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Abstract—Traditional clustering algorithms identify just a
single clustering of the data. Today’s complex data, however,
allow multiple interpretations leading to several valid groupings
hidden in different views of the database. Each of these multiple
clustering solutions is valuable and interesting as different
perspectives on the same data and several meaningful groupings
for each object are given. Especially for high dimensional data,
where each object is described by multiple attributes, alternative
clusters in different attribute subsets are of major interest.

In this tutorial, we describe several real world application
scenarios for multiple clustering solutions. We abstract from
these scenarios and provide the general challenges in this
emerging research area. We describe state-of-the-art paradigms,
we highlight specific techniques, and we give an overview of
this topic by providing a taxonomy of the existing clustering
methods. By focusing on open challenges, we try to attract
young researchers for participating in this emerging research
field.
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I. MOTIVATION

In today’s applications, data is collected for multiple anal-

ysis tasks. Thus, for each object one gathers many mea-

surements in one large and high dimensional database to

provide a large variety of information. In such scenarios one

typically observes that each object can participate in various

groupings, i.e. objects fit in different roles. For example, in

customer segmentation, we observe for each customer multiple

possible behaviors which should be detected as clusters. In

other domains, such as sensor networks each sensor node

can be assigned to multiple clusters according to different

environmental events. In gene expression analysis, objects

should be detected in multiple clusters due to the various

functions of each gene. In general, multiple groupings are

desired as they characterize different (unknown) views of the

data. In this tutorial we focus on clustering paradigms to detect

such multiple clustering solutions and provide a thorough

discussion on specific approaches found in the literature.

In particular, we highlight the difference to traditional

clustering techniques: In general, clustering techniques group

similar objects in one group and separate dissimilar objects in

different groups. However, traditional instantiations (e.g. the

well known k-means algorithm) provide only a single clus-
tering solution. For a cluster analysis of the aforementioned

complex data, they show two main drawbacks: (1) They aim

at a single partitioning of the data and assign each object to

exactly one cluster. (2) They output a single clustering (e.g.

one set of k clusters) forming the resulting groups of objects.

In contrast, we discuss the principle of multiple clustering
solutions. For one data set multiple sets of clusters (so-called

clusterings) are specified, i.e. each object is clustered w.r.t.

multiple views on the database. This provides more insights

than only a single solution. Ideally, each clustering describes

a different view on the data. As main objectives for multiple

clusterings we observe:

• Each object is grouped in multiple clusters,

representing different perspectives on the data.

• The result consists of many alternative solutions.

Users may choose one or use multiple of these solutions.

• Clusterings differ to a high extend, and thus,

each of these solutions provides additional knowledge.

well known topics:
“databases”

“data mining”

“machine learning”

novel:
MultiClust publications

Fig. 1. Example: multiple clustering solutions

As mentioned before, these objectives are motivated by

various application scenarios. Let us highlight this in one

example: Considering topic analysis, publications concerning

the topic of clustering can be grouped in multiple ways (cf.

Figure 1). One specific partitioning is obvious to all of us: The

origin of such publications in “databases”, “machine learning”

and “data mining” are well known and form three major

clusters. However, publications can be grouped w.r.t. various

other perspectives (e.g. publications aiming at novel theoretical



models vs. tackling scalability issues, considering distributed

computation vs. centralized computation, and many more).

There are many orthogonal perspectives to the same set of

publications. Thus, clustering algorithms should output multi-

ple clusterings that represent these different views. It would be

great to have highly differing clusterings that show novel and

unknown research trends. In our example, the interdisciplinary

topics of “multiple clustering solutions” is such an alternative

cluster hidden in today’s publications. Given the well known

clustering of publications in the three basic research areas

one should aim for the detection of such alternative cluster-

ings. They provide a significant contribution for knowledge

discovery as they highlight yet unknown perspectives. Thus,

the research area of multiple clustering solutions enforces the

detection of alternative and highly differing clusterings.

II. GENERAL CHALLENGES

Abstracting from such scenarios we observe several general

challenges that can be derived out of the application demands.

In general, they occur due to data integration and merging of

multiple data sources. Users try to provide a more complete

picture on each object. Huge databases are gathered adding

more and more information into existing databases. They ex-

tend the stored information and may lead to huge data dumps.

Relations between individual tables get lost and different views

are merged into one universal view on the data. In these

high dimensional data spaces many different views on the

data may exist. However, they are hidden in low dimensional

projections of the overall data space. Specific algorithms have

been designed that cope differently with these hidden views.

Challenge 1: Hidden views in the data space
As first challenge, we observe the identification of relevant
views (also named projections, subspaces, or space trans-
formations). The goal for this paradigm is the detection of

different clusterings revealed by different views on the data.

Therefore, besides the mere object groupings, one challenge

is the uncovering of different views (e.g. lower dimensional

projections) on the data.

Challenge 2: Selection of the relevant views
Different views enable the detection of multiple clustering

solutions in high dimensional data. However, they also pose

novel challenges to clustering models and require novel ob-

jective functions to select these relevant views. Since the

obtained clusterings should differ to a high extend, one chal-

lenge addresses the search for highly differing clusterings
(also named disparate clustering, alternative clustering, or

orthogonal clustering). In addition to (dis-)similarity functions

between objects, as for traditional clustering, this requires nov-

el (dis-)similarity functions between clusters and clusterings.

Challenge 3: Given knowledge about known clustering
The difference between clusterings is even more important

if one has some given knowledge, e.g. about a trivial and

well known clustering solution. Novel clustering results should

reflect a different perspective on the data and should not output

any of the already known cluster structures. For example,

the grouping of object pairs for the given vs. the detected

clustering should be highly dissimilar to each other.

Challenge 4: Processing schemes for clustering
In contrast to the computation of a single clustering solution,

multiple clusterings have to output a set of solutions. Each of

these solutions might base on the previous ones in an iterative

processing or might be the result of an optimization process

that outputs all results simultaneously. Overall, the general

challenge is to provide a processing scheme, which computes

multiple clustering solutions that contain high quality clusters

and are highly differing to each other.

Challenge 5: Number of multiple clusterings
An important issue is the number of solutions, which can be

a parameter value or obtained by the optimization inside the

algorithm. Many alternative solutions seem valuable for the

user, however, to many solutions might provide only redundant

results. Thus, redundancy elimination and automatic selection

of only the most interesting solutions pose a major challenge

to this research area.

Challenge 6: Flexibility w.r.t. clustering model
Based on several decades of research in clustering, one tries to

be as general as possible with novel solutions. Thus, multiple

clustering should be flexible w.r.t. the underlying cluster-

ing model. General processing schemes, data structures, and

dissimilarity models are desired. Exchanging the underlying

clustering definition (e.g. using density-based, hierarchical or

spectral clustering) might be essential for the applicability of

multiple clustering solutions.

III. DIFFERENT PARADIGMS IN OUR TAXONOMY

As first step for characterization and overview of existing

approaches, we provide a taxonomy of paradigms and

methods. With the tutorial we cover several clustering

paradigms and highlight their differences in the detection

of multiple clustering solutions. We propose a novel

taxonomy, which characterizes each approach according to

multiple criteria that have been derived from the mentioned

challenges in the previous section. Based on this taxonomy

we characterize the main clustering models found in the

literature: Despite others, we discuss techniques for modeling

views in the data, defining similarity measures between

clusterings, and detecting alternatives to given knowledge. As

primary characteristic in our taxonomy we distinguish each

clustering algorithm according to the underlying data space

by using three taxonomic classes.

Primary characteristic of our taxonomy
• Perspective w.r.t. the underlying data spaces:

– original data space

– orthogonal space transformations

– different subspace projections

As first paradigm, multiple clusterings have been proposed

working in the original data space [3], [2], [11], [17], [8],

[9], [26]. Most of these techniques focus on the distinction of

different clustering solutions. Both iterative and simultaneous

approaches have been proposed for computation of disparate



clusterings. In this area, enhanced techniques have been devel-

oped for the detection of alternative solutions vs. some given

knowledge.
In parallel to this research direction several researchers have

focused on space transformations, i.e. orthogonalization of

space [10], [24], [6], [7]. As key idea they perform clustering

and orthogonalization steps in an interleaved fashion. Based on

a given clustering solution one computes orthogonal spaces.

While original data space is more appropriate for the given

clusters, the orthogonal space reveilles novel cluster structures.

More and more clusterings can be computed in an iterative

processing.
A third paradigm focuses on the selection of subspace

projections [1], [25], [18], [21], [19], [15], [14], [20], [4], [23].

Clusters are detected w.r.t. a set of relevant dimensions. Thus,

each cluster is described by a set of clustered objects and an

individual subspace projection. In most cases, a simultaneous

processing computes a large number of redundant subspace

clusters. Further optimization techniques have to be applied for

the selection of the final clustering result. Only few techniques

in this area have considered given knowledge or disparate

clustering models.
Overall, we structure the tutorial according to this primary

taxonomy but there are further perspectives revealing different

characteristics to be discussed. Each of these perspectives

copes with one of the challenges 1 − 6 in the detection

of multiple clustering solutions and has been addressed by

different approaches. A selection of secondary characteristics

is listed below. Together with our primary characterization,

they highlight the main research directions found in the

literature. In Figure 2 we give a brief summery of presented

techniques w.r.t. their characterization in all of these

taxonomic classes.

Secondary characteristics of our taxonomy
• Perspective w.r.t. given knowledge:

– no clustering given

– one or multiple clusterings given

• Perspective w.r.t. cluster computation:
– iterative computation

– simultaneous computation

• Perspective w.r.t. view detection:
– views are given

– detect individual view per cluster

– detect common view per clustering

As main focus of the tutorial, we emphasize general chal-

lenges w.r.t. all taxonomic classes, distinguish the different

solutions and summarize the open challenges not yet addressed

in the literature. Thus we do not only cover a discussion of

basic solutions but also identify open issues to be addressed

in the future. Especially, these open issues might attract young

researchers for participating in this emerging research field.

IV. OPEN CHALLENGES

By discussing the different perspectives on multiple clus-

tering solutions, we derive several open research questions.

Especially, we highlight that most approaches provide en-

hanced solutions only in one of the mentioned perspectives.

They propose very specific solutions to a single challenge

(cf. Section II). For example, some techniques focus only

on the iterative detection of a single alternative to a given

clustering. Thus, they miss to optimize the overall result

set. Clearly, such specialized solutions do not address all

challenges in this research area. Unfortunately, more general

techniques tackling several challenges in more abstract and

flexible solutions are very rare and are yet to be developed. In

our tutorial we discuss essential combinations of challenges

to be tackled in the future:

• Challenge 1 & 2:

Enhanced view selection w.r.t. (dis-)similarity measures

• Challenge 3 & 4:

Simultaneous computation with given knowledge

• Challenge 3 & 5:

Optimal coverage of alternative clusterings

• Challenge 2 & 6:

Exchangeable cluster models by decoupling

view selection and cluster detection

Let us discuss only the last combination in more details. In

most techniques, view detection and multiple clusterings are

tightly bound to the underlying cluster definition. However,

such specialized algorithms are hard to adapt (e.g. to appli-

cation demands). A general aim is to provide a decoupling

of such tight bounds. In particular, the selection of views

as proposed by many subspace clustering algorithms could

be decoupled from the underlying clustering models. Some

subspace search techniques have proposed first ideas into

this direction [4], [23]. However, still some dependencies are

incorporated in these techniques. In contrast, an ideal subspace

search should utilize common objectives of view selection,

independent of the underlying cluster definition.

Challenge 7:
Scalability w.r.t. database size and dimensionality
In addition to these open issues, we observe two orthogonal

challenges that found only minor attention in this research

area. First, scalability w.r.t. database size and dimensionality

is one of these issues. Since the first subspace clustering

technique [1] several enhanced models have been developed.

However, scalability to large and high dimensional databases

is still an open research issue to be addressed for this re-

search area. A recent evaluation study [20] has shown major

scalability drawbacks for state-of-the-art subspace clustering

techniques. Thus, recently scalability gets more attention and

some scalable techniques for very large and high dimensional

datasets have been proposed [5], [13], [22].

Challenge 8:
Comparability and quality assessment
Second, we observe open challenges in comparability and

quality assessment. In recent years, the importance of compari-

son studies and repeatability of experimental results is increas-

ingly recognized in the databases and knowledge discovery

communities. VLDB initiated a special track on Experiments



publication space processing given know. # clusterings subspace detection flexibility

[3] original m ≥ 2 exchangeable def.

[2] original iterative given clustering m = 2 specialized

[12] original iterative given clustering m = 2 specialized

[17] original simultaneous no m ≥ 2 specialized

[16] original simultaneous no m = 2 specialized

[8] original simultaneous no m ≥ 2 specialized

[10] transformed iterative given clustering m = 2 dissimilarity exchangeable def.

[24] transformed iterative given clustering m = 2 dissimilarity exchangeable def.

[6] transformed iterative given clustering m ≥ 2 dissimilarity exchangeable def.

[1] subspace no m ≥ 2 no dissimilarity specialized

[25] subspace no m ≥ 2 no dissimilarity specialized

[19] subspace simultaneous no m ≥ 2 no dissimilarity specialized

[21] subspace simultaneous no m ≥ 2 no dissimilarity specialized

[15] subspace simultaneous no m ≥ 2 dissimilarity specialized

[14] subspace simultaneous given clustering m ≥ 2 dissimilarity specialized

[4] subspace no m ≥ 2 no dissimilarity specialized

[23] subspace no m ≥ 2 dissimilarity exchangeable def.

Fig. 2. Overview of techniques w.r.t. our taxonomy

and Analyses and conferences such as SIGMOD and SIGKDD

have established guidelines for repeatability of scientific exper-

iments in their proceedings. Authors are encouraged to provide

implementations and data sets. While these are important

contributions towards a reliable empirical research foundation,

there is still a lack of open source implementations, bench-

mark data, and evaluation criteria for multiple clusterings. In

particular, the community should strive for a common quality

assessment to establish a fair and comparable evaluation of

multiple clustering solutions.

V. OVERVIEW OF TUTORS’ RESEARCH INTERESTS

Our main research interests cover efficient data mining tech-

niques, non-redundant and orthogonal clustering in subspace

projections as well as clustering of complex data. In the past

years, we initiated the open-source initiative OpenSubspace,

a unified repository of subspace clustering paradigms. Espe-

cially, in combination with our recent comparative evaluation

study, it provides a general benefit for the research community.

With this tutorial we reveal the relations between several recent

mining paradigms and initiate common research directions on

this emerging topic.
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