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ABSTRACT
This paper concerns the discovery of patterns in gene expres-

sion matrices, in which each element gives the expression level

of a given gene in a given experiment. Most existing methods

for pattern discovery in such matrices are based on clustering

genes by comparing their expression levels in all experiments,

or clustering experiments by comparing their expression levels

for all genes. Our work goes beyond such global approaches

by looking for local patterns that manifest themselves when we

focus simultaneously on a subset G of the genes and a subset T

of the experiments. Specifically, we look for order-preserving

submatrices (OPSMs),  in which the expression levels of all

genes induce the same linear ordering of the experiments (we

show that the OPSM search problem is NP-hard in the worst

case). Such a pattern might arise, for example, if the experi-

ments in T represent distinct stages in the progress of a disease

or in a cellular process, and the expression levels of all genes

in G vary across the stages in the same way.

We define a probabilistic model in which an OPSM is hidden

within an otherwise random matrix. Guided by this model we

develop an efficient algorithm for finding the hidden OPSM

in the random matrix. In data generated according to the

model the algorithm recovers the hidden OPSM with very high

success rate. Application of the methods to breast cancer data

seem to reveal significant local patterns.
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Our algorithm can be used to discover more than one OPSM

within the same data set, even when these OPSMs overlap. It

can also be adapted to handle relaxations and extensions of

the OPSM condition. For example, we may allow the different

rows of G x T to induce similar but not identical orderings of

the columns, or we may allow the set T to include more than

one representative of each stage of a biological process.

1. INTRODUCTION
The advent of DNA microarray technologies has revolution-

ized the experimental study of gene expression. Thousands of

genes are routinely probed in a parallel fashion, and the ex-

pression levels of their transcribed mRNA are reported. By re-

peating such experiments under different conditions (e.g. dif-

ferent patients, different tissues, or varying the cells’ environ-

ment), data from tens to hundreds of experiments can be gath-

ered. The analysis of the resulting large datasets  poses numer-

ous algorithmic challenges.

So far, the main approach taken for analyzing gene expression

data is clustering (and variants thereof). Clustering methods

have indeed proved successful in many contexts. There is a

very large body of literature on clustering in general and on ap-

plying clustering techniques to gene expression data in partic-

ular. The following list of examples represents the viewpoint

of the authors and is not comprehensive or representative. The

pioneering paper [7] develops an initial approach to analyz-

ing expression data, mostly adapting hierarchical clustering

techniques for this purpose. These methods are successfully

applied to yeast cell cycle data in [ 141.  In [4] and [13] more

direct approaches to clustering are taken, using graph theoretic

methods. Studies where combinations of clustering and clas-

sification methods were applied are reported in [lo], [5] and

[l]. Surveys of analysis approaches appear in [2], [8] and [6].

A major drawback of clustering, however, is the difficulty in

identifying patterns that are common to only a part of the ex-

pression data matrix. Based on general understanding of cel-

lular processes we expect subsets of genes to be co-regulated

and co-expressed under certain experimental conditions, but to

behave almost independently under other conditions. Discov-

ering such local expression patterns may be the key to uncov-

ering many genetic pathways that are not apparent otherwise.
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It is therefore highly desirable to move beyond the clustering

paradigm, and to develop algorithmic approaches capable of

discovering local patterns in microarray data.

In [3] and [15] the authors discuss approaches to unsupervised

identification of patterns in expression data that distinguish

two subclasses of a tissues on the basis of a supporting set

of genes. Supporting here means that high success rate clas-

sification can be performed based on this set of genes. [3]

describes subclasses that correlate with lymphoma prognosis,

based on analyzing data reported [l]. The present work ex-

tends the class discovery task to a progression of more than

just two stages.

The plaid model [12] is a statistical model for gene expression

and other data. The plaid mode1 describes two-sided clusters

where overlap is allowed. Like our model, their two-sided

clusters are not necessarily supported on the entire set of ei-

ther genes or tissues. The plaid model seeks submatrices that

have almost uniform entries. It also affords the identification

of submatrices where, over a prescribed set of tissues, genes

differ in their expression levels by an almost constant vector.

Our work focuses on the uniformity of the relative order of the

tissues rather than on the uniformity of the actual expression

levels as in the plaid model. This approach is potentially more

robust to the stochastic nature of the expression levels, and to

the variation caused by the measurements process.

In this work we address the identification and statistical as-

sessment of co-expressed patterns for large sets of genes. For

example, in expression data that comes from a population of

patients (such as in [5]), it is reasonable to expect that each

individual is in a particular stage of the disease. There is a

set of genes that are co-expressed with this progression and

we therefore expect the data to contain a set of genes and a

set of patients such that the genes are identically ordered on

this set of patients. The same situation occurs when consider-

ing data from nominally identical exposure to environmental

effects, data from drug treatment, data representing some tem-

poral progression, etc. In many cases the data contains more

than one such pattern. For example, in cancer data patients

can be staged according to the disease progression, as well as

according to the extent of genetic abnormalities. These two or-

ders on some subset of tissues are not necessarily correlated.

Therefore - even in data where some nominal order is given a

priori, we are seeking related or unrelated hidden orders and

the sets of genes that support them. In this work we take first

steps towards automatically performing this task.

2. GOAL OF THE PAPER
The readout of a DNA chip containing n genes consists of n

real numbers that represent the expression level of each gene,

either as an absolute or as a relative quantity (with respect to

some reference). When combining the readouts for m  experi-

ments (tissues), each gene yields a vector of m  real numbers.

To make our results independent of the scaling of the data we

consider only the relative ordering of the expression levels for

each gene, as opposed to the exact values. This motivates us to

consider the permutation induced on the m  numbers by sort-

ing them. Thus we view the expressed data matrix, D, as an

n-by-m matrix, where each row corresponds to a gene and

each column to an experiment. The m entries in each row are

a permutation of the numbers { 1, , m.}.  The (1:,  j)  entry is

the rank of the readout of gene i in tissue j,  out of the rr~ read-

outs of this gene. Typical values for n  and m are in the ranges

500 5 n 5 15000 and 10  5 m <  150.

We are seeking a biological progression that is represented as

a “hidden” k-by-s submatrix G x T inside the data matrix D.

The k genes from G are co-expressed in the Y tissues from

T. This means that the expression levels of all the genes in

G move up and down together within the set T. Consider, for

example, three genes 91,  ~2,~s  E G, and the three rows in D

corresponding to gi , ~2, ~a, restricted to the columns in T =

(t1,.  . ., t,9}.  The .s  ranks in each row correspond to a partial

permutation of (1,.  , m}. By projecting the three partial

permutations on the subset { 1,  , s} we get three identical

permutations. For a concrete example, see Table 1, where s =

5 and m >  50.

The computational task we address is the identification of large

order-preserving submatrices  (OPSMs)  in a n x m  matrix D.

A submatrix is order-preserving if there is a permutation of

its columns under which the sequence of values in every row

is strictly increasing. In the case of expression data such a

submatrix is determined by a set of genes G and a set of tissues

T such that, within the set of tissues T, the expression levels

of all the genes in G have the same linear ordering.

In some applications the OPSM condition may be too strict,

and we may wish to relax it by requiring that, on the set of

tissues T, all the genes in G have similarly ordered, but not

necessarily identically ordered, expression levels. Another ex-

tension of the OPSM condition arises from the interpretation

that each tissue in T is representative of a class of tissues corre-

sponding, for example, to a stage or time point in the progres-

sion of a disease, or a type of genetic abnormality. In this case

we may wish to identify several tissues with each stage. Thus

T may be the union of disjoint sets T1,  Tz,  , T,, where Ti

is the set of tissues in the ith stage. We would then require

that for each gene g in G, and for each set T,,  the expression

levels of g for all tissues in T, are less than the expression lev-

els of g for all tissues in T,+i;  however, within each set Ti no

restriction would be placed on the ordering of the expression

levels.

To motivate our heuristic approach to the OPSM problem, we

first show that the OPSM problem is NP-Hard, and thus we

cannot hope to solve it efficiently in the worst case scenario.

The goal of the present paper is to develop an algorithm for

finding large submatrices  having the strict OPSM condition,

and to report the performance of the algorithm on both real

and simulated data. The methodology behind our algorithm

can be extended to deal with the relaxations and extensions of

the OPSM model suggested above, but those extensions are

only sketched.
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gene \ tissue t1  tz  t3  t4  65

91 I 13 1 9 2 50

92 1 9 2 3 39 6 42

Q3 4 6 8 2 1 0

induced permutation 2 3 4 1 5

Table 1: The ranks of the three genes 91,  gz, g3  induce a common permutation when restricted to columns tI,  tz, t3, tq,  ts.

We begin by formulating a probabilistic model of the expres-

sion data to be analyzed. The data consists of a n  x m matrix

D, where the rows correspond to genes and the columns, to

tissues (or, more generally, to experimental samples). Each

row of the matrix is a permutation of { 1,2,  . , m}, giving

the linear ordering of the expression levels of one gene over

all the tissues. We assume that within the matrix D there is a

hidden planted submatrix G x T determined by a set of rows

G, a set of columns T and a linear ordering of the columns

of T. Within each row of G x T the ordering of the entries

is consistent with the linear ordering of T. The parameters of

the model are n, m, s and p, where s is the number of ele-

ments in 2’ and p is the probability that any given row belongs

to G. The s-element set T and the linear ordering of T are

randomly chosen. The parameters .s  and p are not known to

the algorithm.

In crafting the algorithm we are strongly guided by the proper-

ties of the probabilistic model. Of course we do not expect real

expression data to conform in detail to such a simple model,

but we expect the performance of the algorithm to be robust

enough to apply to real data, and preliminary indications are

that this is the case.

2.1 Organization
The remainder of this paper is organized as following. In Sec-

tion 3 we show that the OPSM problem is NP hard. In Sec-

tion 4 we describe the probabilistic model used in the simula-

tion. This model motivates our algorithm design and is used in

the simulations. In Section 5 our algorithm is presented. Sec-

tion 6 contains the results of running our algorithm on simu-

lated and real data. Finally, Section 7 contains some conclud-

ing remarks and directions for further research.

3. OPSM IS NP-COMPLETE
In this section we show that the decision version of OPSM is

NP-complete. We consider the following decision problem:

Instance: a real valued n-by-m matrix, A, and two integers,

k and Y

Question: In A, is there an order preserving submatrix of

size k-by-s? That is, is there set of row indices K =

(~1,.  . , Q},  and a sequence of column indices S =

(cl,.  ,c,~)  such that A(T~,c~) < A(T,, cj+l) for all

l<;<k,l<j<s-l?

THEOREM 3.1. OPSMis NP-Complete

PROOF. The hardness proof is by reduction from the bal-

anced complete bipartite subgraph  problem that is known to

be NP-Complete [9]:

Instance: Bipartite Graph G =  (V, U, E), Positive integer k.

Question: Are there two disjoint subsets X C V, Y C U

such that 1x1  =  IYI = k, and for all z E X, and

YEY,b,Y)EE.

The reduction: Given a bipartite graph G =  (V, U, E), de-

fine the matrix A =  {A,j}  as follows: if (Q,u,)  E E, then

Ai,j = j,  otherwise, Ai,j =  -1. To finish the reduction we

add an extra column to A, consisting of ‘-1’ entries. Thus the

size of A is [VI-by-(IV1  + 1).

we show now that G contains a balanced complete bipartite

graph of size k if and only if the matrix A contains an order

preserving submatrix of size k-by-(k +  1). The theorem fol-

lows.

The first direction follows by construction, if G contains a bal-

anced complete subgraph  of size k, than at the same indices

we have an order preserving submatrix of size k-by-k. Note

that we can extend this submatrix by the ‘-1’ column to get an

k-by-(k + 1) order preserving submatrix.

To show the other direction, lets assume that there exists an

OPSM D of size k-by-(k + 1) in the matrix A. Note that at

most one column of B  can contain a ‘-1’ entry. Otherwise we

contradict the order preserving property. Thus, A contains a

k-by-k order preserving submatrix that is consisting of only

positive numbers. This matrix corresponds to a complete bi-

partite graph in G (at the same indices). 0

4. THE STOCHASTIC MODEL
We model the gene expression data set by a random data ma-

trix D in which an unknown order preserving submatrix G x T

has been planted. The process of generating a data matrix with

a planted order preserving submatrix consists of three stochas-

tic steps. First we choose at random the indices for the planted

rows and columns. Second, we choose a random ordering for

the planted columns. Finally, we assign ranks at random to

the data matrix in a way which is consistent with the planted

submatrix. More formally, the parameters of the stochastic

process are n  (number of genes), m  (number of experiments),

s (size of T), and p (probability that a row i is in the subset

G).
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1. To determine the set of genes G, toss iid  coins X,  for

every i (i = 1,2,.  , n), with probability p  of coming

up heads (Xi  = 1). G is the set of indices i with Xi  =

1, and the expected size of G equals p. n.

For the set of experiments, we choose a subset T C

{ 1,  , m}  of size s uniformly at random.

2 . Pick uniformly at random a linear ordering tr , t2,  . , t,

of the elements of T.

3 . For every row i assign the m  entries in the i-th row of D

independently by a random permutation of { 1, , rn}.

4. For each row i with Xi  = 1 (i E G), rearrange the

ranks in the columns corresponding to T: The entry in

column ti,  D[i,  ti], will be assigned the lowest rank

among these a entries , the entry in column ta  will be

assigned the second rank among the entries correspond-

ing to T, and so on. The entry D[i,  &]  will be assigned

the highest rank among the entries of T.

At the completion of these three steps the data matrix D with

the planted submatrix G x T is determined. Note that in addi-

tion to the set of planted rows, G, every non-planted row has a

probability of -$  to satisfy the same ordering constraints as the

planted rows. Given D and T, those ‘spurious planted’ rows

are indistinguishable from the ‘genuine planted’ rows. Thus,

the algorithmic goal is, for a given D, to recover the set of

planted columns T, and their planted linear order r. The set

of rows supporting this model (‘genuine planted’ together with

the ‘spurious planted) is then uniquely defined.

5. ALGORITHM

5.1 Complete Models
LetT~{l,...,  m}beasetofsizes.Letn=(tr,ta  ,...,  ts)
be a linear ordering of T. The pair (T, n) is called a com-

plete OPSM model or simply a complete model . We say that

a row i E (1,.  . , n} supports (T, n) if the s corresponding

entries, ordered according to the permutation rr, are monotoni-

cally increasing, namely D[i,  tl] < D[i,  tz]  < . . < D[i,  t,].

Given a complete model (T, n) we can efficiently find out

which rows support it (in time O(n m)  ). Intuitively, our al-

gorithm aims at finding a complete model with the maximum

number of rows supporting it. Obviously, there always is a

model with Y = 2 that is supported by at least n/2  rows. In

general, the absolute number of rows we expect to support a

complete model decreases with the model size s. Therefore -

rather than a maximum support, our algorithm actually aims

at finding a complete model with highest sfatistically  signif-

cant support. To assess the significance, we compute an upper

bound on the probability that a random dataset  of size n-by-m

(i.e., a dataset  in which each row is an independent random

permutation of { 1,2,  . . . , m}) will contain a complete model

of size Y with k or more rows supporting it.

For a given value of s, the probability that a random row sup-

ports a given model (T, n) is (l/s!). As the rows are assumed

to be independent, the probability of having at least k rows

supporting a model (T, r) is the k-tail of the (n, (l/s!)),Bino-

mial distribution, namely CzI, (y) (5)”  (1 - $)‘“-“‘.  As

there are ms  =  m(m - 1). (m - a +  1) ways to choose a

complete model of size a, the following expression U(s,  k) is

an upper bound on the probability of having a model of size s

with support k or greater:

We use this bound as our estimate of the significance of a given

model of size a. To account for the fact that .a  is unknown,

we could try all values of s (.s  = 2,3,.  . , m),  find the best

complete model for each, and take the one with the largest sta-

tistical significance, namely the one with the smallest U(.,  .).

5.2 Partial Models
To find the best model for a given s, an exhaustive algorithm

could try all m,  = m(m-1). . (m-s+l) complete models.

This approach yields an O(nmsf’)  time algorithm, which is

infeasible for s 2 4 and realistic values of the parameters

m and n. Instead , our approach is to “grow partial models”

iteratively, with the goal of “converging” to the best complete

model. A partial model of order (o, b) specifies the indices of

the a “smallest” elements < tl , , t, > and the indices of

the b “largest” elements < t+b+l,  , t, > of a complete

model (T, r). A partial model also specifies the size s of the

complete model.

Lct@={<tl,...,  t,>,<ts-b+l  ,...,  t,>,s}beapartial

model. If a +  b < s then such a 6’ can be extended to sev-

eral complete models. What we do next is to describe a way

to evaluate the quality of a given partial model. Once we do

that, our algorithm will be the following: Start by trying all

m(m - 1) partial models of order (1,l). Pick the best e par-

tial models of order (1, l), and for each of them try all m  - 2

extensions to partial models of order (2,l).  Record the best e

of these, and for each one try all m  - 3 extensions to partial

models of order (2,2).  Pick the best e of these, and keep go-

ing this way until we reach e models of order ([s/21,  [s/2j).

These are full models, so we output the best one. The com-

putational complexity of this approach is O(m2  +  ,mse)  times

the complexity of evaluating the quality of a partial model.

Our algorithm takes O(n s) for this subtask,  so its overall

complexity is o(nm2se) = o(smm3e).

In defining partial models we chose to focus on columns at the

extremes of the ordering, leaving the internal columns unspec-

ified. This is done because, in a planted row, the distribution

of ranks in an extreme column is more concentrated than the

distribution in an interior column, and more distinguishable

from the rank distribution in a non-planted column. Thus the

extreme columns are more useful in identifying planted rows.

To further illustrate the power of the extreme columns to dis-

tinguish the correct partial model from incorrect ones, we de-

fine a simple statistic associated with a partial model 0 =

{<  ti  ,...,  t, >,<  its-b+1 ,...,  t,  >,s},andarowi.  This
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statistic is defined as follows:

runge(i,  0) = muz(0,  D[i,  ts-b+l]  - D[i,  &)I.

It is closely related to the gap defined in Section 5.3.

For the correct partial model of order (a, b), the expected value

of range(i,  0) is m(s::;a-b)  for a planted row and e

for a non-planted row (both values are approximations that are

highly accurate when m is large). Thus the correct model

tends to draw a sharp distinction between planted and non-

planted rows. For a partial model of order (a,b)  which has

no columns in common with the correct partial model of order

(a, b) the expected value of range(i,  0) is &&  for both

planted and non-planted rows, and such a model exhibits no

distinction between planted and non-planted rows. Also, the

expected valued of C,  range(i,  6) is significantly higher for

the correct model than for an incorrect one unless k, the num-

ber of planted rows, is very small. This comparison can be

extended to partial models that are incorrect but have some

columns in common. The results support the claim that it

should be possible to distinguish the correct partial model from

incorrect partial models of the same order.

5.3 Scoring partial models
In this section we explain in detail the objective function em-

ployed to determine the quality of a partial model, 8. Let us

denote by r the underlying (hidden) complete model used to

generate the data matrix D,  and let p denote the (unknown)

probability for rows to be planted with respect to T.  To score

the partial model 0,  we assume that r is an extension of 8,  and

estimate p. We use the estimated p as the quality measure of .G

- the more rows seem to be planted with respect to 8, the more

confident we are in 0.

Let De(i) denote the vector of ranks in the i-th row within the

columns specified by the partial model 0.  Let

and let

Ai  = Prob[D(i,  0)1X;  = 11,

Bi  = Prob[Ds(i)lX,  = 01.

That is, Ai  denotes the probability of observing the ranks De(i),
given that i is a planted row, and Oi denotes the probability of

observing De(i), given that row i is not planted. We show in

Section 5.4 how to compute A; and Bi.

We are interested in the probability that a given row is planted

(by a complete model extending 6’) after observing De(i).  This

probability can be computed using Bayes’ Theorem:

Prob[Xi = l]De(i)]) =
AiP

Aip  + Bi (1 - p)
(1)

We denote this quantity by p&  (8, p). Summing over all rows,

we get that the expected number of planted rows (by a com-

plete model that extends 0) after observing Do,  is Cy=“=,  pi(B,p).

Let X = CZn_,  Xi  be the random variable counting the num-

ber of planted rows, and let Y be the random variable consist-

ing of all the data for the partial model f?. Then E[X] = np

and, as we have just seen, E[X]Y]  = Cy=‘=,  pi(Q,p).  Using

the identity E[X] = E[E[X]Y]]  we find that E[CLt  pi(Q,p)]  =

np.  Thus C:=,  pi (0,~)  is an unbiased estimator of np.  More-

over, application of a Chemoff bound shows that the random

variable Cy.-t  pi(B,p)  is concentrated around its expectation,

and therefore is a reliable estimator of ‘np.  Thus we can esti-

mate p by solving for p the implicit equation Cy=r  pi(O,  p)  =
np  Recalling the formula for pi(Q,p)  we get the implicit

equation

This equation always has p = 0 as a solution but we are in-

terested in strictly positive solutions. Cancelling p from both

sides we obtain Cz,  A.P+$(l-P)  = n. The left-hand-side
1 1

of this equation is a sum of convex functions, so it also is con-

vex. In Appendix I we further show that the equation always

has at most a single solution p, which we find numerically.

Denote the resulting solution by pg.

Thus, given a partial model 0 assumed to be compatible with

the hidden complete model, the expected number of rows sup-

porting the hidden complete model is ripe. Accordingly, ps
measures the quality of the partial model 8,  and we can rank

partial models of order (u, b) according to this measure.

5.4 Computing P~b[x~  = 1lD~ (i)]
Let 6’ be a partial model of rank(a,  b), assumed to be correct,

o=  {<tl,..., t, >,  < ts-b+l,.  . , t,  >,  a}, and let Do(i)
denote the corresponding vector of ranks in the i-th row,

De(i)  = (D[i,  tl], . , D[i,  tcz],  D[i,  ts-b+l],  . , D[i, ts]) .

In this section we show how to compute Prob[Xi  = 11 De(i)],
the probability that the i-th row is planted given the ranks vec-

tor. By Equation I, this reduced to computing Ai  and Bi

In a planted row, per the stochastic model (Section 4) the rank

vector De(i)  is in ascending order. Define the gap  at row i

with respect to 0,  as gf = D[i,  ts-!,+I]  - D[i,  ta] - 1. that

is, gf is the number of ‘unused’ ranks lying between the a-

leftmost planted column and the b-rightmost planted column.

The probability of observing the vector of ranks De(i)  is the

number of complete models (of size s) that extend 8 divided

by the total number of complete models. Since the Y ranks

in a planted row must satisfy [D[i,  tl] < . < D[i,  t,] the

missing s - (o + b) ranks (for the internal columns), must be

chosen from the set of gf allowed ranks, giving

Ai  = Prob[Ds(i)lXi  = 11  = +$+
9

In a non-planted row, all m! possible linear orderings of the m

columns are equally likely. Thus, in particular, if we consider

the ranks in a + b specific columns, as indicated by 19, the

probability of observing any particular sequence of a + b ranks
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is equally likely as other sequences. Thus

Combining it all together, we get

Prob[Xi  = llD~(i)]  =
Ap

Aip + B(l - p)

( -9:  )P

-+*(1-P)
(7)

6. RESULTS
We have implemented our algorithm (in Mat lab). We then

ran it on simulated as well as real data. In this section we report

the outcomes of these runs. For simulated data, all our datasets

were lOOO-by-50 matrices. The number of planted columns s

varied over the five values Y = 3,4,5,7,10.  The number of

rows in G was determined by flipping a p biased coin per row,

wherepvariedoverthefourvaluesp = 0.025,0.05,0.075,0.1.

Table 2 reports the probabilities that the algorithm recovers

correctly the set of planted columns, and their correct internal

order. Each entry of the table is based on one hundred random

datasets. The running time of the algorithm (for one dataset)

is 23 seconds (running in Matlab  on a 5OOMHz  PC)

In cases where the algorithm fails to recover the planted sub-

matrix we compared the statistical significance of the recov-

ered submatrix (as estimated by the function CJ described in

Section 5.1) to the significance of the planted submatrix. For

certain values of the parameters, the algorithm recovered sub-

matrices that are more significant than the planted one. Clearly,

those cases should not be considered as failures of the algo-

rithm, but rather serve as indication that for those simulation

parameters there is no hope to recover the planted submatrix.

We report in Table 3 the failure rate of the algorithm, i.e., cases

in which the search ended with a submatrix with lower signif-

icance that the planted one. The Maximal failure rate (0.57),

occurred for Y = 5 and p = 0.025. Our interpretation is that

a 25-by-5 OPSMs are not to be randomly expected. However,

the 25 rows do not give enough advantage to the correct partial

model (I,]), and it not among the top C = 100 pairs. Increas-

ing P  would clearly improve results but will come at a cost of

a higher running time. We have kept e to low values to al-

low extensive simulations. For a real dataset  (that need to be

analyzed only once), we can set a much higher P.

In addition to simulated datasets, we also ran our algorithm

on one breast tumor dataset  [I I]. This specific dataset  has

n =  3226 genes and m = 22 tissues. Out of these 22 tissues

there are 8 with brcal mutations, 8 with brca2  mutations,

and 6 sporadic breast tumors. (Of course, this information is

not known to the algorithm).

We found several statistically significant order preserving sub-

matrices in this dataset.  One such OPSM had s =  4 tis-

sues, supported by Ic =  347 genes. This pattern is statisti-

cally significant since we would expect to see only 3226/4!  =

3226/24  = 134 genes that support such a pattern at random,

and the overabundance of supporting genes might suggest bi-

ological relevance. Interestingly, the first three tissues are all

brca2 mutations, while the last one (largest expression lev-

els) is sporadic. We depict these results graphically in Fig-

ure 7. The region marked by thick lines indicates the 347-by-4

order preserving submatrix. The upper bound on the signifi-

cance of this OPSM is U(4,347)  =  8.83 10m51  < 10e5’.

Other highly significant patterns are a 42-by-6 OPSM (five

brca2 mutations, followed by one brcal mutation). This

OPSM has U(6,42)  = 8.85 10-l’  < 10-l”.  Finally, the

algorithm discovered a 7-by-8 OPSM. The upper bound on its

significance level, U(8,7)  = 0.0497, is not that impressive.

But the order imposed on the tissues seem interesting, as we

have four brca2  mutations, followed by three brcal muta-

tion, followed by a sporadic cancer sample. We also remark

that the upper bound U(s,  Jc) is certainly not tight, and over-

counting due to the simple union bound is worse as s increases.

7. CONCLUDING REMARKS
We have demonstrated that our algorithm for the OPSM prob-

lem works well on data generated according to the probabilis-

tic model, and have given an illustration of its ability to find

a highly statistically significant order-preserving submatrix in

a biological data set. We expect to apply the algorithm to fur-

ther biological data sets, and to consult biologists to determine

the biological significance of the order-preserving submatri-

ces we discover. We also expect to complete a mathematical

analysis of the performance of our algorithm under the prob-

abilistic model, thus providing a theoretical explanation of its

observed success. We will also extend the model by allowing

several possibly overlapping OPSMs to be planted within a

single random matrix. We expect that our algorithm will have

no difficulty in coping with this extension.

Intuitively, our goal is to find submatrices G x T in which the

rows have a significant tendency to be similarly ordered. It is

perhaps too optimistic to expect them to be identically ordered

as the OPSM model requires, first because biological patterns

are not always neat, and secondly because of error in the mi-

croarray measurements. One way to relax the requirement is

to introduce an additional corruption probability cr which will

influence the generation of the probabilistic model. As before,

the model generates a hidden submatrix G x T with a speci-

fied ordering of its columns. But now each entry of the hidden

submatrix is exempted from respecting the ordering with prob-

ability LY  and, in each row, only the entries that have not been

exempted are permuted according to the prescribed ordering.

For this relaxed model we have specified an algorithm for find-

ing the hidden submatrix. The algorithm uses the approach

we took in the OPSM problem, successively evaluating partial

models of order (1, l), (2, l), (2,2),  t..  . The only difference

is in computing the conditional probability that Xi  =  1, given
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Table 2: Probabilities of identifying the planted tissues (in the correct order). For all experiments n = 1000, m =

Probabilities are based on 100 simulations per entry. Pool size (number of partial models maintained) equals t! = 100.

50.

Table 3: Failure probabilities: Identifying a submatrix less significant than the planted one. All parameters identical to

previous table.

the data De(i).

Another interesting relaxation is to require that, in each row in

the submatrix G x T, the ordering of the ranks is compatible

with a given partial ordering of the columns. Of particular

interest are layeredpartial orderings, in which T is partitioned

intosubsetsTi,Ts,...  ,T,and,fori=1,2,...  ,r-1,every

element of Ti  precedes every element of Ti+l.  Each of the

sets T, can be interpreted as a set of tissues representing a

stage in a cellular process or in the progression of a disease.

The approach of sifting through partial models of increasing

specificity can also be applied to this variation of the model.

We expect that algorithms for these variations and extensions

will perform well on artificial data, but the ultimate test will

be their usefulness in uncovering hidden local structure in mi-

croarray data and finding functional, clinical or biochemical

interpretations of that structure.
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Appendix I: Uniqueness of Solution

We show that the equation

Ai
Aip  + B(1  -1’1  = a

has at most a stgle  solution p. Each summand of Gs,o  (p) has

the form

itive

A~~,+Ba~l--pj.  Since Ai  is non-negative and B  is pos-

, A  p+B*~l--pj  is a convex cup function of p  in the range

0 5 p <  1. Therefore Gs,o(p)  is also a convex cup function

ofp. If Gs,o  (p) is either monotonically increasing or decreas-

ing, then the uniqueness claim is obvious. Otherwise, there

could be at most two solutions to the equation, and Go,“(p)

attains a minimum at a point pmin  satisfying 0 < pmin < 1.

As a convex cup function in the range 0 5 p <  1, the func-

tion Gs,o(p)  attains its maximum value(s) at either ends of

the interval, namely either at p  =  0 or at p  =  1. At p  = 1 the

term a,p+ABi(i-pj  attains the value 1 for every summand with

Ai  > d,  thus Ge,n  (1) equals the number of terms with Ai  >

0. The total number of terms is n, and therefore Gs,,o  (1) 5 7~.

Equality is attained only if no term Ai  vanishes. Recalling the

definition (Ai  = Prob[Xi  = l]Ds(i)]), it is extremely un-

likely that all Ai  will be non-zero. (Even for o . = h = 1,

the probability that n  - Ic random rows will all have 9 2 1 is

2-cn-“)  < 1.) Therefore Gs,o(l)  < n almost surely. This

means that Ga,u  (p) = n. can have at most one solution pe,

satisfying 0 5 ~0  < pmin. Furthermore, the equation has a

solution if and only if Ge,n(O)  = CL, 9 >  n

56




