
Discovering Neural Wirings

Mitchell Wortsman1,2, Ali Farhadi1,2,3, Mohammad Rastegari1,3

1PRIOR @ Allen Institute for AI, 2University of Washington, 3XNOR.AI
mitchnw@cs.washington.edu, {ali, mohammad}@xnor.ai

Abstract

The success of neural networks has driven a shift in focus from feature engineering
to architecture engineering. However, successful networks today are constructed
using a small and manually defined set of building blocks. Even in methods of
neural architecture search (NAS) the network connectivity patterns are largely
constrained. In this work we propose a method for discovering neural wirings. We
relax the typical notion of layers and instead enable channels to form connections
independent of each other. This allows for a much larger space of possible networks.
The wiring of our network is not fixed during training – as we learn the network
parameters we also learn the structure itself. Our experiments demonstrate that our
learned connectivity outperforms hand engineered and randomly wired networks.
By learning the connectivity of MobileNetV1 [12] we boost the ImageNet accuracy
by 10% at ⇠ 41M FLOPs. Moreover, we show that our method generalizes to
recurrent and continuous time networks. Our work may also be regarded as unifying
core aspects of the neural architecture search problem with sparse neural network
learning. As NAS becomes more fine grained, finding a good architecture is akin to
finding a sparse subnetwork of the complete graph. Accordingly, DNW provides an
effective mechanism for discovering sparse subnetworks of predefined architectures
in a single training run. Though we only ever use a small percentage of the weights
during the forward pass, we still play the so-called initialization lottery [8] with a
combinatorial number of subnetworks. Code and pretrained models are available
at https://github.com/allenai/dnw while additional visualizations may be
found at https://mitchellnw.github.io/blog/2019/dnw/.

1 Introduction

Deep neural networks have shifted the prevailing paradigm from feature engineering to feature
learning. The architecture of deep neural networks, however, must still be hand designed in a
process known as architecture engineering. A myriad of recent efforts attempt to automate the
process of the architecture design by searching among a set of smaller well-known building blocks
[30, 34, 37, 19, 2, 20]. While methods of search range from reinforcement learning to gradient based
approaches [34, 20], the space of possible connectivity patterns is still largely constrained. NAS
methods explore wirings between predefined blocks, and [28] learns the recurrent structure of CNNs.
We believe that more efficient solutions may arrive from searching the space of wirings at a more fine
grained level, i.e. single channels.

In this work, we consider an unconstrained set of possible wirings by allowing channels to form
connections independent of each other. This enables us to discover a wide variety of operations (e.g.
depthwise separable convs [12], channel shuffle and split [36], and more). Formally, we treat the
network as a large neural graph where each each node processes a single channel.

One key challenge lies in searching the space of all possible wirings – the number of possible
sub-graphs is combinatorial in nature. When considering thousands of nodes, traditional search
methods are either prohibitive or offer approximate solutions. In this paper we introduce a simple

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/allenai/dnw
https://mitchellnw.github.io/blog/2019/dnw/

0

1

2

3

4

5

6

7

8

0

1

8

7

6

5

4

3

2

0

3 4 5

6 7 8

1 20 1 2

3 4 5

6 7 8

Figure 1: Dynamic Neural Graph: A 3-layer perceptron (left) can be expressed by a dynamic neural
graph with 3 time steps (right).

and efficient algorithm for discovering neural wirings (DNW). Our method searches the space of all
possible wirings with a simple modification of the backwards pass.

Recent work in randomly wired neural networks [35] aims to explore the space of novel neural
network wirings. Intriguingly, they show that constructing neural networks with random graph
algorithms often outperforms a manually engineered architecture. However, these wirings are fixed at
training.

Our method for discovering neural wirings is as follows: First, we consider the sole constraint that
that the total number of edges in the neural graph is fixed to be k. Initially we randomly assign a
weight to each edge. We then choose the weighted edges with the highest magnitude and refer to
the remaining edges as hallucinated. As we train, we modify the weights of all edges according to a
specified update rule. Accordingly, a hallucinated edge may strengthen to a point it replaces a real
edge. We tailor the update rule so that when swapping does occur, it is beneficial.

We consider the application of DNW for static and dynamic neural graphs. In the static regime each
node has a single output and the graphical structure is acyclic. In the case of a dymanic neural graph
we allow the state of a node to vary with time. Dymanic neural graphs may contain cycles and
express popular sequential models such as LSTMs [11]. As dymanic neural graphs are strictly more
expressive than static neural graphs, they can also express feed-forward networks (as in Figure 1).

Our work may also be regarded as a unification between the problem of neural architecture search
and sparse neural network learning. As NAS becomes less restrictive and more fine grained, finding a
good architecture is akin to finding a sparse sub-network of the complete graph. Accordingly, DNW
provides an effective mechanism for discovering sparse networks in a single training run.

The Lottery Ticket Hypothesis [8, 9] demonstrates that dense feed-forward neural networks contain
so-called winning-tickets. These winning-tickets are sparse subnetworks which, when reset to their
initialization and trained in isolation, reach an accuracy comparable to their dense counterparts. This
hypothesis articulate an advantage of overparameterization during training – having more parameters
increases the chance of winning the initialization lottery. We leverage this idea to train a sparse neural
network without retraining or fine-tuning. Though we only ever use a small percentage of the weights
during the forward pass, we still play the lottery with a combinatorial number of sub-networks.

We demonstrate the efficacy of DNW on small and large scale data-sets, and for feed-forward,
recurrent, continuous, and sparse networks. Notably, we augment MobileNetV1 [12] with DNW to
achieve a 10% improvement on ImageNet [5] from the hand engineered MobileNetV1 at ⇠ 41M
FLOPs1.

2 Discovering Neural Wirings

In this section we describe our method for jointly discovering the structure and learning the parameters
of a neural network. We first consider the algorithm in a familiar setting, a feed-forward neural
network, which we abstract as a static neural graph. We then present a more expressive dynamic
neural graph which extends to discrete and continuous time and generalizes feed-forward, recurrent,
and continuous time neural networks.

1We follow [36, 22] and define FLOPS as the number of Multiply Adds.

2

!"#$%

&$%#$%

'(')*'

!"#$%

&$%#$%

+'(')*'

,("+-*' .%+%*'

[3x3-conv2D, stride=1]

[3x3-conv2D, stride=2]

Output zero-padded

Figure 2: An example of a dynamic (left) and static (right) neural graph. Details in Section 2.3.

2.1 Static Neural Graph

A static neural graph is a directed acyclic graph G = (V, E) consisting of nodes V and edges
E ✓ V ⇥ V . The state of a node v 2 V is given by the random variable Zv . At each node v we apply
a function f✓v and with each edge (u, v) we associate a weight wuv. In the case of a multi-layer
perceptron, f is simply a parameter-free non-linear activation like ReLU [17].

For any set A ✓ V we let ZA denote (Zv)v2A and so ZV is the state of all nodes in the network.

V contains a subset of input nodes V0 with no parents and output nodes VE with no children. The
input data X ⇠ px flows into the network through V0 as ZV0

= g�(X) for a function g which may

have parameters �. Similarly, the output of the network Ŷ is given by h (ZVE
).

Zv =

(

f✓v

⇣
P

(u,v)2E wuvZu

⌘

v 2 V \ V0

g
(v)
� (X) v 2 V0.

(1)

For brevity, we let Iv denote the “input" to node v, where Iv may be expressed

Iv =
X

(u,v)2E

wuvZu. (2)

In this work we consider the case where the input and output of each node is a two-dimensional
matrix, commonly referred to as a channel. Each node performs a non-linear activation followed by
normalization and convolution (which may be strided to reduce the spatial resolution). As in [35], we
no longer conform to the traditional notion of “layers" in a deep network.

The combination of a separate 3⇥3 convolution for each channel (depthwise convolution) followed by
a 1⇥ 1 convolution (pointwise convolution) is often referred to as a depthwise seperable convolution,
and is essential in efficient network design [12, 22]. With a static neural graph this process may
be interpreted equivalently as a 3⇥ 3 convolution at each node followed by information flow on a
complete bipartite graph.

2.2 Discovering a k-Edge neural graph

We now outline our method for discovering the edges of a static neural graph subject to the constraint
that the total number of edges must not exceed k.

We consider a set of real edges E and a set of hallucinated edges Ehal = V ⇥ V \ E . The real edge set
is comprised of the k-edges which have the largest magnitude weight. As we allow the magnitude of
the weights in both sets to change throughout training the edges in Ehal may replace those in E .

Consider a hallucinated edge (u, v) 62 E . If the gradient is pushing Iv in a direction which aligns
with Zu, then our update rule strengthens the magnitude of the weight wuv . If this alignment happens
consistently then wuv will be eventually be strong enough to enter the real edge set E . As the total

3

Algorithm 1 DNW-Train(V,V0,VE , g�, h , {f✓v}v2V , pxy, k,L)

1: for each pair of nodes (u, v) such that u < v do . Initialize
2: Initialize wuv by independently sampling from a uniform distribution.

3: for each training iteration do
4: Sample mini batch of data and labels (X ,Y) = {(Xi,Yi)} using pxy . Sample data
5: E {(u, v) : |wuv| � ⌧} where ⌧ is chosen so that |E| = k . Choose edges

6: Zv

(

f✓v

⇣
P

(u,v)2E wuvZu

⌘

v 2 V \ V0

g
(v)
� (X) v 2 V0

. Forward pass

7: Ŷ = h ({Zv}v2VE
) . Compute output

8: Update �, {✓v}v2V , via SGD & Backprop [26] using loss L
⇣

Ŷ,Y
⌘

9: for each pair of nodes (u, v) such that u < v do . Update edge weights

10: wuv wuv +
D

Zu,�↵
@L
@Iv

E

. Recall Iv =
P

(u,v)2E wuvZu

9:

$:; $:<

=ℒ
=9: = ?

:,< ∈ℰ

=ℒ
=B<$:<

9:

$:; $:<

Backward Forward

$C:$D:
$C:$D:

9: = 1EF ?
(C,:)∈ℰ

$C:9C
GF

ℰ = $:< ∶ $:< ≥ J$:< ← $:< + 9:, −N
=ℒ
=B<

Figure 3: Gradient flow: On the forward pass we use only on the real edges. On the backwards pass
we allow the gradient to flow to but not through the hallucinated edges (as in Algorithm 1).

number of edges is conserved, when (u, v) enters the edge set E another edge is removed and placed
in Ehal. This procedure is detailed by Algorithm 1, where V is the node set, V0,VE are the input
and output node sets, g�, h and {f✓v}v2V are the input, output, and node functions, pxy is the data
distribution, k is the number of edges in the graph and L is the loss.

In practice we may also include a momentum and weight decay2 term in the weight update rule
(line 10 in Algorithm 1). In fact, the weight update rule looks nearly identical to that in traditional
SGD & Backprop but for one key difference: we allow the gradient to flow to edges which did not
exist during the forward pass. Importantly, we do not allow the gradient to flow through these edges
and so the rest of the parameters update as in traditional SGD & Backprop. This gradient flow is
illustrated in Figure 3.

Under certain conditions we formally show that swapping an edge from Ehal to E decreases the loss L.
We first consider the simple case where the hallucinated edge (i, k) replaces (j, k) 2 E . In Section C
we discuss the proof to a more general case.

We let w̃ to denote the weight w after the weight update rule w̃uv = wuv +
D

Zu,�↵
@L
@Iv

E

. We

assume that ↵ is small enough so that sign(w̃) = sign(w).

Claim: Assume L is Lipschitz continuous. There exists a learning rate ↵⇤ > 0 such that for
↵ 2 (0,↵⇤) the process of swapping (i, k) for (j, k) will decrease the loss on the mini-batch when
the state of the nodes are fixed and |wik| < |wjk| but |w̃ik| > |w̃jk|.

2Weight decay [18] may in fact be very helpful for eliminating dead ends.

4

Proof. Let A be value of Ik after the update rule if (j, k) is replaced with (i, k). Let B be the state of
Ik after the update rule if we do not allow for swapping. A and B are then given by

A = w̃ikZi +
X

(u,k)2E, u 6=i,j

w̃ukZu, B = w̃jkZj +
X

(u,k)2E, u 6=i,j

w̃ukZu. (3)

Additionally, let g = �↵ @L
@Ik

be the direction in which the loss most steeply descends with respect to

Ik. By Lemma 1 (Section D of the Appendix) it suffices to show that moving Ik towards A is more
aligned with g then moving Ik towards B. Formally we wish to show that

hA� Ik, gi � hB � Ik, gi (4)

which simplifies to

w̃ik hZi, gi � w̃jk hZj , gi (5)

() w̃ik(w̃ik � wik) � w̃jk(w̃jk � wjk). (6)

In the case where w̃ik and (w̃ik�wik) have the same sign but w̃jk and (w̃jk�wjk) have different signs
the inequality immediately holds. This corresponds to the case where wik increases in magnitude but
wjk decreases in magnitude. The opposite scenario (wik decreases in magnitude but wjk increases)
is impossible since |wik| < |wjk| but |w̃ik| > |w̃jk|.

We now consider the scenario where both sides of the inequality (equation 6) are positive. Simplifying
further we obtain

(w̃jkwjk � w̃ikwik) �
�
w̃2

jk � w̃2
ik

�
(7)

and are now able to identify a range for ↵ such that the inequality above is satisfied. By assumption
the right hand side is less than 0 and sign(w̃) = sign(w) so w̃w = |w̃||w|. Accordingly, it suffices to
show that

|w̃jk||wjk|� |w̃ik||wik| � 0. (8)

If we let ✏ = |wjk|� |wik| and ↵⇤ = sup{↵ : |w̃ik| |w̃jk|+ ✏|w̃jk||wik|
�1}, then for ↵ 2 (0,↵⇤)

|w̃jk||wjk|� |w̃ik||wik| � |w̃jk|

0

@|wjk|� |wik|
| {z }

=✏

�✏

1

A = 0 (9)

the inequality (equation 7) is satisfied. Here we are implicitly using our assumption that the gradient
is bounded and we may “tune” ↵ to control the magnitude |w̃ik| � |w̃jk|. In the case where ↵ =
inf{↵ : |w̃ik| > |w̃jk|} the right hand side of equation 7 becomes 0 while the left hand side is ✏ > 0.

In Section E of the appendix we discuss the effect of ✓v on wuv. In Section F of the Appendix, we
show that the update rule is equivalently a straight-through estimator [1].

2.3 Dynamic Neural Graph

We now consider a more general setting where the state of each node Zv(t) may vary through time.
We refer to this model as a dynamic neural graph.

The initial conditions of a dynamic neural graph are given by

Zv(0) =

(

g
(v)
� (X) v 2 V0

0 v 2 V \ V0

(10)

where V0 is a designated set of input nodes, which may now have parents.

Discrete Time Dynamics: For a discrete time neural graph we consider times ` 2 {0, 1, ..., L}.
The dynamics are then given by

Zv(`+ 1) = f✓v

0

@
X

(u,v)2E

wuvZu(`), `

1

A (11)

and the network output is Ŷ = h (ZVE
(L)). We may express equation 11 more succinctly as

ZV(`+ 1) = f✓ (AGZV(`), `) (12)

5

where ZV(`) = (Zv(`))v2V , f✓(z, `) = (f✓v (zv, `))v2V , and AG is the weighted adjacency
matrix for graph G. Equation 12 suggests the following interpretation: At each time step we
send information through the edges using AG then apply a function at each node.

Continuous Time Dynamics: As in [3], we consider the case where t may take on a continuous
range of values. We then arrive at dynamics given by

r ZV(t) = f✓ (AGZV(t), t) . (13)

Interestingly, if V0 is a strict subset of V we uncover an Augmented Neural ODE [7].

The discrete time case is unifying in the sense that it may also express any static neural graph.
In Figure 1 we illustrate than an MLP may also be expressed by a discrete time neural graph.
Additionally, the discrete time dynamics are able to capture sequential models such as LSTMs [11],
as long as we allow input to flow into V0 at any time.

In continuous time it is not immediately obvious how to incorporate strided convolutions. One
approach is to keep the same spatial resolution throughout and pad with zeros after applying strided
convolutions. This design is illustrated by Figure 2.

We may also apply Algorithm 1 to learn the structure of dynamic neural graphs. One may use
backpropogation through time [33] and the adjoint-sensitivity method [3] for optimization in the
discrete and continuous time settings respectively. In Section 3.1, we demonstrate empirically that
our method performs better than a random graph, though we do not formally justify the application
of our algorithm in this setting.

2.4 Implementation details for Large Scale Experiments

For large scale experiments we do not consider the dynamic case as optimization is too expensive.
Accordingly, we now present our method for constructing a large and efficient static neural graph.
With this model we may jointly learn the structure of the graph along with the parameters on ImageNet
[5]. As illustrated by Table 5 our model closely follows the structure of MobileNetV1 [12], and
so we refer to it as MobileNetV1-DNW. We consider a separate neural graph for each spatial
resolution – the output of graph Gi is the input of graph Gi+1. For width multiplier [12] d and spatial
resolution s⇥ s we constrain MobileNetV1-DNW to have the same number of edges for resolution
s⇥ s as the corresponding MobileNetV1 ⇥d. We use a slightly smaller width multiplier to obtain a
model with similar FLOPs as we do not explicitly reduce the number of depthwise convolutions in
MobileNetV1-DNW. However, we do find that neurons often die (have no output) and we may then
skip the depthwise convolution during inference. Note that if we interpret a pointwise convolution
with c1 input channels and c2 output channels as a complete bipartite graph then the number of edges
is simply c1 ⇤ c2.

We also constrain the longest path in graph G to be equivalent to the number of layers of the
corresponding MobileNetV1. We do so by partitioning the nodes V into blocks B = {B0, ...,BL�1}
where B0 is the input nodes V0, BL�1 is output nodes VE , and we only allow edges between nodes
in Bi and Bj if i < j. The longest path in a graph with L blocks is then L� 1. Splitting the graph
into blocks also improves efficiency as we may operate on one block at a time. The structure of
MobileNetV1 may be recovered by considering a complete bipartite graph between adjacent blocks.

The operation f✓v at each non-output node is a batch-norm [14] (2 parameters), ReLU [17], 3⇥ 3
convolution (9 parameters) triplet. There are no operations at the output nodes. When the spatial
resolution decreases in MobileNetV1 we change the convolutional stride of the input nodes to 2.

In models denoted MobileNetV1-DNW-Small (⇥d) we also limit the last fully connected (FC) layer
to have the same number of edges as the FC layer in MobileNetV1 (⇥d). In the normal setting of
MobileNetV1-DNW we do not modify the last FC layer.

3 Experiments

In this section we demonstrate the effectiveness of DNW for image classification in small and large
scale settings. We begin by comparing our method with a random wiring on a small scale dataset

6

Table 1: Testing a tiny (41k parameters) clas-
sifier on CIFAR-10 [16] in static and dynamic
settings shown as mean and standard devia-
tion (std) over 5 runs.

Model Accuracy

Static (RG) 76.1± 0.5%
Static (DNW) 80.9± 0.6%

Discrete Time (RG) 77.3± 0.7%
Discrete Time (DNW) 82.3± 0.6%

Continuous (RG) 78.5± 1.2%
Continuous (DNW) 83.1± 0.3%

Table 2: Other methods for discovering
wirings (using the architecture described in
Table 5) tested on CIFAR-10 shown as mean
and std over 5 runs. Models with † first re-
quire the complete graph to be trained.

Model Accuracy

MobileNetV1 (×0.25) 86.3± 0.2%
MobileNetV1-RG(×0.225) 87.2± 0.1%
No Update Rule 86.7± 0.5%
L1 + Anneal 84.3± 0.6%
TD ρ = 0.95 89.2± 0.4%
Lottery Ticket (one-shot)† 87.9± 0.3%
Fine Tune α = 0.1† 89.4± 0.2%
Fine Tune α = 0.01† 89.7± 0.1%
Fine Tune α = 0.001† 88.7± 0.2%
MobileNetV1-DNW(×0.225) 89.7± 0.2%

and model. This allows us to experiment in static, discrete time, and continuous settings. Next we
explore the use of DNW at scale with experiments on ImageNet [5] and compare DNW with other
methods of discovering network structures. Finally we use our algorithm to effectively train sparse
neural networks without retraining or fine-tuning.

Throughout this section we let RG denote our primary baseline – a randomly wired graph. To
construct a randomly wired graph with k-edges we assign a uniform random weight to each edge
then pick the k edges with the largest magnitude weights. As shown in [35], random graphs often
outperform manually designed networks.

3.1 Small Scale Experiments For Static and Dynamic Neural Graphs

We begin by training tiny classifiers for the CIFAR-10 dataset [16]. Our initial aim is not to achieve
state of the art performance but instead to explore DNW in the static, discrete, and continuous time
settings. As illustrated by Table 1, our method outperforms a random graph by a large margin.

The image is first downsampled3 then each channel is given as input to a node in a neural graph. The
static graph uses 5 blocks and the discrete time graph uses 5 time steps. For the continuous case we
backprop through the operation of an adaptive ODE solver4. The models have 41k parameters. At
each node we perform Instance Normalization [32], ReLU, and a 3⇥ 3 single channel convolution.

3.2 ImageNet Classification

For large scale experiments on ImageNet [5] we are limited to exploring DNW in the static case
(recurrent and continuous time networks are more expensive to optimize due to lack of parallelization).
Although our network follows the simple structure of MobileNetV1 [12] we are able to achieve higher
accuracy than modern networks which are more advanced and optimized. Notably, MobileNetV2
[27] extends MobileNetV1 by adding residual connections and linear bottlenecks and ShuffleNet
[36, 22] introduces channel splits and channel shuffles. The results of the large scale experiments
may be found in Table 3.

As standard, we have divided the results of Table 3 to consider models which have similar FLOPs.
In the more sparse case (⇠ 41M FLOPs) we are able to use DNW to boost the performance of
MobileNetV1 by 10%. Though random graphs perform extremely well we still observe a 7% boost in
performance. In each experiment we train for 250 epochs using Cosine Annealing as the learning rate
scheduler with initial learning rate 0.1, as in [35]. Models using random graphs have considerably
more FLOPs as nearly all depthwise convolutions must be performed. DNW allows neurons to die
and we may therefore skip many operations.

3We use two 3× 3 strided convolutions. The first is standard while the second is depthwise-separable.
4We use a 5th order Runge-Kutta method [29] as implemented by [3] (from t = 0 to 1 with tolerance 0.001).

7

Table 3: ImageNet Experiments (see Section 2.4 for more details). Models with ⇤ use the implemen-
tations of [22]. Models with multiples asterisks use different image resolutions so that the FLOPs is
comparable (see Table 8 in [22] for more details).

Model Params FLOPs Accuracy

MobileNetV1 (×0.25) [12] 0.5M 41M 50.6%
X-4 MobileNetV1 [25] — > 50M 54.0%
MobileNetV2 (×0.15)∗ [27] — 39M 44.9%
MobileNetV2 (×0.4)∗∗ — 43M 56.6%
DenseNet (×0.5)∗ [13] — 42M 41.1%
Xception (×0.5)∗ [4] — 40M 55.1%
ShuffleNetV1 (×0.5, g = 3) [36] — 38M 56.8%
ShuffleNetV2 (×0.5) [22] 1.4M 41M 60.3%
MobileNetV1-RG(×0.225) 1.2M 55.7M 53.3%
MobileNetV1-DNW-Small (×0.15) 0.24M 22.1M 50.3%
MobileNetV1-DNW-Small (×0.225) 0.4M 41.2M 59.9%
MobileNetV1-DNW(×0.225) 1.1M 42.1M 60.9%

MnasNet-search1 [30] 1.9M 65M 64.9%
MobileNetV1-DNW(×0.3) 1.3M 66.7M 65.0%

MobileNetV1 (×0.5) 1.3M 149M 63.7%
MobileNetV2 (×0.6)∗ — 141M 66.6%
MobileNetV2 (×0.75)∗∗∗ — 145M 67.9%
DenseNet (×1)∗ — 142M 54.8%
Xception (×1)∗ — 145M 65.9%
ShuffleNetV1 (×1, g = 3) — 140M 67.4%
ShuffleNetV2 (×1) 2.3M 146M 69.4%
MobileNetV1-RG(×0.49) 1.8M 170M 64.1%
MobileNetV1-DNW(×0.49) 1.8M 154M 70.4%

3.3 Related Methods

We compare DNW with various methods for discovering neural wirings. In Table 2 we use the struc-
ture of MobileNetV1-DNW but try other methods which find k-edge sub-networks. The experiments
in Table 2 are conducted using CIFAR-10 [16]. We train for 160 epochs using Cosine Annealing as
the learning rate scheduler with initial learning rate ↵ = 0.1 unless otherwise noted.

The Lottery Ticket Hypothesis: The authors of [8, 9] offer an intriguing hypothesis: sparse sub-
networks may be trained in isolation when reset to their initialization. However, their method for
finding so-called winning tickets is quite expensive as it requires training the full graph from scratch.
We compare with one-shot pruning from [9]. One-shot pruning is more comparable in training
FLOPS than iterative pruning [8], though both methods are more expensive in training FLOPS than
DNW. After training the full network Gfull (i.e. no edges pruned) the optimal sub-network Gk with
k-edges is chosen by taking the weights with the highest magnitude. In the row denoted Lottery
Ticket we retrain Gk using the initialization of Gfull. We also initialize Gk with the weights of Gfull

after training – denoted by FT for fine-tune (we try different initial learning rates ↵). Though these
experiments perform comparably with DNW, their training is more expensive as the full graph must
initially be trained.

Exploring Randomly Wired Networks for Image Recognition: The authors of [35] explore “a
more diverse set of connectivity patterns through the lens of randomly wired neural networks."
They achieve impressive performance on ImageNet [5] using random graph algorithms to generate
the structure of a neural network. Their network connectivity, however, is fixed during training.
Throughout this section we have a random graph (denoted RG) as our primary baseline – as in [35]
we have seen that random graphs outperform hand-designed networks.

No Update Rule: In this ablation on DNW we do not apply the update rule to the hallucinated edges.
An edge may only leave the hallucinated edge set if the magnitude of a real edge is sufficiently
decreased. This experiment demonstrates the importance of the update rule.

L1 + Anneal: We experiment with a simple pruning technique – start with a fully connected graph
and remove edges by magnitude throughout training until there are only k remaining. We found that
accuracy was much better if we added an L1 regularization term.

8

Table 4: Training a tuned version of ResNet50 on ImageNet with modern optimization techniques, as
in Appendix C of [6]. For All Layers Sparse, every layer has a fixed sparsity. In contrast, we leave
the very first convolution dense for First Layer Dense. The parameters in the first layer constitute
only 0.04% of the total network.

Method Weights (%) Top-1 Accuracy Top-5 Accuracy

Sparse Networks from Scratch [6] 10% 72.9% 91.5%
Ours - All Layers Sparse 10% 74.0% 92.0%
Ours - First Layer Dense 10% 75.0% 92.5%

Sparse Networks from Scratch [6] 20% 74.9% 92.5%
Ours - All Layers Sparse 20% 76.2% 93.0%
Ours - First Layer Dense 20% 76.6% 93.4%

Sparse Networks from Scratch [6] 30% 75.9% 92.9%
Ours - All Layers Sparse 30% 76.9% 93.4%
Ours - First Layer Dense 30% 77.1% 93.5%

Sparse Networks from Scratch [6] 100% 77.0% 93.5%
Ours - Dense Baseline 100% 77.5% 93.7%

Targeted Dropout: The authors of [10] present a simple and effective method for training a network
which is robust to subsequent pruning. Their method outperforms variational dropout [23] and
L0 pruning [21]. We compare with Weight Dropout/Pruning from [10], which we denote as TD.
Section B of the Appendix contains more information, experimental details, and hyperparameter
trials for the Targeted Dropout experiments, though we provide the best result in Table 2.

Neural Architecture Search: As illustrated by Table 3, our network (with a very simple Mo-
bileNetV1 like structure) is able to achieve comparable accuracy to an expensive method which
performs neural architecture search using reinforcement learning [30].

3.4 Training Sparse Neural Networks

We may apply our algorithm for Discovering Neural Wirings to the task of training sparse neural
networks. Importantly, our method requires no fine-tuning or retraining to discover a sparse sub-
networks – the sparsity is maintained throughout training. This perspective was guided by the the
work of Dettmers and Zettelmoyer in [6], though we would like to highlight some differences. Their
work enables faster training, though our backwards pass is still dense. Moreover, their work allows
for a redistribution of parameters across layers whereas we consider a fixed sparsity per layer.

Our algorithm for training a sparse neural network is similar to Algorithm 1, though we implicitly
treat each convolution as a separate graph where each parameter is an edge. For each convolutional
layer on the forwards pass, we use the top k% of the parameters chosen by magnitude. On the
backwards pass we allow the gradient to flow to, but not through, all weights that were zeroed out on
the forwards pass. All weights receive gradients as if they existed on the forwards pass, regardless of
if they were zeroed out.

As in [6] we leave the biases and batchnorm dense. We compare with the result in Appendix C of [6],
as we also use a tuned version of a ResNet50 that uses modern optimization techniques such as cosine
learning rate scheduling and warmup5. We train for 100 epochs and showcase our results in Table 4.

4 Conclusion

We present a novel method for discovering neural wirings. With a simple algorithm we demonstrate a
significant boost in accuracy over randomly wired networks. We benefit from overparameterization
during training even when the resulting model is sparse. Just as in [35], our networks are free from
the typical constraints of NAS. This work suggests exciting directions for more complex and efficient
methods of discovering neural wirings.

5We adapt the code from https://github.com/NVIDIA/DeepLearningExamples/tree/master/
PyTorch/Classification/RN50v1.5, using the exact same hyperparameters but training for 100 epochs.

9

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/RN50v1.5

Acknowledgments

We thank Sarah Pratt, Mark Yatskar and the Beaker team. We also thank Tim Dettmers for his
assistance and guidance in the experiments regarding sparse networks. This work is in part supported
by DARPA N66001-19-2-4031, NSF IIS-165205, NSF IIS-1637479, NSF IIS-1703166, Sloan
Fellowship, NVIDIA Artificial Intelligence Lab, the Allen Institute for Artificial Intelligence, and the
AI2 fellowship for AI. Computations on beaker.org were supported in part by credits from Google
Cloud.

References

[1] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. ArXiv, abs/1308.3432, 2013.

[2] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task and
hardware. In ICLR, 2019.

[3] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K. Duvenaud. Neural ordinary differential
equations. In NeurIPS, 2018.

[4] François Chollet. Xception: Deep learning with depthwise separable convolutions. 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1800–1807, 2017.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR 2009, 2009.

[6] Tim Dettmers and Luke S. Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. ArXiv, abs/1907.04840, 2019.

[7] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. CoRR, abs/1904.01681,
2019.

[8] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR 2019, 2019.

[9] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. The lottery ticket
hypothesis at scale. CoRR, abs/1903.01611, 2019.

[10] Aidan N. Gomez, Ivan Zhang, Kevin Swersky, Yarin Gal, and Geoffrey E. Hinton. Learning sparse
networks using targeted dropout, 2019.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735–1780,
1997.

[12] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. CoRR, abs/1704.04861, 2017.

[13] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2261–2269, 2017.

[14] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

[15] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. ArXiv,
abs/1611.01144, 2016.

[16] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, 2009.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional
neural networks. Commun. ACM, 60:84–90, 2012.

[18] Anders Krogh and John A. Hertz. A simple weight decay can improve generalization. In NIPS, 1991.

[19] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 19–34, 2018.

[20] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. CoRR,
abs/1806.09055, 2019.

[21] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through l0
regularization. CoRR, abs/1712.01312, 2018.

10

beaker.org

[22] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In ECCV, 2018.

[23] Dmitry Molchanov, Arsenii Ashukha, and Dmitry P. Vetrov. Variational dropout sparsifies deep neural
networks. In ICML, 2017.

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in PyTorch. In NIPS
Autodiff Workshop, 2017.

[25] Ameya Prabhu, Girish Varma, and Anoop M. Namboodiri. Deep expander networks: Efficient deep
networks from graph theory. In ECCV, 2017.

[26] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

[27] Mark B. Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4510–4520, 2018.

[28] Pedro H. P. Savarese and Michael Maire. Learning implicitly recurrent cnns through parameter sharing.
ArXiv, abs/1902.09701, 2019.

[29] F Shampine, Lawrence. Some practical runge-kutta formulas. Math. Comput., 46(173):135–150, January
1986.

[30] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V. Le. Mnasnet: Platform-aware
neural architecture search for mobile. CoRR, abs/1807.11626, 2018.

[31] Yuandong Tian, Tina Jiang, Qucheng Gong, and Ari S. Morcos. Luck matters: Understanding training
dynamics of deep relu networks. ArXiv, abs/1905.13405, 2019.

[32] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing ingredient
for fast stylization. CoRR, abs/1607.08022, 2016.

[33] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE,
78(10):1550–1560, Oct 1990.

[34] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter
Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. arXiv preprint arXiv:1812.03443, 2018.

[35] Saining Xie, Alexander Kirillov, Ross B. Girshick, and Kaiming He. Exploring randomly wired neural
networks for image recognition. CoRR, abs/1904.01569, 2019.

[36] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6848–6856, 2018.

[37] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

11

