metabolic mechanisms (Sandine, 1988; Salama et al.
1991). The DNA sequence divergence between the
subspecies is estimated to be between 20 and 30%
(Godon et al. 1992). Of the many lactococcal strains
used, L. lactis subsp. cremoris SK11 is recognized for
the beneficial flavor compounds it produces (Lawrence
et al. 1976). Although some progress in unlocking this
strain’s genetic secrets has been made, much more can
be accomplished by using a genomics/proteomics ap-

proach. With this genome sequence, it will be possible
to confirm the metabolic and evolutionary differences
between subspecies of lactococci in order to identify
the important characteristics that define this genus.
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Lactococcus lactis ssp. cremoris MG1363
(contributed by Douwe van Sinderen, Mike
Gasson, Jan Kok and Oscar Kuipers)

Lactococcus lactis ssp. cremoris MG1363 is a cured
isolate of strain NCDO 712 (Gasson, 1983), and is
the most widely used model Lactococcus strain in ge-
netic, physiological and applied research all over the
world. L. lactis is a prominent bacterium in cheese
production and can also be used for various other
applications such as a vehicle for oral vaccines or
delivery of health-promoting factors via the GI tract.
Even before the genome sequencing projects star-
ted already over 10% of its gene content had been
identified and characterized by conventional methods.
Recently the complete genome sequence of L. lac-
tis ssp. lactis IL1403 was published (Bolotin et al.
2001), providing a great opportunity to compare the
two genomes, with respect to their similarities and
differences. Many important features, such as path-
ways leading to the formation of flavour compounds,
carbon and nitrogen metabolic routes, gene regula-
tion mechanisms, prophage or sex-factor occurrence,
and stress responses can be compared when the gen-
ome sequence of MG1363 is also known. Functional
studies using transcriptome and proteome analyses can
also be applied in order to speed up characterisation of
important novel targets.

Genome sequencing status and results

To obtain the complete nucleotide sequence of
the genome of Lactococcus lactis subsp. cremoris
MG1363 a shotgun sequencing approach was used.
The sequence of 15 000 ends of inserts of pUC clones,
ranging in size from 1 to 3 kb, have been determ-
ined, yielding 9 million bp of sequence. The obtained
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sequences were aligned with known sequences of
MG1363 present in the NCBI nucleotide database (±
270 kb) and sequences present within the consortium
(± 150 kb) using the Staden and Sequencer software
packages. As the construction of a random library
with inserts larger than 20 kb failed, the genome se-
quence of L. lactis subsp. lactis IL1403 was used as
a template to start completing the genome sequence.
After positioning of all the contigs on IL1403, forward
and reverse primers were designed using an in-house
developed software tool, in the ends of the contigs.
The nucleotide sequences of the PCR fragments are
currently being used to close the gaps. Annotation of
the nucleotide sequence is being done with Glimmer,
Blast, PFAM, Blocks.
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Lactococcus lactis ssp. cremoris MG1363
(contributed by Alexei Sorokin and Alexander
Bolotin)

Two strains, IL1403 and MG1363, isolated from in-
dustrial sources and cured from plasmids, are com-
monly used to study genetics, physiology and mo-
lecular biology of Lactococcus lactis. These strains
belong to two L. lactis strain clusters, called lactis
and cremoris, distinct by the spectra of dairy ferment-
ation products. We sequenced the entire genome of the
strain IL1403 (Bolotin et al. 1999, 2001). To com-
pare genomes of the two strains in the simplest way
we decided to perform a co-linear scaffolding of the
chromosome of strain MG1363. Co-linear scaffolding
consists in random sequencing of a limited number of
clones and Long Range PCR mapping of the co-linear
regions of two genomes, one of which was completely
sequenced earlier. In the co-linear regions, established
by PCR, gene content and order should be approxim-
ately the same. The established co-linear scaffold of
the MG1363 genome, which shares 85% identity with
that of IL1403, allows easy access to 50% of the genes
from this strain.

Genome sequencing status and results

Total DNA of L. lactis MG1363 was randomized by
AluI in conditions of non-complete digestion or by
sonication and extracted after separation in an 0.8%
agarose gel to give an average fragment size of 1.5 kb.
It was then cloned into vector pSGMU2 cut by SmaI
and the inserts from approx. 1500 random clones were
sequenced by forward and reverse primers. Sequences
of 513 of these clones, having a total non-redundant
length of 0.3 Mb, were used to construct a co-linear
scaffold of the strain MG1363 over IL1403. The total
size of the co-linear genome parts was estimated to
be around 1100 kb, that is approximately 45% of the
entire genome (Bolotin et al. 2002). Oligonucleotide-
directed sequencing over gaps amplified by LR PCR
fragments of MG1363 and the entire sequence of
a few regions of interest resulted in the accumula-
tion of 1038 kb non-redundant sequence distributed
in 733 contigs. The contigs were compared for ho-
mology, using BLASTx, with the complete protein
set of L. lactis IL1403. Sequences of 523 contigs
encode proteins that are more than 80% identical to
proteins from IL1403. The sequences of the 733 con-
tigs are available from GenBank as dbGSS (acc. Nos.
BH770319-BH771051).
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Lactobacillus plantarum WCFS1
(contributed by Michiel Kleerebezem and Roland
Siezen)

The genus Lactobacillus encompasses a large num-
ber of different species that display a relatively
large degree of diversity. Among these, Lactobacillus
plantarum is a flexible and versatile species that is en-
countered in a large variety of environmental niches,
including some dairy, and many vegetable or plant fer-
mentations. Some strains of Lactobacillus are found
as natural commensals of the gastrointestinal tract (GI
tract), the oral cavity and the female uro-genital tract
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of animals and humans. The ability to adhere to spe-
cific regions of the GI tract is a property which has
stimulated research aimed at the use of lactobacilli
as delivery-vehicles for therapeutic compounds such
as immunomodulators, antibodies, enzymes and vac-
cines (Marteau & Rambaud 1993 Hols et al. 1997;
Slos et al. 1998). Lactobacillus plantarum arrives in
the small intestine in an active state (Vesa et al. 2000)
and is frequently encountered as a natural inhabit-
ant of the human gastro-intestinal tract (Ahrne et al.
1998). Some strains are being marketed as probiotic.
Previous studies using gel electrophoresis have indic-
ated that L. plantarum has one of the largest genomes
known among lactic acid bacteria (Chevalier et al.
1994; Daniel 1995). The Wageningen Centre for Food
Sciences (WCFS) in collaboration with Greenomics
in Wageningen, has determined the complete genome
sequence of L. plantarum WCFS1, a single colony
isolate of strain NCIMB8826, a strain of human origin.

Genome sequencing status and results

Sequencing was accomplished using a shotgun ap-
proach, while λ-clones and multiplex PCR were used
to fill the gaps. The circular chromosome of L.
plantarum WCFS1 consists of 3 308 274 bp with an
average G+C content of 44.5%, and is among the
largest of lactic acid bacteria. In addition, the strain
harbours three plasmids of 36 069 bp (G+C content:
40.8%), 2365 bp (G+C content: 34.3%), and 1917 bp
(G+C content: 39.5%), respectively. Automated pre-
diction software (Glimmer, Genemark) was used to
obtain a primary prediction of protein encoding genes,
which was manually improved to result in a current list
containing about 3050 genes.

The orientation of the majority of the genes is
highly organized from the origin to the terminus
of replication for both halves of the chromosome.
Five rRNA-encoding operons, with very few se-
quence polymorphisms, could be identified scattered
around the chromosome. Automated ORF analysis
and functional annotation was performed using Bio-
Scout (LION) and Pedant-Pro (BioMax) software
packages, followed by extensive manual curation.
Functions were predicted for over 65% of the gene
products. Major categories are proteins involved in
energy metabolism (8%), cell envelope (8%), trans-
port (13%) and regulation (9%). Over 2300 encoded
proteins have expect scores better than 1e-10 to data-
base entries, and nearly 90% of these are most similar
to proteins of other Gram-positive bacteria, predom-

inantly those encoded in the genomes of Listeria,
Lactococcus, Bacillus and Streptococcus.

L. plantarum is a versatile and flexible organism
and is able to grow on a wide variety of sugar sources.
This phenotypic trait is reflected by the high number
of predicted PEP-dependent sugar phosphotransferase
systems (PTS; 25 complete) and other sugar transport-
ers encoded by WCFS1. Strikingly, over 60% of these
sugar transporters are located within 250 kb in both
directions from the origin of replication.
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Lactobacillus rhamnosus HN001
(contributed by James Dekker and Mark Lubbers)

Lactobacillus rhamnosus is one of the few species of
Lactobacillus that have been used as probiotic organ-
isms in functional foods. In addition, this species is
one of the two most common non-starter lactic acid
bacteria found in New Zealand cheddar cheese; the
other is L. paracasei. We have identified a strain of L.
rhamnosus, designated HN001, that has both flavour-
enhancing and probiotic attributes. It can be used as an
adjunct during cheese manufacture to reduce adventi-
tious microflora, accelerate cheese ripening, and im-
prove cheese flavour. We have also demonstrated that
HN001 has the ‘prerequisite’ properties of a probiotic,
including confirmation of taxonomic classification,
acid and bile resistance, adherance to intestinal cells,
transient colonisation, and lack of any toxicity or detri-
mental effects (Prasad et al. 1998; Zhou et al. 2000a,b,
2001; Gopal et al. 2001; Sheih et al. 2001). A num-
ber of in vitro and in vivo tests, including and human
clinical trials, have demonstrated the ability of HN001
to influence specific cytokines, NK cell activity, T cell
stimulatory capacity and phagocytic ability, and influ-
ence the balance of the intestinal microflora in humans
(Gill et al. 2000, 2001a; Tannock et al. 2000). HN001
also has antimicrobial activity against important gut
pathogens (Gill et al. 2001b). L. rhamnosus HN001
is genetically accessible and we have developed tools
and techniques for efficient gene disruption and over-
expression. Therefore, HN001 is an ideal candidate for
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an in-depth study of factors that contribute to probiotic
and flavour-enhancing attributes of lactobacilli.

Genome sequencing status and results

A draft genome sequence of HN001 was obtained by
shotgun sequencing. Analysis of the data indicates a
genome size of about 2.4 Mb, and an average G+C
content of approximately 46.4%, which is within the
range reported for other Lb. rhamnosus species. In
addition, HN001 harbours two plasmids of 8754 bp
(G+C content: 41.9%) and approximately 40 000 bp
(G+C content: 43.7%). Automated ORF prediction
and annotation were not used. Rather, the whole gen-
ome sequence was compared against publicly avail-
able databases and the output manually examined for
genes of specific interest. In addition, metabolic path-
ways of particular interest were also identified. To
date, over 900 candidate genes have been examined
and almost 300 genes with potential involvement in
flavour, survival and probiotic activity (e.g. gut adhe-
sion, immune and anti-microbial activity) have been
identified. Of these, 39 HN001 genes have been func-
tionally characterised using a number of approaches,
including gene knockout by disruption, overexpres-
sion, gene complementation and biochemical assay of
purified recombinant protein.
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Lactobacillus johnsonii La1 (NCC2761)
(contributed by David Pridmore)

Lactobacillus johnsonii strains have been mainly isol-
ated from the feces of humans and animals (Johnson et
al. 1980; Fujisawa et al. 1992), suggesting that these
bacteria constitute part of the natural intestinal flora.
L. johnsonii La1 (formerly Lactobacillus acidophilus
La1) is a Nestlé proprietary strain that has been extens-
ively studied for its probiotic properties and is com-
mercialised in the LC1 fermented milk products. La1
shows immunomodulatory properties (Link-Amster et

al. 1994; Schiffrin et al. 1995; Haller et al. 2000a,b),
antipathogenic properties (Bernet et al. 1994; Bernet-
Camard et al. 1997; Felley et al. 2001; Pérez et al.
2001) and the ability to interact with the host (Granato
et al. 1999; Neeser et al. 2000). The determination
and analysis of the complete genome sequence of L.
johnsonii La1 has provided valuable targets for the
investigation of the above interactions. L. johnsonii
La1 is amenable to genetic manipulation, an import-
ant consideration in view of the wealth of information
revealed in the genome sequence and the interest to in-
vestigate the probiotic features of this bacterium at the
genetic level. Efficient transformation by plasmids, the
ability to use pG+host9 and its temperature sensitive
replication to produce genetic disruption of selected
genes and the application of pG+host9:ISS1 (Maguin
et al. 1996) to produce random mutations are some
of the tools available, making L. johnsonii La1 an
important host for advanced genetic analysis.

Genome sequencing status and results

Random shotgun cloning and sequencing was sup-
plemented with sequencing of BAC clones and long-
range PCR products to finally produce a circular chro-
mosome of approximately 2.022 Mbp. The computer-
predicted SmaI digest closely matches the physical
digest pattern. Bioinformatic analysis has identified
the L. johnsonii La1 counterparts of the best-studied
genes and pathways. The initial analysis of these res-
ults has not revealed any major surprises, except for
the complete lack of amino acid biosynthetic pathways
which appears to be compensated for by an increased
number of amino acid transporters. Given the limited
literature describing the natural habitat of this bac-
terium, a more profound analysis of the genetic poten-
tial of L. johnsonii La1 could provide important clues
as to the nutritional composition of its environment.
The structure of the L. johnsonii La1 chromosome is
unusual in that both the plot of GC skew and the dir-
ection of the transcription of the majority of genes do
not place the proposed terminus opposite the origin
(approximately 1000 kb), but close to 1300 kb. This
chromosome structure may be explained by the struc-
ture, orientation and position of two genes encoding
large cell-wall anchored proteins in L. johnsonii La1.
Both genes predict proteins with more than 100 copies
of a conserved 10 amino acid repeat. This repeat is
reflected in the gene sequences and may be the tar-
get for recombination. Inversion of the approximately
600 kb of sequence between the repeat would position
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the terminus opposite the origin. A second example
of L. johnsonii La1 genome rearrangement has been
observed by defining the direct repeats produced by IS
element transposition. One pair of elements showed a
perfect exchange of the direct repeat sequences. Con-
firmed by PCR, this event has produced an inversion
of approximately 800 kb of the L. johnsonii La1 gen-
ome. Extension of this analysis to other L. johnsonii
isolates has allowed the identification of some of the
intermediates in the events leading to the L. johnsonii
La1 genome configuration.
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Lactobacillus acidophilus ATCC700396 / NCFM
(contributed by Todd R. Klaenhammer and Raul
Cano)

In 1900, Moro first isolated Lactobacillus acidophilus
from infant feces. Meaning ‘acid loving’, acidophilus
can be found in the intestinal tract of humans and an-
imals, as well as infants consuming high milk, lactose,
or dextran diets. Metchnikoff’s 1906 work on The
prolongation of life: optimistic studies, implicated a
lactic acid bacillus, found in Bulgarian yoghurts, as
the agent responsible for deterring intestinal putrefac-
tion and aging. Later, Lactobacillus acidophilus was
considered to be the most likely species to fulfill the
base criteria expected of a probiotic cultures; survival
through the GI tract, bile tolerance, acid tolerance,
and antimicrobial production. Over the last century
a considerable amount of research has been carried
out on L. acidophilus, and a group of closely-related
species clustered in a group known as the ‘acido-
philus complex’ (Klaenhammer & Russell, 1999).
Of the six species in the group, L. acidophilus con-
tinues to be the bacterium most often implicated in
providing probiotic benefits and remains to be the spe-
cies most commonly found in foods or supplements
that contain probiotic cultures. In a recent survey,
Clark et al. (2001) found that when L. acidophilus
was recovered from probiotics samples, the majority
of confirmed strains showed a genetic fingerprint re-
sembling that of NCFM. The L. acidophilus NCFM
culture has been used commercially since 1972 in a

variety of products and probiotic dairy foods, like
Sweet AcidophilusTM milk. Its long history of safe
use in commercial products for and human consump-
tion, and its close genetic relationship to the neotype
strain, ATCC4356 (Walker et al. 1996), were two
major reasons that the L. acidophilus NCFM strain
(deposited as ATCC700396) was selected for genome
sequencing.

L. acidophilus is an obligate homofermenter and
metabolizes hexoses primarily to lactic acid. Both the
D- and L-isomers of lactate are produced. L. acido-
philus NCFM metabolizes fructo-oligosaccharides
(Kaplin & Hutkins 2000), which are prebiotic com-
pounds that support the growth of beneficial gut
bacterial. Some of the functional properties of this
organism have been reviewed (Sanders & Klaenham-
mer 2001) and include: survival through the GI tract
(Conway et al. 1982), reduction of fecal mutagenic en-
zymes (Goldin & Gorbach 1980; Goldin et al. 1980),
adherence to intestinal tissues (Conway et al. 1987;
Greene & Klaenhammer 1994), stimulation of IgA
in mice by a culture cocktail that includes L. acido-
philus NCFM (Tejada-Simon & Pestka 1999), and
production of the bacteriocin, lactacin B (Barefoot &
Klaenhammer 1983). In contrast to the other mem-
bers of the acidophilus complex, there is considerable
information on L. acidophilus NCFM related to its
transformability by electroporation (Luchansky et al.
1988; Walker et al. 1996) and the development of ge-
netic tools, that will be used for the functional genomic
analysis of this species (Kullen & Klaenhammer 1999;
Russell & Klaenhammer 2001a,b).

Genome sequencing status and results

Genome sequencing was accomplished using a shot-
gun random library approach and pUC18. PCR
and direct genome sequencing (Fidelity Systems,
Inc.) were used to fill gaps and polish selec-
ted regions. The genome has been assembled
into a single contig and consists of 1.99 Mbp
with an average GC content of 34.6%. The gen-
ome was automatically annotated by the predic-
tion, database, and annotation software GAMOLA
(Global annotation of multiplexed on-site blasted
DNA sequences) to identify 1979 ORFs in a cod-
ing density of 89.9%. Predicted ORFs were manually
verified against the on-site Blast and Pfam databases.
Some features encoded in the NCFM genome are six
copies of an IS3-type element, two bacteriocins, three
distinct regions encoding competence genes, two ldh
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genes, two bile salt hydrolase genes, two operons for
fructo-oligosaccharide (FOS) utilization, and no intact
prophages. There is also a collection of genome se-
quence information available in public databases for
various strains of the L. acidophilus species, including
heat shock operons groELS and dnaK, a sigma factor
ropD, bacteriocins acidocins 8912 and B, bile salt hy-
drolase, and β- and phospho-β-galactosidases. Com-
parison of the NCFM genome sequence with these
available database sequences has revealed a number
of interesting similarities and marked differences.
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Lactobacillus gasseri ATCC33323, neotype
(contributed by Todd R. Klaenhammer, Eric
Altermann and Rodolphe Barrangou)

Recent developments in molecular taxonomy have
revealed six different Lactobacillus species that com-
prise the ‘acidophilus’ group, which are widely con-
sidered as model probiotic organisms (Klaenhammer
& Russell 2000). Among these, Lactobacillus gas-
seri appears to represent the major homofermentative
Lactobacillus species that occupies the human GI tract
(Mitsuoka, 1992; Kullen et al. 2000; Heilig et al.
2002). L. gasseri demonstrates good survival in the
GI tract (Conway et al. 1982; Pedrosa et al. 1995) and
has been associated with a variety of probiotic activ-
ities and roles including reduction of fecal mutagenic
enzymes (Pedrosa et al. 1995), adherence to intestinal
tissues (Conway et al. 1987; Greene & Klaenhammer
1994), stimulation of macrophages (Kitazawa et al.
1994; Kirjavainen et al. 1999; Kitazawa et al. 1994),
and production of bacteriocins (Itoh et al. 1995).

Data are available on the transformability by elec-
troporation (Russell & Klaenhammer 2001a,b), and
expression of heterologous genes in L. gasseri (Cho
et al. 2000), as well as on the genome sequence of one
of its temperate bacteriophage (Altermann et al. 1999).
L. gasseri is more amenable to DNA introduction and
manipulation than other members of the acidophilus
complex, leading to the development of genetic tools

that will be essential to functional genomic analysis of
this species (Kullen & Klaenhammer 1999; Russell &
Klaenhammer 2001a,b).

Genome sequencing status and results

Genome sequencing of the L. gasseri neotype strain,
ATCC33323, was carried out by the Department of
Energy–Joint Genome Institute in collaboration with
the Lactic Acid Bacterial Genomics Consortium. The
strategy for genome sequencing was based on a shot-
gun random sequencing of a small genomic DNA
insert (average 2.5 kb) library cloned into pUC18
at approximately 8-fold coverage, complimented by
sequencing a large insert (35–45 kb) Fosmid lib-
rary at a lower coverage. Gap closing is ongoing
using a multiplex PCR approach. The genome as-
sembly of L. gasseri currently consists of 67 contigs,
representing a total of 1.84 Mbp, with an average
G+C content of 35.1%. The sequence information is
posted on the JGI Microbial Genomes web site at:
(http://www.jgi.doe.gov/JGI_microbial/html/ lactoba-
cillus_gas/lactob_gas_homepage.html) GAMOLA
(Global Annotation of On-site Basted DNA-sequences)
software was developed by E. Altermann to automat-
ically predict coding open reading frames (ORFs) and
annotate the draft sequence (http://www.cals.ncsu.edu/
food_science/trk/main.html). GAMOLA relies on the
available software Glimmer2 (Delcher et al. 1999),
NCBI toolkit (National Center for Biotechnology In-
formation Bldg 38A, NIH 8600 Rockville Pike Beth-
esda, MD 20894), Primer3 (Rozen & Skaletsky, 1997)
and HMMER2.2g (Eddy 1998) and combines the res-
ults into functionally annotated DNA sequences in
Genbank format.

For the L. gasseri sequence, the automated an-
notation predicted 1803 ORFs larger than 100 bp.
The average gene length is 930 bp with a coding
percentage of 89.1%. After the initial automated an-
notation, the genome was predicted to encode: 31
ABC transporters, 14 ion-ATPase transporters and two
proton-antiporters; 21 PTS-systems (some partial), 16
stress responsive genes (sigma factor, chaperones, heat
shock operons and chaperones), one intact prophage,
14 mobile elements (transposases, integrases and IS-
elements), 32 genes involved in cell-cycle or cell-
shape, eight genes implied in aggregation/adhesion,
seven genes related to late competence, 40 peptidases
(proteolytic system plus general peptidases), 20 tRNA
genes, and at least two rRNA operons. Manual cur-
ation of the automated annotation will be carried out
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upon completion of genome sequencing and closure
of the major gaps.

This project has revealed a number of gene systems
that are likely to be important in the gastrointestinal
survival and activity of this human probiotic species.
The public availability of the L. gasseri genome will
promote comparative genomic analysis among LAB.
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Lactobacillus helveticus CNRZ32
(contributed by: Jim Steele and Jeff Broadbent)

Within the genus Lactobacillus, L. helveticus is part of
the obligately homofermentative (‘Group I’) cluster,
which can produce D- and L-lactic acid from hex-
ose sugars via the Embden-Meyerhof pathway and
is incapable of fermenting pentoses (Axelsson 1998).
L. helveticus grows on a relatively restricted number
of carbohydrates that includes lactose and galactose
and typically requires riboflavin, pantothenic acid and
pyridoxal for growth (Hammes & Vogel 1995).

Phylogenetically, L. helveticus is quite closely
related (<10% sequence divergence) to L. amylo-
vorus, L. acidophilus, L. delbrueckii, L. acetotoler-
ans, L. gasseri, and L. amylophilus. Among these
species, L. helveticus is most closely related (<2%
sequence divergence) to L. amylovorus and L. acido-
philus (Schleifer & Ludwig 1995). The genome size
of L. helveticus has been determined to be 2.4 Mb by
pulse-field gel electrophoresis (unpublished data). Ap-
proximately 40 chromosomal genes and four plasmids
have been sequenced from L. helveticus. Methods for
electroporation and gene replacement have been de-
veloped for L. helveticus CNRZ32 (Bhowmik & Steele
1993; Bhowmik et al. 1993); however, attempts to
utilize these methods with other strains of L. helveticus
have been unsuccessful.

L. helveticus is a component of ‘thermophilic’
starter cultures used in the manufacture of a number
of fermented dairy products (Hassan & Frank, 2001).

These cultures have an optimum growth temperat-
ure of approximately 42 ◦C and contain Streptococcus
thermophilus with L. delbrueckii subsp. bulgaricus
and/or L. helveticus. These cultures are utilized in
the manufacture of Swiss-type and Italian-type cheese
varieties. There has been a 325% increase in the past
20 years in the production of Mozzarella cheese in
the United States to more than 2244 million pounds,
with an economic value of nearly $1 billion (Na-
tional Cheese Institute 1998). Additionally, strains of
L. helveticus are commonly used as flavor adjunct
cultures, where they are added to bacterial ripened
cheese varieties to reduce bitterness and accelerate the
development of beneficial flavors.

To have utility in the manufacture of fermented
dairy products strains must be resistant to bacterio-
phage, have stable fermentation properties, and con-
sistently produce products with acceptable flavor and
texture attributes. A significant body of research is
available concerning the proteolytic system of these
organisms, with at least 15 components of the pro-
teolytic system characterized at the nucleotide level
and numerous single and double mutants lacking spe-
cific components studied in detail (Christensen et al.
1999). Limited information is available concerning a
number of other industrially relevant metabolic path-
ways (i.e., carbohydrate fermentation) and enzymes
(i.e., esterases). Genomic sequence analysis of L. hel-
veticus will allow researchers to fill the significant
gaps present in our understanding of the physiology
of this organism by providing a comprehensive view
of the enzymes and metabolic pathways potentially in-
volved in industrially relevant phenotypes. This know-
ledge will allow researchers to develop more effective
strategies to enhance the utility of these organisms in
the manufacture Swiss-type and Italian-type cheese
varieties as well as their utility as flavor adjunct
cultures.
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Lactobacillus delbrueckii subsp. bulgaricus ATCC
BAA-365
(contributed by James Steele)

Within the genus Lactobacillus, L. delbrueckii is
part of the obligately homofermentative (‘Group I’)
cluster, which can produce D-lactic acid from hex-
ose sugars via the Embden–Meyerhof pathway and
is incapable of fermenting pentoses (Axelsson 1998).
The L. delbrueckii species contains three subspe-
cies, L. delbrueckii subsp. delbrueckii, L. delbrueckii
subsp. lactis, and L. delbrueckii subsp. bulgaricus. L.
delbrueckii subsp. bulgaricus grows on a relatively
restricted number of carbohydrates and typically re-
quires pantothenic acid and niacin (Hammes & Vogel
1995).

Phylogenetically, L. delbrueckii subsp. bulgaricus
is closely related (<10% sequence divergence) to L.
amylovorus, L. acidophilus, L. helveticus, L. acet-
otolerans, L. gasseri, and L. amylophilus (Schleifer
& Ludwig 1995). The GC ratio of L. delbrueckii
subsp. bulgaricus (49–51%) is somewhat higher than
that found among other species (34–46%) within this
phylogenetic tree (Hammes & Vogel 1995). The gen-
ome size of L. delbrueckii subsp. bulgaricus has been
determined to be 2.3 Mb by pulse-field gel electro-
phoresis (Leong-Morgenthaler 1990). Very few chro-
mosomal genes (<15) have been sequenced from L.
delbrueckii subsp. bulgaricus, however the complete
sequence of a small cryptic plasmid and the par-
tial sequence of a bacteriophage are known. Gene
transfer systems for L. delbrueckii subsp. bulgaricus
include two conjugation-based gene transfer systems
(Rantsiou et al. 1999; Thompson et al. 1999) and
electroporation (Serror et al. 2002).

L. delbrueckii subsp. bulgaricus is a component of
‘thermophillic’ starter cultures used in the manufac-
ture of a number of fermented dairy products (Hassan
& Frank 2001). These cultures have an optimum
growth temperature of approximately 42 ◦C and con-
tain Streptococcus thermophilus with L. delbrueckii
subsp. bulgaricus and/or L. helveticus. These cultures
are utilized in the yogurt, Swiss-type and Italian-type
cheese varieties. There has been a 240% increase in
the past 20 years in the production of yogurt in the
United States to 1371 million pounds in 1997, with
a wholesale value of over $1.1 billion (Milk Industry
Foundation 1998).

Acknowledgments

The Joint Genome Institute of the US Department of
Energy is supporting the sequencing effort for this
LAB genome. The efforts of T. Hawkins, S. Stil-
wagen, P. Richardson, and K. Kadner are gratefully
acknowledged.

Lactobacillus delbrueckii ssp. bulgaricus
ATCC11842
(contributed by Maarten van de Guchte and
Emanuelle Maguin)

Lactobacillus delbrueckii ssp. bulgaricus is a thermo-
philic lactic acid bacterium that is principally known
for its use in yogurt production, where it assures
milk fermentation in conjunction with Streptococcus
thermophilus. As such, L. bulgaricus is one of the
economically most important LAB.

For the type strain ATCC11842 a reproducible
transformation procedure is available (Serror et al.
2002) as well as gene inactivation systems (unpub-
lished) that will allow the exploitation of genome
data. A Proteome reference map has been established
(unpublished) which will facilitate and benefit from
a genome analysis. In this context, the determina-
tion of the complete genome sequence of this strain
was undertaken in a joint effort of the Centre Na-
tional de Séquençage (CNS, Genoscope, Evry Fr) and
the Institut National de la Recherche Agronomique
(INRA).

Genome sequencing

Although the genome size of L. bulgaricus was pre-
viously estimated to be 2.3 Mbp, recent pulse field
electrophoresis analysis revealed that the genome size
of the type strain ATCC11842 was about 1.8 Mbp. The
genome sequence has been determined using a shot-
gun sequencing approach. Contigs were assembled
after sequencing of two plasmid libraries with dif-
ferently sized inserts. Sequences from a mini-BAC
library were subsequently used for scaffolding. The
scaffold structure was validated by long range PCR,
and links between the initial scaffolds were established
by multiplex long accurate PCR. The average GC con-
tent of the L. bulgaricus genome is 50%, while regions
that presumably result from horizontal transfer can be
detected with GC contents as low as 31%.
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Lactobacillus sakei 23K
(contributed by Stéphane Chaillou and Monique
Zagorec)

Lactobacillus sakei is the predominant LAB found on
fresh meat and is widely used as starter in fermented
meat products in Western Europe. It is also occasion-
ally found on silage, sourdough and smoked fish. The
physiology of L. sakei is still poorly understood when
compared to dairy LAB. Recent studies seem to in-
dicate that L. sakei has developed original metabolic
and physiological traits to adapt to a meat environment
(for a review see Champomier-Verges et al. 2002). To
better understand the ability and fitness of L. sakei to
grow on meat we have chosen the genomic approach.
The L. sakei genome sequencing project was launched
in year 2000, using strain 23K, isolated from sausage,
as a model.

Genome sequencing status and results

A physical and genetic mapping of the chromosome
was first established by pulse-field gel electrophoresis
after digestion with rare-cutting enzymes (Dudez et
al. 2002). This preliminary map allowed to estim-
ate the chromosome size to be about 1.85 Mb. Seven
rrn operons including one doublet were identified and
their flanking regions characterised. The sequencing
of 90% of the genome was accomplished by a clas-
sical shotgun strategy, where 8000 clones were first
sequenced on their forward side, followed by reads on
the reverse side for 2000 clones flanking contigs end,
and 500 internal reads. The gap closure phase was
carried out using ligation-mediated PCR and several
customised BLAST strategies against related genomes
such as Bacillus subtilis, Bacillus halodurans and Lis-
teria monocytogenes. Remaining gaps are currently
analysed with a set of other strategies such as mul-
tiplex PCR, sequencing on chromosomal DNA, and
contigs ordering based on the physical map. Currently,
96% of the genome has been sequenced with an aver-
age base redundancy of 4×. A preliminary analysis of

the genome content was carried out with the CDS pre-
diction software SHOW (Nicolas et al. 2002) revealing
1792 putative protein-encoding genes for 1772 kp se-
quenced. Automated annotation followed by manual
curation will be done with a improved version of
Artemis software from the Sanger Center, UK.
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Lactobacillus casei ATCC 334
(contributed by Jeffrey Broadbent)

Lactobacillus casei are rod-shaped LAB with a G
+ C content of 45–47% (Kandler & Weiss, 1986).
Within the genus Lactobacillus, L. casei is clustered
with facultatively heterofermentative (‘Group II’) spe-
cies which produce lactic acid from hexose sugars
via the Embden–Meyerhof pathway and from pentoses
by the 6-phosphogluconate/phosphoketolase pathway
(Axelsson, 1998). Growth occurs at 15 ◦C but not
45 ◦C, and requires riboflavin, folic acid, calcium
pantothenate, and niacin (Kandler & Weiss 1986).
Previously, four subspecies of L. casei were recog-
nized: L. casei subsp. casei, L. casei subsp. pseudo-
plantarum, L. casei subsp. rhamnosus, and L. casei
subsp. tolerans (Kandler & Weiss 1986). However,
recent phylogenetic studies have led to proposals that
members of the L. casei group be divided into three
species: L. rhamnosus, L. zeae and L. casei, with L.
casei ATCC 334 as the neotype strain for the latter spe-
cies (Collins et al. 1989; Dellaglio et al. 1991; Dicks
et al. 1996; Mori et al. 1997; Chen et al. 2000).

Members of the L. casei cluster are remarkably ad-
aptive, and may be isolated from raw and fermented
dairy products, fresh and fermented plant products,
and the reproductive and intestinal tracts of humans
and other animals (Kandler & Weiss 1986). Industri-
ally, L. casei have application as human probiotics
(health-promoting live cultures), as acid-producing
starter cultures for milk fermentation, and as specialty
cultures for the intensification and acceleration of fla-
vor development in certain bacterial-ripened cheese
varieties (Kosikowski 1982; Fox et al. 1998; Fonden
et al. 2000).

L. casei ATCC 334 was originally isolated as an
adventitious contaminant from Emmental cheese. This
bacterium, which has an estimated genome size of
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2.2 Mb (Ferrero et al. 1996; Tynkkynen et al. 1999),
was selected for genome sequencing because: (a) it
was isolated from ripening cheese; (b) it is amen-
able to transformation and genetic manipulation; and
(c) it is the proposed type strain for L. casei. Se-
quence analysis of the L. casei ATCC 334 genome
is expected to provide a comprehensive view of the
enzymes and metabolic pathways that are potential
contributors to cheese flavor development. In addi-
tion, improved knowledge of global gene regulation
and integrative metabolism in L. casei will help an-
swer long-standing questions regarding mechanisms
for the health-promoting benefits of LAB, identify
means by which LAB species grow in harsh environ-
ments , highlight the most rational strategies for meta-
bolic and genetic improvements to industrial strains,
and improve molecular biology resources for genetic
manipulation of dairy lactobacilli.
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Lactobacillus casei BL23
(contributed by Josef Deutscher and Axel Hartke)

Lactobacillus casei is a heterofermentative organism
widely used in milk fermentation and is therefore of
great biotechnological importance. In addition, it be-
longs to the few bacteria for which probiotic effects
have been unequivocally established (for a critical
review on probiotics see Marchand & Vandenplas
2000). ‘Healthy’ effects of this organism have been
observed in numerous studies with men and anim-
als. For example, Lb. casei, which survives transit
through the gastrointestinal tract (Yuki et al. 1999),
has been shown to positively affect the immune re-
sponse (Matsuzaki & Chin 2000; Yasui et al. 1999),
to enhance the resistance towards certain forms of
diarrhea and to prevent infections by several patho-
genic organisms (Wagner et al. 2000; Alvarez et al.
2001). Genetic tools, which allow the transformation
of many Lb. casei strains and the construction of pre-
determined chromosomal mutants carrying deletions
or point mutations (Dossonnet et al. 2000; Viana et al.
2000), are available, which together with its probiotic

features makes this organism a very interesting subject
for further genetic and functional genomic studies.

Genome sequencing status and results

The genome size of Lb. casei BL23 has previously
been estimated to be 2.3 Mb, but recent pulsed-
field gel electrophoresis analysis (in collaboration with
the laboratory of M. Zagorec) revealed a genome
size between 2.5 and 2.7 Mb. In order to sequence
the genome of Lb. casei BL23 we used a shot-
gun approach (collaboration between the Laboratoire
de Génétique des Microorganismes, INRA-CNRS,
Thiverval-Grignon and the Laboratoire Microbiologie
de l’Environnement, Université de CAEN). Sequen-
cing Lb. casei DNA fragments with a mean size of
1.3 kb from both ends, present in about 8000 isolated
clones, allowed us to determine about 90% of the com-
plete genome. We presently attempt to close the about
560 remaining gaps. Lb. casei BL23 has been cured
of plasmid pLZ15 and therefore contains only a single
circular chromosome.

Lb. casei seems to be a versatile organism capable
of adapting to variable growth conditions. Most in-
triguingly it seems to be able to utilize a large variety
of different carbon sources. This is reflected by the
relatively large number of predicted phosphoenolpyr-
uvate:sugar phosphotransferase systems (PTS) (see
Table 3). In Lb. casei, the coordinate action of the
various carbon utilization systems was found to be
controlled by a protein kinase/phosphatase (HprK/P)
implicated in carbon catabolite repression and inducer
exclusion (Dossonnet et al. 2000). Inactivation of
only the phosphatase activity of this bifunctional en-
zyme had a drastic effect on the growth behavior by
preventing the utilization of almost any carbohydrate
(Monedero et al. 2001).
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Lactobacillus brevis ATCC 367
(contributed by Milton Saier)

Lactobacillus brevis is a heterofermentative bacterium
that can be isolated from many different environments.
It is frequently used as a starter culture in silage fer-
mentation, sourdough production and LAB-type beer
fermentation. In beverages obtained by alcoholic fer-
mentation, lactobacilli may contribute to the quality
of the product but may also cause spoilage. Certain
L. brevis strains are resistant to hop bittering sub-
stances such as isohumulone and are able to grow
in beer. Their growth changes the turbidity, flavor
and aroma of the beer (Richards & Macrae 1964). L.
brevis strains involved in wine fermentation may pro-
duce biogenic amines by decarboxylation of precursor
amino acids through the action of substrate-specific
enzymes (Moreno-Arribas & Lonvaud-Funel 2001).
The ingestion of foods containing high levels of such
amines, particularly histamine and tyramine, can lead
to several toxicological disturbances (ten Brink et al.
1990; Mariné-Font et al. 1995).

We have studied the involvement of HPr(ser-P)
in the regulation of non-PTS permeases in L. brevis
(Ye et al. 1994, 1995). When provided with an
exogenous energy source such as arginine, galactose
grown cells of L. brevis transport galactose and the
non-metabolizable galactose analogue, thiomethyl-β-
galactoside (TMG), by a sugar:H+ symport mechan-
ism (Romano et al. 1987; Djordjevic et al. 2001). L.
brevis shows very low transformation efficiency by
electroporation rendering this bacteria difficult to ma-
nipulate. The cryptic plasmid of 14 kb from L. brevis
has recently been sequenced and will be used in the
development of novel vectors and essential genetic
tools.
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Pediococcus pentosaceus ATCC 25745
(contributed by Jeffery Broadbent and James
Steele)

Phylogenetically Pediococcus and Lactobacillus form
a super-cluster that can be divided in to two sub-
clusters, all species of Pediococcus fall within the
Lactobacillus casei–Pediococcus sub-cluster. Mor-
phologically, pediococci and lactobacilli (rods) are
distinct. The formation of tetrads via cell division in
two perpendicular directions in a single plane is a dis-
tinctive characteristic of pediococci. Pediococcus can
be described as ‘the only acidophilic, homoferment-
ative, LAB that divide alternatively in two perpendic-
ular directions to form tetrads’ (Simpson & Taguchi
1995). Lactic acid is produced from hexose sugars
via the Embden–Meyerhof pathway and from pentoses
by the 6-phosphogluconate/phosphoketolase pathway
(Axelsson, 1998).

Strains of P. pentosaceus have been reported to
contain between three and five resident plasmids (Gra-
ham & McKay 1985). Plasmid-linked traits include
the ability to ferment raffinose, melibiose, and sucrose,
as well as, the production of bacteriocins (Daeschel
& Klaenhammer 1985; Gonzalez & Kunka 1986).
Plasmids can be conjugally transferred between Pe-
diococcus and Enterococcus, Streptococcus, or Lacto-
coccus (Gonzalez & Kunka 1983). Electroporation has
been utilized to introduce plasmids into pediococci,
including P. pentosaceus (Kim et al. 1992; Caldwell
1996).

P. pentosaceus can be isolated from a variety of
plant materials and bacterial-ripened cheeses. This or-
ganism is used as an acid-producing starter culture
in sausage fermentations, cucumber and green bean
fermentations, soya milk fermentations, and silage
(Simpson & Taguchi 1995). P. pentosaceus are also
a typical component of the adventitious or non-starter
microflora of most cheese varieties during ripening
(Beresford et al. 2001). In addition, it has been sug-
gested that this organism may have value as an acid-
producing starter culture in the dairy fermentations
(Caldwell et al. 1996, 1998).

Genetic studies of P. pentosaceus have generated a
limited quantity of information on plasmid and chro-
mosomal encoded genes. With only one plasmid and
eight unique chromosomal regions sequenced, the vast
majority of genes encoding industrially important at-
tributes have yet to be described. Genomic sequence
analysis of P. pentosaceus genome will help fill key
knowledge gaps by providing a comprehensive view
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of the enzymes and metabolic pathways related to:
(1) acid and flavor production in fermented meat and
vegetable foods; (2) mechanisms by which by P.
pentosaceus and other non-starter LAB grow and dir-
ect flavor development in ripening cheese; and (3)
mechanisms by which P. pentosaceus and related LAB
spoil wine and other alcoholic beverages.
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Streptococcus thermophilus LMD-9
(contributed by Robert Hutkins)

Research during the past two decades has revealed
that Streptococcus thermophilus has properties that
make it one of the most commercially important of
all LAB. S. thermophilus is used, along with Lacto-
bacillus spp., as a starter culture for the manufacture
of several important fermented dairy foods, including
yogurt and Mozzarella cheese. It’s use has increased
significantly during the past two decades as a result
of the tremendous increase in consumption of these
products. According to USDA statistics, in 1998, more
than 2.24 billion pounds Mozzarella cheese and 1.37
billion pounds of yogurt were produced, respectively,
with a combined economic value of nearly $5 billion.
This increase has led to new demands on the per-
formance and production requirements of such starter
cultures. Industrial strains, for example, should be in-
sensitive to bacteriophage, have stable fermentation
characteristics, and produce products having consist-
ent flavor and texture properties. Although research on
the physiology of S. thermophilus has revealed import-
ant information on some of these properties, including
sugar and protein metabolism, polysaccharide pro-
duction, and flavor generation, only recently has the
genetic basis for many of these traits been determined.

Currently, several traits in S. thermophilus have
been targeted for strain improvement programs (Del-
cour et al. 2000). Since bacteriophage are responsible
for considerable economic losses during cheese man-
ufacture, efforts are underway to engineer restriction
and other phage-resistance systems into commercial
strains. Enhancing stability and expression of exo-

polysaccharides that act as natural thickening agents
has also attracted significant attention. Finally, S.
thermophilus has an important role as a probiotic, al-
leviating symptoms of lactose intolerance and other
gastrointestinal disorders.

The genome of S. thermophilus is 1.8 Mb, making
it among the smallest genomes of all LAB. Although
a moderate thermophile, it is phylogenetically related
to the more mesophilic lactococci and has a compar-
able low G+C ratio (40%). Genes coding for metabolic
pathways involved in sugar catabolism (Poolman et
al. 1989; Vaughan et al. 2001), protein and peptide
utilization (Fernandez-Espla et al. 2000; Garault et
al. 2002), polysaccharide production (Almirón-Roig
et al. 2000), the stress response system (Perrin et al.
1999), and phage resistance mechanisms (Solow &
Somkuti 2000; Burrus 2001) have been sequenced and
characterized. Although most strains do not harbor
plasmids, other mobile elements have been reported
(Guedon et. al. 1995), and techniques for gene trans-
fer and mutagenesis have been developed (Coderre &
Somkuti 1999; Baccigalupi et al. 2000).
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Streptococcus thermophilus LMG18311 and
CNRZ1066
(contributed by Alexander Bolotin, Ross Overbeek
and Pascal Hols)

Streptococcus thermophilus is one of the most eco-
nomically important LAB used in the manufacture
of yogurt and some Swiss- or Italian-type hard
cooked cheeses. This Gram-positive, non-sporulating,
catalase-negative, facultative-anaerobe coccus pro-
duces remarkable quantities of polysaccharides con-
tributing to the rheological properties of fermented
products. The comprehensive knowledge of S. thermo-
philus biology is important for the dairy industry but
is rather limited (Delcour et al. 2000). The availability
of the whole genome sequence of this species would
strongly improve the knowledge of its metabolism and
pave the way for engineering of new starter cultures
and better control of existing fermentation processes.
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The Life Science Institute at the Catholic University of
Louvain (Belgium), the Laboratory of Genetic Micro-
biology, Jouy en Josas, INRA (France) and Integrated
Genomics Inc, Chicago (USA) joined their efforts in
determining the genome sequences of two strains of S.
thermophilus.

Genome sequencing status and results

The complete sequences were determined by the ran-
dom shotgun sequencing strategy followed by mul-
tiplex PCR described earlier (Bolotin et al. 2001).
Sequences of the two strains were determined by
construction of two independent sequence datasets
containing 20 000 random and 1500 primer directed
reads for LMG18311 strain and 28 000 random and
2000 primer directed reads for CNRZ1066 strain. The
assembled genomes were analysed using the ERGO
bioinformatics suite. Both genomes contain ∼1.8 Mb
encoding six rRNA, a compete set of tRNAs, sev-
eral types of IS, and about 1800 open reading frames.
They are organized as a single circular chromosome
with 39% GC content, and show 95% nucleotide
identity. Although the S. thermophilus species is char-
acterized as GRAS (Generally Recognized As Safe),
several features of its metabolism are similar to that
of pathogenic Streptococci. Analysis of the genome
has revealed several key aspects of the pathways
of carbohydrates, amino acids, nucleotides, poly-
sacharides and lipids metabolism. More than 100
genes involved in the transport of a variety of sub-
strates such as peptides, sugars, metal ions, and
cofactors have been identified. The presence of sev-
eral phage and plasmid related genes indicates the
importance of horizontal gene transfer for evolution
of S.thermophilus. More information can be found
at web sites: http://www.biol.ucl.ac.be/gene/genome/,
http://spooky.jouy.inra.fr (restricted access), http://
www.integratedgenomics.com (restricted access)
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Leuconostoc mesenteroides subsp. mesenteroides
LA81
(contributed by Fred Breidt)

Leuconostoc species are epiphytic bacteria that are
wide spread in the natural environment and play an
important role in several industrial and food ferment-
ations. Leuconostoc mesenteroides is a facultative an-
aerobe requiring complex growth factors and amino
acids (Reiter & Oram 1982; Garvie 1986). Most
strains in liquid culture appear as cocci, occuring
singly or in pairs and short chains; however, mor-
phology can vary with growth conditions; cells grown
in glucose or on solid media may have an elongated
or rod-shaped morphology. Cells are Gram-positive,
asporogenous and non-motile. A variety of LAB, in-
cluding Leuconostoc species are commonly found on
crop plants (Mundt et al. 1967; Mundt 1970). L.
mesenteroides is perhaps the most predominant LAB
species found on fruits and vegetables and is respons-
ible for initiating the sauerkraut and other vegetable
fermentations (Pederson & Albury 1969). L. mes-
enteroides starter cultures also used in some dairy
and bread dough fermentations (Server-Busson et al.
1999). Under microaerophilic conditions, a hetero-
lactic fermentation is carried out. Glucose and other
hexose sugars are converted to equimolar amount of
D-lactate, ethanol and CO2 via a combination of the
hexose monophosphate and pentose phosphate path-
ways (Demoss et al. 1951; Garvie 1986; Gottschalk
1986). Other metabolic pathways include conversion
of citrate to diacetyl and acetoin (Cogan et al 1981)
and production of dextrans and levan from sucrose
(Alsop 1983; Broker 1977). Viscous polysaccharides
produced by L. mesenteroides are widely recognized
as causing product losses and processing problems in
the production of sucrose from sugar cane and sugar
beets (Tallgren et al. 1999). The first observation of
the production of polysaccharide ‘slime’ from sugar,
dates to the earliest days of the science of microbio-
logy; Pasteur (1861) attributed this activity to small
cocci, presumably Leuconostoc species. Commercial
production dextrans and levans by L. mesenteroides,
for use in the biochemical and pharmaceutical in-
dustry, has been carried out for more than 50 years
(Alsop 1983; Sutherland 1996). Dextrans are used
in the manufacture of blood plasma extenders, hep-
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arin substitutes for anticoagulant therapy, cosmetics,
and other products (A;sp[ 1983; Kim & Day 1994;
Leathers et al 1995; Sutherland 1996). Another use
of dextrans is the manufacture of Sephadex gels or
beads, which are widely used for industrial and labor-
atory protein separations (Sutherland 1996). We have
selected L. mesenteroides subsp. mesenteroides LA81
for sequencing. The strain is widely available from a
variety of culture collections listed as: ATCC 8293,
DSM 20343, NCIB 8023, CCM 1803, NCDO 523,
and NRRL B-1118. The strain is generally accepted as
a neotype strain for this species; it produces dextran,
and was originally isolated from fermenting olives.
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Oenococcus oeni PSU-1 (ATCC BAA-331)
(contributed by David Mills)

Oenococcus oeni (formerly called Leuconostoc oenos)
is a lactic acid bacterium that occurs naturally in
fruit mashes and related habitats (VanVuuren & Dicks
1993). O. oeni is employed commercially to carry out
the malolactic conversion, an important secondary fer-
mentation in the production of wine (Kunkee 1991).
O. oeni is a facultative anaerobe and one of the most
acid- and alcohol-tolerant LAB. O. oeni shares relat-
ively little DNA homology with the other genera in
the Leuconostoc branch of the LAB (Dellaglio et al.
1995).

Perhaps the most studied aspect of O. oeni is its
ability to carry out the malolactic conversion. This in-
volves uptake of malate, decarboxylation to L-lactic
acid and CO2, and subsequent export of end products.
The malolactic conversion generates energy for the
cell in the form of a proton motive force (Salema et
al. 1996). Recently the genes encoding the malate de-
carboxylase (mleA) and malate permease (mleP) have
been cloned and characterized (Labarre et al. 1996a,b).
Other chromosomal genes from O. oeni that have
been characterized include: histidine decarboxylase
(Coton et al. 1998), α-acetolactic acid decarboxylase
(Garmyn et al. 1996), stress-related genes (Jobin et al.
1997, 1999), genes involved in arginine metabolism

(Tonon et al. 2001) and rDNA genes (Martinez-Murcia
& Collins 1990). Several genetic elements from O.
oeni have been characterized including bacteriophages
(Gindreau et al. 1997; Gindreau & Lonvaud-Funel
1999), and plasmids (Fremaux et al. 1993). In ad-
dition, the conjugative transposon Tn916 has been
mobilized into the O. oeni genome (Zuniga et al.
1996b).

Many researchers have examined the diversity of
O. oeni strains within and around wineries. Stud-
ies have employed various molecular typing methods
(protein profiling, plasmid profiling, RAPD, PFGE,
rDNA RFLP, etc.) to discern regional differences in
strains. An outcome of this analysis is the general
view that O. oeni is a genetically homogenous species
(Zapparoli et al. 2000).

The strain sequenced in this project, O. oeni PSU-
1 (ATCC BAA-331), was originally isolated at Penn
State University from red wine undergoing a spontan-
eous malolactic fermentation (Beelman et al. 1977).
PSU-1 was shown to reliably induce the malolactic
fermentation in wines and is currently employed com-
mercially (Beelman et al. 1980). While the O. oeni
is considered homogenous species, the strain PSU-1
was previously shown to be representative of the larger
of two divergent groupings (Tenreiro et al. 1994). An
extensive physical map of PSU-1 generated by Ze-Ze
et al. 1998, 2000) has tremendously aided sequence
compilation and genome scaffolding operations.
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Oenococcus oeni IOEB 8413
(contributed by Jean Guzzo)

Oenococcus oeni is a LAB most often responsible
for an important step in the winemaking process, the
malolactic fermentation (MLF). The main transform-
ation is decarboxylation of malic acid to lactic acid.
MLF leads to a natural decrease of acidity, together
with an enhancement of stability and quality of wine.
Normally, it occurs spontaneously after alcoholic fer-
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mentation, but in some wines the environment is so
hostile to bacterial growth that MLF is delayed or even
totally prevented. To solve this problem, winemakers
use malolactic starters prepared by the industrial cul-
ture of selected strains. The laboratory of microbi-
ology, UMR INRA, from Dijon University and the
laboratory of biotechnology and applied microbiology,
UA INRA, from Bordeaux University, in collabor-
ation with GENOME Express, have determined the
complete nucleotide sequence of the chromosome of
O.oeni IOEB8413, a strain isolated from Bordeaux
wine. The knowledge of the O. oeni genome repres-
ents a considerable value for developing new tools for
the control of malolactic fermentation in wine.

Genome sequencing status and results

We first sequenced two random small insert and
large insert libraries to favour the scaffold formation
between sequence contigs during the assembly stage.
Subsequently primers were designed for gap clos-
ure sequencing by gene walking and multiplex PCR
approaches. The sequenced contigs were assembled
using the Phred and Phrap software packages. The
current assembly represents 1 753 879 nucleotides and
a G+C content of 37.9%. At this stage, early an-
notation has been undertaken in order to improve the
finishing step. The annotation was performed using the
GenoAnnottm software (Geno∗tm platform), an integ-
rated computer environment specialised in large-scale
sequence annotation. A first pass in an automatic mode
with well-dedicated annotation strategies revealed a
total of 1784 putative coding sequences, 43 tRNA
and 588 predicted rho-independant terminators. Func-
tional annotation was then based on similarity searches
with the Blast programs family. Preliminary Blast ana-
lysis of the current assembly revealed two ribosomal
RNA operons, the presence of three different IS ele-
ments in several copies, and protein-coding genes
belonging to prophages. Some functional categories
of proteins are being studied in detail: stress pro-
teins, transcriptional regulators, central carbon meta-
bolism enzymes and transporters, proteins involved
in nitrogen assimilation and the membrane anabolic
pathway.
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Brevibacterium linens BL2 Bio
(contributed by Bart Weimer)

The Brevibacterium genus is a heterogeneous mixture
of coryneform organisms that have particular applica-
tion to industrial production of vitamins, amino acids
for fine chemical production, and are commonly used
in cheese production (Amador et al. 1999; Rattray
& Fox 1999). This genus contains nine species from
diverse habitats, such as soil, poultry, fish, human
skin, and food. While Brevibacterium linens is pheno-
typically similar to Arthrobacter globiformis, cellular
pigmentation, cell wall composition, DNA/DNA hy-
bridization and 5s RNA analysis show that Brevibac-
terium is distinctly different (Park et al. 1987). PFGE
analysis indicates that diversity within the species is
related to polymorphisms in the 16S rRNA genes with
genome sizes that range from 3.2 and 3.9 Mbp (Lima
& Correia 2000).

B. linens is a non-motile, non-spore forming, non-
acid fast, Gram-positive coryneform that tolerates high
salt concentrations (8–20%) and is capable of grow-
ing in a broad pH range (5.5–9.5), with an optimum
of pH 7.0. They also survive carbohydrate starva-
tion and drying for extended periods (Boyaval et al.
1985). B. linens is unusual as they produce base
as they grow, raising the pH to ∼9.5 within 24–36
h. Recent interest in B. linens has focused around
their ability to produce a self-processing extracellular
protease (Rattray et al. 1997; Weimer et al. 2000),
their ability to produce high levels of volatile sulfur
compounds (Ferchichi et al. 1985; Dias & Weimer
1998a,b), bacteriocin production (Valdes-Stauber &
Scherer 1996), cell-membrane-associated carotenoid
pigment production (Arrach et al. 2001), and aromatic
amino acid metabolism (Leuschner & Hammes 1998;
Ummadi & Weimer 2001). These organisms are also
noted for their metabolize heterocyclic and polycyclic
ring structures–a trait that is not associated with other
bacteria but is common in fungi. Of particular note
is the degradation of insecticides (including DTT and
DDE). These organisms also metabolize amino acids,
particularly aromatic amino acids, to produce plant
growth hormones.
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Propionibacterium freudenreichii ATCC 6207
(contributed by Herman Pel)

Propionibacteria are high G+C Gram-positive bac-
teria belonging to the class of Actinobacteria that
prefer anaerobic growth conditions and have a peculiar
physiology. They produce propionate as their major
fermentation product. Propionate fermentation yields
more energy and, consequently, biomass than any
other anaerobic microbial fermentation. Furthermore,
propionibacteria utilize polyphosphate and pyrophos-
phate instead of ATP for several energy-dependent
reactions and their metabolism is tuned to synthesize
high levels of porphyrins, in particular B12.

DSM Food Specialties uses a classical dairy mi-
croorganism Propionibacterium freudenreichii to pro-
duce vitamin B12 for feed applications. Vitamin B12
is a highly complex but essential vitamin that can
only be produced economically through the ferment-
ation of microorganisms. Friesland Coberco Dairy
Foods (FCDF) is a world player in cheese produc-
tion. Propionibacteria have long been employed in the
production process of Swiss-type cheeses for which
they are indispensable for the typical eye-formation
and production of characteristic taste components.

Genome sequencing status and results

The lack of fundamental physiological knowledge
of propionibacteria hampers their efficient industrial
exploitation. DSM Food Specialties and Friesland
Coberco Dairy Foods have therefore in a combined
effort sequenced and annotated the genome of the
P. freudenreichii type strain ATCC 6207. A total of
2 641 522 base pairs were sequenced using a shot-
gun approach resulting in 12 contigs. The genome
sequence revealed a GC content of 67% and was found
to contain at least 2552 open reading frames. The an-
notated genome, including the resulting blueprint of
the metabolic capabilities of the cell, forms a solid
basis for the use of powerful tools such as transcrip-
tomics and metabolomics to analyze the metabolic
response of P. freudenreichii to genetic and environ-
mental changes.
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Bifidobacterium breve NCIMB 8807
(contributed by: Douwe van Sinderen)

Species of the genus Bifidobacterium are Gram-
positive bacteria, strictly anaerobic, fermentative rods,
often Y-shaped or clubbed at the end and contain
DNA with a relatively high G+C content. They rep-
resent a major element in the microflora of the human
gastrointestinal tract. They are considered to have a
significant role in maintaining the good health of the
human host, while there is mounting evidence pointing
to the activity of these bacteria in mediating other pos-
itive health attributes such as the alleviation of lactose
tolerance, stimulation/potentiation of the immune sys-
tem, and production of vitamins and antimicrobials.
Bifidobacteria have been shown to be the predominant
species in the gastrointestinal tract of infants, and rep-
resent the third most numerous species encountered in
the colon of adult humans, considerably outnumbering
other groups such as Lactobacillus species. The role of
these bacteria in human health has stimulated signific-
ant interest in the health care and food industries, and
has highlighted the position of these bacteria in the
development of functional and pharma foods, which
would contain these bacteria as active ingredients.

Despite growing consumer interest, key aspects re-
garding Bifidobacterium species, such as metabolic
activities (particularly relating to catabolism of pre-
biotics) and physiology are still poorly understood.
The determination of the complete genome of the B.
breve strain NCIM 8807 (National Collection of In-
dustrial and Marine bacteria, Aberdeen, Scotland), an
isolate from nursling stools, was undertaken as a first
step towards the molecular analysis of a probiotic Bi-
fidobacterium species. This plasmid-free strain was
selected because it is reasonably easy to transform
(±104 transformants per µg of plasmid DNA), shows
good adherence properties to epithelial cells, and ex-
hibits reproducible growth properties and moderate
tolerance to oxidative, osmotic and acid stresses.
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Genome sequencing status and results

Random sequences were obtained using a small-insert
(2–4 kb) plasmid bank and a large insert (20–35
kb) cosmid library generating a total of roughly 10.5
million of raw sequence data (approximately 4.4-
fold redundancy). These sequences have each been
checked for quality and contaminating cloning vector
sequences, and subsequently been used for an overall
assembly by means of a combination of the Staden
software package, and PHRED/PHRAP. This resulted
in an initial assembly into 376 contigs, which were
then examined individually for internal joints to re-
duce the total number of contigs to 250. Gap closure
by primer walking is now ongoing and has reduced the
number of contigs to 140, representing a total DNA
sequence of 2.43 Mb. Preliminary analysis of the ob-
tained sequence has revealed quite a high number of IS
elements, and a large number of genes predicted to be
involved in the degradation of poly- and oligosacchar-
ides, e.g., arabinogalactan endo-1,4-β-galactosidase
and α-mannosidase. Four rRNA-encoding operons
have sofar been identified, while the calculated G+C
content of the genome is roughly 53%.
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Bifidobacterium longum DJO10A
(contributed by Daniel O’Sullivan)

Bifidobacteria are anaerobic, Gram-positive, irregu-
lar or branched rod-shaped bacteria that are com-
monly found in the intestines of humans and most
animals and insects. They were first isolated and de-
scribed over 100 years ago from human feces and were
quickly associated with a healthy GI tract due to their
numerical dominance in breast-fed infants compared
to bottle-fed infants (Tissier 1899, 1906). While they
were first grouped in the genus Bacillus, the genus Bi-
fidobacterium was proposed in the 1920s (Orla-Jensen
1924). However, there was not a taxonomic consensus
for this new genus and for much of the 20th century,

they were classified in the genus Lactobacillus, due to
their rod-like shapes and obligate fermentative char-
acteristics. However, the accumulation of studies de-
tailing DNA hybridizations, G+C content and unique
metabolic capabilities resulted in the resurrection of
the Bifidobacterium genus. They are characterized by
a unique hexose metabolism that occurs via a phos-
phoketolase pathway often termed the ‘bifid shunt’.
Fructose-6-phosphate phosphoketolase (F6PPK) is a
key enzyme of the ‘bifid shunt’ and its presence is the
most common diagnostic test for this genus, as it is not
present in other Gram-positive intestinal bacteria.

The genus is comprised of 31 characterized spe-
cies, 11 of which have been detected in human feces
(Tannock 1999). B. longum is often the dominant spe-
cies detected in humans and is the only species to
regularly harbor plasmids. It is a leading member of
the probiotic bacteria due to numerous studies that
have provided a growing body of evidence for its role
in a myriad of potential health benefits. These in-
clude diarrhea prevention in antibiotic treated patients
(Black et al. 1991), cholesterol reduction (Dambekodi
& Gilliland 1998), alleviation of lactose intolerance
symptoms (Jiang et al. 1996), immune stimulation
(Takahashi et al. 1998), and cancer prevention (Reddy
& Rivenson 1993). This myriad of potential health
benefits attributed to the B. longum species clearly il-
lustrates that this species possesses many very interest-
ing characteristics. It is anticipated that identification
and functional analysis of the genetic determinants in-
volved in these activities will strengthen the evidence
for the involvement of B. longum in these signific-
ant health benefits. Selection of suitable strains for
probiotic purposes is very difficult as inherent charac-
teristics of strains of B. longum that are necessary for
its survival and competition in the human large intest-
ine are currently very poorly understood (O’Sullivan
2001). The use of the sequenced genome in microarray
analysis should reveal the pertinent traits that are im-
portant for these bacteria to attain dominance in these
complex ecosystems.
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Bifidobacterium longum NCC2705
(contributed by Fabrizio Arigoni)

Bifidobacteria are obligate anaerobes in the Actin-
omycetales branch of the high G+C Gram-positive
bacteria. There are at least 32 species of bifidobac-
teria, largely isolated from the GITs of many mammals
as well as chickens and honeybees (Biavati & Mat-
tarelli 2001). They are among the first colonizers of
the sterile GITs of newborns and predominate un-
til weaning when they are surpassed by other groups
(Harmsen et al. 2000; Favier et al. 2002). Although
the bifidobacteria represent <6% of the adult fecal
flora, their presence has been associated with be-
neficial health effects (Biavati & Mattarelli 2001).
For example, some studies showed that infant for-
mula containing bifidobacteria reduces incidence of
diarrhea (Saavedra et al. 1994). These types of stud-
ies have led to widespread use of bifidobacteria as
components of health-promoting foods (probiotics).
Although foods containing bifidobacteria are widely
consumed probiotics, there is only fragmentary in-
formation about the physiology, ecology, and genetics
of any one species. To rapidly increase knowledge
and understanding of bifidobacterial biology and their
complex interactions with their human hosts and GIT
microflora, we determined and extensively analyzed
the genome sequence of a B. longum strain isolated
from infant feces.

Genome sequencing status and results

The genome sequence of B. longum NCC2705 was de-
termined by shotgun-sequencing of randomly-cloned,
1.5- and 3-kb fragments. ORFs were identified with
ORPHEUS (Pedant-Pro; Biomax Informatics). Total
genome sequence analysis of B. longum revealed a
large 2 256 646-bp chromosomal replicon and a small
3626-bp plasmid replicon that is 89% identical to
pKJ36 (Genbank AF139129). The average G+C con-
tent was 60.1%, although six regions had much lower
G+C content. The chromosome contains four nearly
identical rrn operons and 57 tRNAs. We identified
1730 probable coding regions, representing 86% of the
genome. The average gene length was 1100 bp, and a
specific or general function was assigned to approx.
70% of them. We were able to attribute 78% of the
predicted proteins to a COG family. The percentages
of predicted proteins assigned to COGs in each of the
18 defined functional categories (Tatusov et al. 2001)
were similar to those for other prokaryotes, except for

an unusual number (>8.5%) assigned to the carbo-
hydrate transport-metabolism category. This suggests
that B. longum is well adapted to take advantage of
the wide diversity and fluctuations in the nutrient com-
position in the colon. In addition, we observed that
gene duplication and horizontal gene transfer have
played an important part in this physiological ad-
aptation. Using SignalP (Nielsen et al. 1997), we
identified approximately 200 proteins with probable
Sec-type signal peptides. Of these 59 were predicted
as surface-associated lipoproteins (PROSITE acces-
sion PS00013) and 26 as solute-binding proteins of
ABC transporter systems.
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