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Abstract

Given a set of images containing multiple object categories, we seek to discover those categories and their image locations

without supervision. We achieve this using generative models from the statistical text literature: probabilistic Latent Semantic

Analysis (pLSA), and Latent Dirichlet Allocation (LDA). In text analysis these are used to discover topics in a corpus using the

bag-of-words document representation. Here we discover topics as object categories, so that an image containing instances

of several categories is modelled as a mixture of topics.

The models are applied to images by using a visual analogue of a word, formed by vector quantizing SIFT like region

descriptors. We investigate a set of increasingly demanding scenarios, starting with image sets containing only two object

categories through to sets containing multiple categories (including airplanes, cars, faces, motorbikes, spotted cats) and

background clutter. The object categories sample both intra-class and scale variation, and both the categories and their

approximate spatial layout are found without supervision.

We also demonstrate classification of unseen images and images containing multiple objects. Performance of the proposed

unsupervised method is compared to the semi-supervised approach of [7].1

1This work was sponsored in part by the EU Project CogViSys, the University of Oxford, Shell Oil, and the National Geospatial-Intelligence Agency.
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Abstract

Given a set of images containing multiple object categories,

we seek to discover those categories and their image loca-

tions without supervision. We achieve this using genera-

tive models from the statistical text literature: probabilistic

Latent Semantic Analysis (pLSA), and Latent Dirichlet Al-

location (LDA). In text analysis these are used to discover

topics in a corpus using the bag-of-words document repre-

sentation. Here we discover topics as object categories, so

that an image containing instances of several categories is

modelled as a mixture of topics.

The models are applied to images by using a visual ana-

logue of a word, formed by vector quantizing SIFT like

region descriptors. We investigate a set of increasingly

demanding scenarios, starting with image sets containing

only two object categories through to sets containing multi-

ple categories (including airplanes, cars, faces, motorbikes,

spotted cats) and background clutter. The object categories

sample both intra-class and scale variation, and both the

categories and their approximate spatial layout are found

without supervision.

We also demonstrate classification of unseen images and

images containing multiple objects. Performance of the

proposed unsupervised method is compared to the semi-

supervised approach of [7].

1. Introduction

Common approaches to object recognition involve some

form of supervision. This may range from specifying

the object’s location and segmentation, as in face detec-

tion [17, 24], to providing only auxiliary data indicating

the object’s identity [1, 5, 7, 25]. For a large dataset, any

annotation is expensive, or may introduce unforeseen bi-

ases. Results in speech recognition and machine translation

highlight the importance of huge amounts of training data.

The quantity of good, unsupervised training data – the set

of still images – is orders of magnitude larger than the vi-

sual data available with annotation. Thus, one would like

to observe many images and infer models for the classes of

visual objects contained within them without supervision.

This raises the scientific question which, to our knowledge,

has not been convincingly answered before: Is it possible to

learn visual object classes simply from looking at images?

Given large quantities of training data there has been

notable success in unsupervised topic discovery in text,

and it is this success that we wish to build on. We ap-

ply models used in statistical natural language processing

to discover object categories and their image layout analo-

gously to topic discovery in text. Documents are images and

we quantize local appearance descriptions to form visual

“words” [4, 18, 20, 26]. The two models we investigate are

the probabilistic Latent Semantic Analysis (pLSA) of Hof-

mann [9, 10], and the Latent Dirichlet Allocation (LDA) of

Blei et al. [3]. Both use the ‘bag of words’ model, where

positional relationships between features are ignored. This

greatly simplifies the analysis, since the data are represented

by an observation matrix, a talley of the counts of each word

(rows) in every document (columns).

The ‘bag of words’ model offers a rather impoverished

representation of the data because it ignores any spatial rela-

tionships between the features. Nonetheless, it has been sur-

prisingly successful in the text domain, because of the high

discriminative power of some words and the redundancy of

language in general. But can it work for images, where the

spatial layout of the features is almost as important as the

features themselves? While it seems implausible, there are

several reasons for optimism: (i) as opposed to old corner

detectors, modern feature descriptors have become power-

ful enough to encode very complex visual stimuli, making

them quite discriminative; (ii) natural images are also very

redundant (i.e. given a bag of features from an image, it is

highly unlikely to find another natural image with the same

features); (iii) because features are allowed to overlap in the

image, some spatial information is implicitly preserved (i.e.

randomly shuffling bits of the image around will almost cer-

tainly change the bag of words description). So, while these
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spatial relationships must eventually be taken into account,

here we are investigating how far the bag of words model

can be pushed in the image domain.

To use pLSA/LDA generative statistical models, we seek

a vocabulary of visual words which will be insensitive to

changes in viewpoint and illumination. We use vector quan-

tized SIFT descriptors [12] computed on affine covariant re-

gions [13, 14, 16]. Affine covariance gives us tolerance to

viewpoint changes; SIFT descriptors, based on histograms

of local orientation, give some tolerance to illumination

change. Others have used similar descriptors for object

classification [4, 15], but in a supervised setting.

We compare the two statistical models with a control

global texture model, similar to those proposed for pre-

attentive vision [22] and image retrieval [19]. Sect. 2 de-

scribes the pLSA and LDA statistical models; various im-

plementation details are given in Sect. 3. To explain and

compare performance, we apply the models to a series of

progressively more challenging datasets of visual images in

Sect. 4. We summarize in Sect. 5.

2. The pLSA and LDA models

We will describe the models here using the original terms

‘documents’ and ‘words’ as used in the text literature. Our

visual application of these (as images and visual words) is

then given in the following sections.

Suppose we have N documents containing words from

a vocabulary of size M . The corpus of text documents is

summarized in a M by N co-occurrence table N, where

n(wi, dj) stores the number of occurrences of a word wi

in document dj . This is the bag of words model. In addi-

tion, there is a hidden (latent) topic variable zk associated

with each occurrence of a word wi in a document dj .

pLSA: The joint probability P (wi, dj , zk) is assumed to

have the form of the graphical model shown in figure 1(a).

Marginalizing over topics zk determines the conditional

probability P (wi|dj):

P (wi|dj) =
K∑

k=1

P (zk|dj)P (wi|zk), (1)

where P (zk|dj) is the probability of topic zk occurring in

document dj ; and P (wi|zk) is the probability of word wi

occurring in a particular topic zk.

The model (1) expresses each document as a convex

combination of K topic vectors. This amounts to a matrix

decomposition as shown in figure 1(b) with the constraint

that both the vectors and mixture coefficients are normal-

ized to make them probability distributions. Essentially,

each document is modelled as a mixture of topics – the his-

togram for a particular document being composed from a

mixture of the histograms corresponding to each topic.

Wd

d z w

P( w|z )P( z|d )P( d )

N

(a)

=

d

P(w|d) P(w|z)

dz

w z

P(z|d)

w

(b)

N
Wd

φ

α z w

β

θ

(c)

Figure 1: (a) pLSA graphical model, see text. Nodes inside a given

box (plate notation) indicate that they are replicated the number

of times indicated in the top left corner. Filled circles indicate

observed random variables; unfilled are unobserved. (b) In pLSA

the goal is to find the topic specific word distributions P (w|zk)
and corresponding document specific mixing proportions P (z|dj)
which make up the document specific word distribution P (w|dj).
(c) LDA graphical model.

Fitting the model involves determining the topic vectors

which are common to all documents and the mixture co-

efficients which are specific for each document. The goal

is to determine the model that gives high probability to the

words that appear in the corpus, and a maximum likelihood

estimation of the parameters is obtained by maximizing the

objective function:

L =
M∏
i=1

N∏
j=1

P (wi|dj)
n(wi,dj), (2)

where P (wi|dj) is given by (1).

This is equivalent to minimizing the Kullback-Leibler

divergence between the measured empirical distribution

P̃ (w|d) and the fitted model. The model is fitted using

the Expectation Maximization (EM) algorithm as described

in [10].

LDA: In contrast to pLSA, LDA treats the multinomial

weights over topics as latent random variables. The pLSA
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model is extended by sampling those weights from a Dirich-

let distribution, the conjugate prior to the multinomial dis-

tribution. This extension allows the model to assign prob-

abilities to data outside the training corpus and uses fewer

parameters, thus reducing overfitting (see [3] for a detailed

comparison). The LDA model is shown in Figure 1(c),

where Wd is the number of words in document d. The goal

is to maximize the following likelihood:

p(w|φ, α, β) =

∫ ∑
z

p(w|z, φ)p(z|θ)p(θ|α)p(φ|β)dθ

(3)

where θ and φ are multinomial parameters over the topics

and words respectively and p(θ|α) and p(φ|β) are Dirichlet

distributions parameterized by the hyperparameters α and

β. Since the integral is intractable to solve directly, we

solve for the parameters using Gibbs sampling, as described

in [8].

The hyperparameters control the mixing of the multino-

mial weights (lower values give less mixing) and can pre-

vent degeneracy. As in [8], we specialize to scalar hyperpa-

rameters (e.g. αi = a∀i). For this paper, we used αi = 0.5
and βj = 0.5.

3. Implementation details

Obtaining visual words: Two types of affine co-variant

regions are computed for each image. The first is con-

structed by elliptical shape adaptation about an interest

point. The method is described in [14, 16]. The second is

constructed using the maximally stable procedure of Matas

et al. [13] where areas are selected from an intensity wa-

tershed image segmentation. For both of these we use the

binaries provided at [23]. Both types of regions are repre-

sented by ellipses. These are computed at twice the origi-

nally detected region size in order for the image appearance

to be more discriminating.

Each ellipse is mapped to a circle by appropriate scaling

along its principal axes and a SIFT descriptor computed.

There is no rotation of the patch. Alternatively, the SIFT

descriptor could be computed relative to the the dominant

gradient orientation within a patch, making the descriptor

rotation invariant [12]. The SIFT descriptors are then vec-

tor quantized into the visual ‘words’ for the vocabulary. The

vector quantization is carried out here by k-means cluster-

ing computed from about 300K regions. The regions are

those extracted from a random subset (about one third of

each category) of images of airplanes, cars, faces, motor-

bikes and backgrounds (see experiment (E) in section 4).

About 1K clusters are used for each of the Shape Adapted

and Maximally Stable regions, and the resulting total vo-

cabulary has 2,237 words. The number of clusters, k, is

clearly an important parameter. The intention is to choose

(a)

(b)

Figure 2: Two examples of visual words. (a) A wheel of an

airplane. (b) A motorbike handle. In each case, the top three

rows show 15 occurrences of this visual word in different images

with the elliptical region superimposed. The bottom row shows

affine normalized regions for the top row of images. Note that the

normalized regions appear quite similar – which is why they are

grouped in the same cluster. In the original images, the elliptical

regions exhibit intra-class variation, and varying scale (the scaling

is removed in this display as the ellipses are size normalized for

visibility).

the size of k to determine words which give some intra-class

generalization. Two examples of visual words are shown in

Fig. 2.

In text, a word with two different meanings is called pol-

ysemous (e.g. ‘bank’ as in (i) a money keeping institution,

or (ii) a river side). We observe the visual analogue of pol-

ysemy in figure 3. However, the generative models are de-

signed to cope with polysemous words. Such a word would

have a high probability in two different topics. The hid-

den topic variable associated with each word occurrence in

a particular document can assign such a word to particular

topic depending on the context of the document. We return

to this point in section 4.2.

Global Texture Model: To understand what level of per-

formance can be accounted for by low-level image process-

ing, we also implemented a simple texture clustering al-

gorithm as our baseline method. The algorithm computes

global feature histograms for each image in the database,
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(a)

(b)

Figure 3: Polysemy. Example of a single visual word correspond-

ing to two different (but locally similar) parts on two different ob-

ject categories. (a) Top row shows occurrences of this visual word

on the motorbike category, bottom row on the airplane category.

The parts tend to occur consistently on different categories, i.e. this

visual word fires mostly on the motorbike saddle and the airplane

wing. (b) Corresponding normalized frames. Note the similarity

of the normalized patches.

and then clusters these histograms, again using k-means.

Using color histograms will not work for computing ob-

ject classes since individual objects in each class will not

necessarily have the same colors. Using texture histograms,

on the other hand, does capture quite a lot about many types

of objects (e.g. buildings have many vertical and horizon-

tal edges). We experimented with several ways to represent

texture and found the following simple method to yield the

best results.

For each image in the database (grayscale), we compute

the magnitude and the orientation of the gradient at each

pixel. The gradient magnitudes are collected into a his-

togram (10 bins), and the corresponding orientations which

are greater than a threshold (0.02 in our case) are also col-

lected into a histogram (12 bins). The histograms are nor-

malized and concatenated into a single 22-dimensional vec-

tor; one per each image in the database. The vectors are

then clustered using k-means.

Model learning: In the case of pLSA, the EM algorithm

is initialized randomly, typically converges in 100-300 it-

erations, and takes about 10 mins to run on 3K images

(Matlab implementation on a 2GHz PC). For LDA, we

use Gibbs sampling to draw samples from the posterior

p(zi|z−i,w, α, β) over topics, where z
−i indicates all other

topic variables except zi. We do this for 50 rounds and use

the topic settings that maximizes the log-likelihood. Usu-

ally, we reach the maximum within the first 30 rounds. The

topic settings can then be used to compute relevant param-

eters, such as φ and θ. This process takes on the order of

an hour for 3K images. However, the independences in the

model allows for parallelism to be exploited.

4. Topic Discovery Experiments

Given a collection of completely unlabelled images, our

goal is to automatically discover the visual categories

present in the data and localize them in the image. To this

end, we carry out a set of quantitative experiments with pro-

gressively increasing level of visual difficulty. Since here

we know the object instances in each image, we use this in-

formation as a performance measure. A confusion matrix is

computed for each experiment for each of the three models

being tested (pLSA, LDA, and the baseline texture model).

Below we describe the datasets (1-8), the experiments (A-

F), and summarize the results for each.

Data sets: Our data set consists of six categories from

the Caltech image datasets (as previously used by Fergus

et al. [7] for semi-supervised classification), and two cate-

gories ((7) and (8) below) from the more difficult 101 cate-

gory dataset [6].

Label description # images

(1) All faces 435

(1ub) Faces on uniform background 435

a cropped version of (1)

(2) All motorbikes 800

(2ub) Motorbikes on uniform background 349

a subset of (2)

(3) All airplanes 800

(3ub) Airplanes on uniform background 263

a subset of (3)

(4) Cars rear 1155

(5) Leopards 200

(6) Background 1370

(7) Watch 241

(8) Ketch 114

The reason for picking these particular categories is

pragmatic: they are the ones with the greatest number of

images per category. All images have been converted to

grayscale before processing. Otherwise they have not been

altered in any way, with one notable exception: a large num-

ber of images in the motorbike category (2) and airplane

category (3) have a white border around the image which

we have removed since it was providing an artifactual cue

for object class.

4.1. Classification

In the following we carry out a series of experiments vary-

ing the number and difficulty of the categories. In each case

images are pooled from a number of original datasets, and

the three models are fitted to the ensemble of images (with

no knowledge of the image’s labels) for a specified number

of topics, K. This is by default set equal to the number of

categories in the dataset. For example, in experiment (B)
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Ex Categories pLSA LDA Texture

% # % # % #

A 2,3 ub 100 1 99 7 91 53

B 1-3 ub 100 2 96 40 94 55

C 1-3 97 56 96 71 91 170

D 1-4 98 70 87 365 72 1060

E 1-4 + bg 78 931 77 970 73 1174

E6* 1-4 + bg 76 1072 – – – –

E7* 1-4 + bg 83 768 – – – –

F 1-5,7-8 + bg 59 1515 64 1458 47 2093

Figure 4: Summary of the experiments. Column ‘%’ shows the

classification accuracy measured by the average of the diagonal

of the confusion matrix. Column ‘#’ shows the total number of

misclassifications. See text for a more detailed description of the

experimental results. (*) In the case of E6/E7 the two/three back-

ground topics are classified as one category.

the images are pooled from three categories (airplanes, cars

and motorbikes, all with uniform backgrounds) and models

with K = 3 objects (topics) are fitted. In the case of pLSA,

the model determines the mixture coefficients P (zk|dj) for

each image (document) dj (where z ∈ {z1, z2, z3} for the

three topics in example (C)). An image dj is then classi-

fied as containing object k according to the maximum of

P (zk|dj) over k. In the LDA case, we classify based on the

topic mixture weights θ, which can be computed using the

samples drawn by the Gibbs sampler.

We performed the following experiments. The results

are summarized in table 4.

(A) Two object categories (2ub,3ub), uniform back-

grounds. This is a relatively easy test (Airplanes vs. Mo-

torbikes) with no background clutter to worry about. Both

models perform very well with pLSA having only 1 mis-

classified image, and LDA only 7.

The baseline texture model has 53 misclassified. Al-

though not perfect, the simple texture model performs sur-

prisingly well. This is probably due to the fact that there

are only two categories which can be easily separated by

gradient orientations (airplanes are less textured and more

recto-linear, while motorbikes have more texture at all ori-

entations).

(B) Three object categories (1ub,2ub,3ub), uniform

backgrounds. Here we increase the number of categories

by one, adding the cropped face dataset. The performance

of all three models is similar to that of experiment (A), de-

spite the addition of over 250 more images.

(C) Three object categories (1,2,3), cluttered back-

grounds . Now we introduce a cluttered background with

each object class. Because the backgrounds are somewhat

a b

Figure 5: (a) Example of a face image which is classified in exper-

iment C as a motorbike due to similar background (grass, trees)

to many motorbikes images. (b) An example of a motorbike with

mostly grass background.

correlated with the objects, we expect similar results regard-

ing the numbers of topics discovered, with the correlated

backgrounds being considered parts of the objects. How-

ever, this is a more visually challenging task as the back-

ground is not a single object, but much more varied and

disparate. The results for pLSA are summarized in the fol-

lowing confusion table. LDA exhibits a very similar behav-

ior.

True Class → Faces Motorb Airplan

Topic 1 - Faces 95.17 0.25 0.75

Topic 2 - Motorb 4.83 99.12 2.75

Topic 3 - Airplan 0.00 0.62 96.50

It is interesting to examine the images that are confused

between the topics. Essentially the confusion arises because

the background is in common between the images, see fig-

ure 5. This motivates experiment (E) where background im-

ages are added, and there is the opportunity for the models

to discover the background as an object.

(D) Four object categories (1,2,3,4), cluttered back-

grounds. Here, we add a fourth category (Cars rear), all

with cluttered backgrounds and significant scale variations.

An interesting observation comes from varying the number

of topics, K. In the case of K = 4, we discover the four

different categories in the dataset with very high accuracy

(see table 4). In the case of K = 5, the car dataset splits

into two subtopics. This is because the data contains sets of

many repeated images of the same car. Increasing K to 6

splits the motorbike data into sets with a plain background

and cluttered background similar to our manual split of the

data for experiments A and B. Increasing K further to 7 and

8 ‘discovers’ two more sub-groups of car data containing

again other repeated images of the same/similar cars.

It is also interesting to see the visual words which are

most probable for an object, by selecting those with high

topic specific probability P (wi|zk). These are shown for

the pLSA model for the case of K = 4 in figure 6.

(E) Four object categories (1,2,3,4) plus “background”

category (6). Here we add an explicit “background” cat-
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(a)

(b)

(c)

(d)

Figure 6: Two most likely words (shown by 5 examples in a row)

for four learnt topics in experiment (D): (a) Faces, (b) Motorbikes,

(c) Airplanes, (d) Cars.

egory (indoor and outdoor scenes around Caltech campus)

to our experiment D. The reason for adding these additional

images is to give the methods the opportunity of discovering

background “objects”.

The confusion tables for the three methods are shown

as images in figure 7(a). It is evident, for example, that

for both pLSA and LDA the first topic confuses faces and

backgrounds to some extent.

We now carry out further pLSA model fits with K =
6, 7. The result is very interesting: the confusion between

the four object categories decreases significantly, and in-

stead the background is treated as three separate topics, see

figure 7(b). Because the background is so varied, it is be-

ing treated as three distinct objects, roughly corresponding

to local feature-like texture, building/office-like texture and

stochastic-like texture. Examples of visual words with high

probability under these background topics/objects are given

in figure 8. This example reiterates that an image is being

described as a mixture over topics. Examining the poste-

riors, it can be seen that a typical image consisting of fore-

ground object (e.g. a motorbike) and background is now de-

scribed as a mixture of motorbike and the background topics
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Figure 7: (a) Confusion tables for pLSA, LDA and texture for

experiment (E) with 5 learned topics. Brightness indicates num-

ber. The ideal is bright down the diagonal. (b) Confusion tables

for pLSA for increasing number of topics (K=5,6,7) respectively.

Note how the background (category 5 splits into 2 and 3 topics

(for K=6 and 7 respectively) and that some amount of the confu-

sion between categories and background is removed.

(e.g. texture). We return to this point below in section 4.2.

(F) Seven object categories (1,2,3,4,5,7,8) plus “back-

ground” category (6). In our biggest experiment, we

used all our datasets with real backgrounds (adding Leop-

ards, Watch and Ketch to previous experiments). Even

though the new categories all had substantially fewer im-

ages (around 200), the results are still encouraging.

Discussion: In the experiments it was necessary to spec-

ify the number of topics K, however Bayesian [21] or mini-

mum complexity methods [2] can be used to infer the num-

ber of topics implied by a corpus.

While designing these experiments, we grew to appre-

ciate the many difficulties in searching for good datasets.

Finding a collection of images containing objects of the

same category that is large enough (at least 200 images),

hard enough (good intra-class variation between objects),

but doable (the intra-class variation is based on appear-

ance, not semantics) is not an easy task! Dealing with

realistic backgrounds presents another set of issues. In a

full object-recognition system there should not be anything

called “background” – every object in the scene must be

explained. However, this requires enough training data to

cover each object independently of all the others. For ex-

ample, if all the airplanes in the dataset are pictured on tar-

macs (with no airplanes in the air, and no empty tarmacs),

then there is no way for the system to learn that these are

actually two distinct object classes. In these experiments,

we addressed these problems in two ways: (i) every attempt

was made to use datasets with varied backgrounds, (ii) a

“background” category was added, with backgrounds simi-

lar to the ones used in other categories.
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(a)

(b)

(c)

Figure 8: Two most likely words (shown by 5 examples in a row)

for the three background topics learned in experiment E: (a) topic

2,mainly local feature-like structure (b) topic 4, mainly corners

and edges coming from the office/building scenes, (c) topic 5,

mainly textured regions like grass and trees. For topic numbers

refer to figure 11(c).

Classifying unseen images: The learned topics can also

be used for classifying unseen images, a task similar to the

one in Fergus et al. [7]. In the case of pLSA, the topic spe-

cific distributions P (w|z) are learned from a separate set of

‘training’ images. When observing a new unseen ‘test’ im-

age, the document specific mixing coefficients P (z|dtest)
are computed using the ‘fold-in’ heuristic described in [9].

In particular, the unseen image is ‘projected’ on the sim-

plex spanned by learned P (w|z), i.e. the mixing coeffi-

cients P (zk|dtest) are sought such that the Kullback-Leibler

divergence between the measured empirical distribution

P̃ (w|dtest) and P (w|dtest) =
∑K

k=1 P (zk|dtest)P (w|zk)
is minimized. This is achieved by running EM in a similar

manner to that used in learning, but now only the coeffi-

cients P (zk|dtest) are updated in each M-step. The learned

P (w|z) are kept fixed.

To compare performance with Fergus et al. [7], experi-

ment E was modified such that only the ‘training’ subsets

for each category (and all background images) from [7]

were used to fit the pLSA model with 7 topics (four ob-

ject topics and three background topics). The ‘test’ images

from [7] were than ‘folded in’ as described above. In the

first test the confusion between different object categories

True Class → Faces Motorb Airplan Cars rear

Topic 1 - Faces 99.54 0.25 1.75 0.75

Topic 2 - Motorb 0.00 96.50 0.25 0.00

Topic 3 - Airplan 0.00 1.50 97.50 0.00

Topic 4 - Cars rear 0.46 1.75 0.50 99.25

Figure 9: Confusion table for unseen test images (modified ex-

periment E). Note there is very little confusion between different

categories. See text.

Object categ. pLSA (a) pLSA (b) Fergus et al. [7]

Faces 5.3 3.3 3.6

Motorbikes 15.4 8.0 6.7

Airplanes 3.4 1.6 7.0

Cars rear* 21.4 / 11.9 16.7 / 7.0 9.7

Figure 10: Equal error rates for image classification task for pLSA

and the method of [7]. Test images of a particular category were

classified against (a) testing background images (test performed

in [7]) and (b) testing background images and testing images of all

other categories. The improved performance in (b) is because our

method exhibits very little confusion between different categories.

(*) The two performance figures correspond to training on 400 /

900 background images respectively. In both cases, classification

is performed against an unseen test set of road backgrounds (as

in [7]), which was folded-in. See text for explanation.

is examined. Each test image is assigned to object topic k

with maximum P (zk|dtest) (background topics are ignored

here). The confusion table is shown in figure 9.

In the second test we examine performance in classify-

ing (unseen) images against (unseen) background images.

The pLSA model is fitted to training subsets of each cat-

egory and a training subset of only 400 (out of 900) back-

ground images. Testing images of each category and testing

background images are ‘folded-in’. The mixing proportion

P (zk|dtest) for topic k across the testing images dtest (i.e.

a row in the landscape matrix P (z|d) in figure 1b) is then

used to produce a ROC curve for the topic k. Equal error

rates for the four object topics are reported in figure 10.

Note that for Airplanes and Faces our performance is

similar to that of [7] despite the fact that our ‘training’ is

unsupervised in the sense that the identity of the object in

an image is not known. This is in contrast to [7], where each

image is labelled with an identity of the object it contains,

i.e. about 5×400 items of supervisory data vs. one label

(the number of topics) in our case.

In the case of motorbikes we perform worse than [7]

mainly due to confusion between motorbike images con-

taining textured background and textured background topic

(similar problem is shown in figure 5). The performance on

Cars rear is poor because Car images are split between two

topics in training (a similar effect happens in experiment
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(a) (b)
Topic P (topic|image) # regions

1 Motorbikes (green) 0.07 1

2 Backg I (magenta) 0.09 1

3 Face (yellow) 0.48 128

4 Backg II (cyan) 0.17 12

5 Backg III (blue) 0.15 23

6 Cars (red) 0.03 0

7 Airplane (black) 0.00 0

(c)

Figure 11: Image as a mixture of visual topics (Experiment E) - I.

(a) Original frame. (b) Image as a mixture of a face topic (yellow)

and background topics (blue, cyan). Only elliptical regions with

topic posterior P (z|w, d) greater than 0.8 are shown. In total 7

topics were learned for this dataset which contained (faces, motor-

bikes, airplanes, cars, and background images). The other topics

are not significantly present in the image since they mostly repre-

sent the other categories and other types of background. Table (c)

shows the mixture coefficients P (z|d) for this particular image.

In total there are 693 elliptical regions in this image of which 165

(102 unique visual words) have P (z|w, d) above 0.8 (those shown

in (b)).

D for K=6). This splitting can be avoided by including

more background images. In order to make results compa-

rable with [7], Cars rear images were classified against com-

pletely new background dataset containing mainly empty

roads. This dataset was not seen in the learning stage and

had to be ‘folded-in’ which makes the comparison on Cars

rear slightly unfair.

4.2. Segmentation

In this section we evaluate the image’s spatial segmentation

that have been discovered by the model fitting. As a first

thought, it is absurd that a bag of words model could possi-

bly have anything useful to say about image segmentation,

since all spatial information has been thrown away. How-

ever, the pLSA model delivers the posteriors

P (zk|wi, dj) =
P (wi|zk)P (zk|dj)∑K

l=1 P (wi|zl)P (zl|dj)
, (4)

and consequently for a word occurrence in a particular doc-

ument we can examine the probability of different topics.

Figures 11 and 12 show examples of ‘topic segmenta-

tion’ induced by P (zk|wi, dj) for the case of experiment (E)

with 7 topics. Figure 13 shows examples of topic segmenta-

tion for unseen images (modified experiment E7). In partic-

ular, we show only visual words with P (zk|wi, dj) greater

(a) (b)

Figure 12: Image as a mixture of visual topics II. For this image

P (z|d) is 0.48 (motorbikes - green), 0.01 (bg I - magenta), 0.04

(face - yellow), 0.20 (bg II - cyan), 0.14 (bg III - blue), 0.02 (cars -

red), 0.10 (airplane - black). In total there are 466 elliptical regions

in this image of which 102 (80 unique visual words) have P (z|d)
above 0.8 (those shown in (b)).

than 0.8. There is an impressive alignment of the words

with the corresponding object areas of the image. Note the

words shown are not simply those most likely for that topic.

Rather, from (4), they have high probability of that topic in

this image. This is an example of overcoming polysemy –

the probability of the particular word depends not only on

the probability that it occurs within that topic (face, say) but

also on the probability that the face topic has for that image,

i.e. the evidence for the face topic from other regions in the

image.

There are no examples of images containing several dif-

ferent objects in the datasets we are using, so we provide a

small number of additional images. In the pLSA case we

have added these images to the dataset of experiment E and

re-fitted the model to all images. In the case of LDA, we

use the learned parameters to do prediction on the unseen

mixed-category images. An example of segmentations for

an image containing a car and a motorbike is shown in fig-

ure 14(a) and a car and a face in 14(b). The segmentations

were obtained in the same way as described above. Note

in the case of pLSA it was necessary to refit the model to

all the images (although this can be avoided [10]), however

in the case of LDA the mixture weights could be inferred

directly.

5. Conclusions

We have demonstrated that it is possible to learn visual ob-

ject classes simply by looking; in experiments (A) through

(F) we identify the object categories for each image with

the high reliabilities shown in figure 4, using a corpus of

unlabelled images. Furthermore, the visual words with the

highest posterior probabilities for each object correspond

fairly well to the spatial locations of each object. This is

rather remarkable considering our use of the bag of words

model.

We have explored an extreme approach, no spatial prop-

agation of information, and have met with surprising suc-
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(a) (b)

Figure 14: Multiple objects in an image. (a) pLSA example: Two

objects are present in this image: a motorbike (topic 1 - green )

and a car (topic 6 - red). The learned mixture coefficients P (z|d)
are 0.41 (motorbikes - green), 0.02 (bg I - magenta), 0.16 (face -

yellow), 0.19 (bg II - cyan), 0.04 (bg III - blue), 0.14 (cars - red),

0.02 (airplane - black). In total there are 740 elliptical regions in

this image of which 95 (72 unique visual words) are shown (have

P (z|w, d) above 0.8). (b) LDA example: Two objects are present

in this image. a face (yellow) and a car (red). The learned mixing

weights θ are 0.19 car (red), 0.07 motorbike (green), 0.16 airplane

(black), 0.14 background (blue), 0.44 face (yellow).

cess. The current work provides a foundation for spatial

inference: the posterior marginal probabilities for object

membership for each local region and each object. Already,

we have shown these probabilities to be useful for identify-

ing and localizing objects that have been discovered from

a training corpus. We expect they will also prove useful

for tasks such as combining topic discovery with spatial

inference and perceptual organization, or image retrieval.

For example, the topic vectors we have discovered may

now be applied directly as ‘semantic vectors’ for retrieval

from image databases, and we anticipate significant per-

formance improvements compared to standard approaches

such as LSA [20].
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