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Abstract

We propose an approach to identify and segment objects

from scenes that a person (or robot) encounters in Activities

of Daily Living (ADL). Images collected in those cluttered

scenes contain multiple objects. Each image provides only

a partial, possibly very different view of each object. An ob-

ject instance discovery program must be able to link pieces

of visual information from multiple images and extract the

consistent patterns.

Most papers on unsupervised discovery of object models

are concerned with object categories. In contrast, this pa-

per aims at identifying and extracting regions correspond-

ing to specific object instances, e.g., two different laptops in

the laptop category. By focusing on specific instances, we

enforce explicit constraints on geometric consistency (such

as scale, orientation), and appearance consistency (such as

color, texture and shape). Using multiple segmentations as

the basic building block, our program processes a noisy

“soup” of segments and extracts object models as groups

of mutually consistent segments.

Our approach was tested on three different types of im-

age sets: two from indoor ADL environments and one from

Flickr.com. The results demonstrate robustness of our pro-

gram to severe clutter, occlusion, changes of viewpoint and

interference from irrelevant images. Our approach achieves

significant improvement over with two existing methods.

1. Introduction

We tackle the problem of discovering object instances

from ADLs (Activities of Daily Living) [17]. Imagine a

personal robotic assistant [1] that accompanies a user to dif-

ferent scenes during her daily activities, such as kitchen,

living room and office space. Every time the user operates

in a scene, the robotic assistant takes a few pictures of the

environment without the user explicitly showing the objects

to the robot. After one or two weeks of data gathering, we

would like the robotic assistant to automatically discover

and model objects from the images it has collected.

Figure 1. From (a) a set of unlabeled images in ADLs, our pro-

gram discovers (b) object instances that appear repeatedly.

1.1. Example problem

As an example of such scenarios, a user collected 175
images while performing daily-living activities (e.g., Fig-

ure 1(a)). These images capture scenes of two offices, two

kitchens, and one living room, taken when she enters or

leaves a room.

From this ADL dataset, our goal is to automatically 1)
identify distinct object instances, e.g., we need to distin-

guish particular mugs that a person uses at home or office;

and, 2) recover the spatial extent of the objects in the images

(Figure 1(b)).

1.2. Background and related work

Many approaches have been developed for unsupervised

object discovery [3, 6, 10, 16, 33, 27, 29, 36, 39, 44]. An

extensive study and comparison of the state-of-the-art tech-

niques is reported in [41]. These previous papers aim at

discovering/grouping visually different object instances ac-
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cording to some definition of categorization, e.g., motor-

bikes of different makes and models, etc [3, 33, 27]. Be-

cause of the large intra-category variance, they resorted to

use generic techniques that are less discriminative, such

as topic models [33, 36]. Despite substantial efforts,

these approaches can only identify limited types of ob-

jects where the inter-category variance outweighs the in-

tra-category variance, e.g., faces, cars, airplanes and motor-

bikes [3, 10, 16, 33, 27, 36, 39], or can only handle one class

of objects at a time [3, 6, 10, 39]. Because of their lack of

discriminative power, neither will they be suitable for our

task that requires distinguishing specific object instances.

Another style of object discovery uses videos [20, 34].

However, existing approaches largely rely on the contin-

uous observation of the same object at one location, and

do not take advantage of the fact that the same object in-

stance can appear at multiple locations. In this paper, we

use images collected from monocular cameras, which is

different from approaches using stereo (e.g., [38]) or 3D

range data (e.g., [25, 40]). Our problem can also be con-

sidered as a large co-segmentation problem that segments

common objects from a set of images. However, the current

co-segmentation methods [11, 15, 31] can only handle one

object at a time and their inputs are a small set of images

that are known to contain the same object. [4] extended the

co-segmentation idea to extracting identical objects. How-

ever, because this approach relies on dense pairwise fea-

ture matching, it is more suitable for the scenario of finding

identical texture-rich objects from a smaller set of images,

similar to [21, 29, 30, 32, 43].

Recently, we have seen significant progress in under-

standing object instances. An “object” instance can be ei-

ther a “model image” that captures an object with a clean

background [22, 9], or a region of interest (ROI) that a

user selects from an image [37]. Many techniques applied

in category-level applications are also applied to tasks that

deal with instances, but substantial changes to these tech-

niques are required. For example, in a category scenario,

small codebooks can be used in bag-of-words models [37]

to compensate the intra-category variance; however, in an

instance scenario, significantly larger codebooks (e.g., mil-

lions of visual-words) have been used to improve the dis-

criminative power [26, 28], i.e., constraining the allowed

changes in object appearance. Further, geometric verifica-

tion can be conducted to enforce the geometric consistency

[14, 28]. These approaches have been applied to image clus-

tering [5]. However, they are not suitable for our problem.

Because many of our input images are captured in the same

environment (similar rooms), large portions of the features

from the background will dominate the clustering. Funda-

mentally, this is because these approaches use a “loose” bag

of features instead of a concrete definition for the spatial ex-

tent of an object.

1.3. Proposed approach

The object discovery problem requires the correct identi-

fication and segmentation of each object instance. We pro-

pose an approach that uses bottom-up image segmentation

as the basic building block to attack the identification and

segmentation problems simultaneously (Figure 2). Image

segmentation is typically noisy. Among hundreds of seg-

ments, only a few might belong to meaningful objects (e.g.,

Figure 2(a)), which is impossible to tell from a single image.

However, from multiple images, the segments that belong

to the same object will display stronger correlation than the

ones that belong to different objects or backgrounds. For

specific instances, we measure these correlations explicitly

as geometric consistency (scale, orientation), and appear-

ance consistency (color, texture and shape).

Based on this observation, our approach processes a

noisy “soup” of segments [12, 33] and extracts object can-

didates as groups of mutually consistent segments (Figure

2(b)). We develop a procedure that iteratively groups and

refines segments (Figure 2(c)). We also use the co-occurring

information between object segments to generate models of

objects with high complexity (Figure 2(d)). Compared with

two existing methods [16, 33], our approach demonstrates

significant advantage in attacking this unique problem.

2. Algorithms

2.1. Generating a pool of object segments using mul
tiple segmentations

The goal of image segmentation is to extract objects,

each of which represented by exactly one image region.

However, in real images, many of the regions generated

by typical segmentation algorithms fall short of capturing

meaningful objects (e.g., Figure 2(a)). Instead of relying

on one segmentation to segment all the objects correctly,

[12] and [33] propose to vary the parameters of the segmen-

tation program and combine different segmentation results

together. Improved recall of objects was obtained through

this process, because for most objects there exists at least

one combination that segments some of them reasonably

well. To extend this further, we propose to combine multi-

ple segmentation programs with multiple parameter settings

to generate a more diverse pool of object segments. In this

paper, we combine the segmentations of [7] and [24]. For

the ADL dataset, we start with over 35000 segments. After

merging overlapping segments and filtering out small seg-

ments, on average 25 segments are retained per image (e.g.,

Figure 2(a)), 4390 segments in total.

2.2. Extracting groups of mutually consistent seg
ments

Using a larger segment pool increases the recall of ob-

jects, but it also substantially increases the number of seg-

ments that do not belong to actual objects. We observed



that, in multiple images, the regions that correctly segment

the same object are consistent up to certain transformations,

e.g., scale, rotation, while the segments that belong to dif-

ferent objects or backgrounds do not display the same level

of consistency (e.g., Figure 1(a)). Therefore, we can iden-

tify object candidates by dividing the pool of segments into

multiple groups, each of which contains mutually consistent

segments. Each group will be treated as an object instance

candidate.

To achieve such grouping of the segments, we: 1) com-

pute the consistency of each pair of segments; and, 2) ex-

tract groups of segments that are mutually consistent.

2.2.1 Computing pairwise segment consistency

Given two segments, we want to calculate a measure of

pairwise consistency to quantify how likely the segments

belong to the same object. There are two challenges in de-

riving such a consistency measure.

First, the same object can have different appearance in

multiple images because of different placements and view-

points; our consistency measure should be robust to such

changes. We found that the following three features yield a

good balance between robustness and discriminative power:

• Color: We calculate the RGB color histogram (Hs)

and the mean RGB color values (Ms) for a segment s.

• Texture: We extract SIFT [22] features for the whole

image and represent s using the quantized SIFT fea-

tures (Vs) located inside the segment. We use a bag-

of-words (BoW) representation [28, 37].

• Shape: We choose the shape descriptor and matching

algorithm proposed in [2]. The shape matching metric

measures how likely the two segments are equivalent,

up to a similarity transformation.

Second, everyday objects have heterogeneous appear-

ance: some objects with strong local texture are well-suited

for descriptors like SIFT, while others are completely fea-

tureless. For objects with sparse features, [8] proposed an

approach that assumes the existence of small texture-rich re-

gions. However, for the texture-less objects that we handle,

this assumption is rarely valid. Instead, it is more appro-

priate to represent these objects with color and shape de-

scriptors. To cope with such heterogeneity, we develop a

consistency measure that adapts to the appearance of differ-

ent segments. For each segment s, we classify it as either

texture-rich or texture-less based on the number of SIFT

features detected in it. For different types of segments, we

define different consistency measures. Our adaptive consis-

tency measure consists of two stages. The first stage uses

color and texture features. Given a segment s, we compute

Figure 2. Proposed approach for object instance discovery.
(Best viewed in color.)

its consistency with another segment t as:

c1(s, t) =







1− αd(Hs, Ht)
−βd(Vs, Vt)

, s is texture-rich

1− d(Ms,Mt), s is texture-less

,

(1)

where d(·, ·) is the Euclidean distance. We learn α and β



using 1000 pairs of segments. These parameters are learned

once and fixed across all the experiments.

c1(·, ·) can be computed efficiently1. Since our ultimate

goal is to find the mutually consistent segments, we use c1
as the first step to quickly eliminate a large number of “ob-

viously” non-similar segments. The most similar segments

(T1(s) = {t|c1(s, t) > C1, C1 = 0.5}) are passed to the

second step of shape matching. We measure the shape con-

sistency c2(s, t) using the metric ds(s, t) from [2]:

c2(s, t) = 1− ds(s, t), t ∈ T1(s), (2)

and we use an adaptive threshold to determine if two seg-

ments’ shapes are similar:

C2 =

{

0.5 (suggested in [2]), s is texture-rich

0.75, s is texture-less
. (3)

The performance of the whole algorithm is robust to differ-

ent choices of these thresholds.

We represent the pairwise consistency of segments using

a graph structure (Figure 2(b)), in which each segment is a

node and the edges link pairs of segments (s, t) that are con-

sistent, i.e., c1(s, t) > C1 and c2(s, t) > C2. For each seg-

ment s in the ADL dataset, on average, about 20 segments

t satisfy c1(s, t) > C1. In the final consistency graph, 709
(∼ 16%) segments are connected with other segments and

their average degree is 3.1. This means that our pairwise

consistency measure is filtering out most of the segments

that are not likely to belong to any objects. This makes the

consistency graph sparse (density≈ 1.14e − 4), a desirable

property for discovering objects from large datasets.

2.2.2 Grouping mutually consistent segments

If the segment consistency measurement is perfect, then

only segments of the same object should be connected. Un-

fortunately, matching individual pairs of segments is prone

to errors because: 1) the bottom-up segmentation results are

imperfect, e.g., two segments of different objects might in-

tersect (Figure 2(b)); and, 2) different objects might look

similar from some special viewpoints, e.g., a cup might ap-

pear similar to a computer mouse. On the other hand, even

if individual matches are imperfect, segments belonging to

the same object are more consistently connected as a group.

A similar phenomenon has been observed in studies of col-

laboration networks [42], where groups of people are mutu-

ally connected through their email exchanges. By analogy,

we propose to extract segments of the same object that form

mutually consistent “communities”.

In this paper, we apply a graph-based method [42] to this

community discovery task. We select this method because it

does not require knowing the desired number of groups. In

1We found that color and BoW matching is about two to three orders

of magnitude faster than shape matching.

scenarios where the group numbers are known, other meth-

ods [23, 35] should also be applicable.

For the ADL dataset, we extracted 180 groups that con-

tain at least 2 segments, among which 21 groups con-

tain more than 5 segments, and the largest group contains

16 segments. Visual inspection confirmed that the larger

groups are more likely to belong to the same objects. In

practice, we use the group size as a criterion to select the

most promising object candidates.

2.3. Iteratively grouping and refining segments

After groups of mutually consistent segments are ex-

tracted, we can now use the grouping information to refine

the segmentation. A straightforward approach, e.g., [18],

is to generate two ensemble models, one using the pixels

from the segments, and the other using those from the back-

ground and to re-segment the images based on these en-

semble foreground/background models. However, this ap-

proach is sensitive to errors in the initial segmentation.

Instead, for object instances, we can explicitly model

the geometric transformations between object segments and

enforce segmentation constraints based on the pixel corre-

spondences. For a group of segments, we warp each pair of

aligned segments using the transformation estimated during

the segment shape matching step [2] and we detect the re-

gions that the segments intersect. We initialize the image re-

gions that all the segments intersect as “foreground”, the re-

gions that none of the segments intersect as “background”,

and all the other regions as “unknown”. Using the initial

“foreground”/“background” regions, we can calculate how

likely a pixel belongs to the object or the background. We

also enforce that corresponding pixels in different images

should have the same identity.

We formulate the segment refining problem as a graph-

cut problem. We construct a graph using all the pixels of the

images from which the segments originated. Each pixel is

treated as a node i, and the union of all the pixels is V . An

edge is created if two pixels are in a 4-neighborhood (ǫ) of

the same image, or they are corresponding pixels (Π) of two

images. The segmentation minimizes the energy function:

E(X) =
∑

i∈V

Eu(xi)+λ
∑

(i,j)∈ǫ

Ep(xi, xj)+γ
∑

(k,l)∈Π

Ec(xk, xl),

(4)

where X is the labeling of all the pixels. Eu(xi) is

the unary energy based on the similarity of i to the

“foreground”/“background” regions, and Ep(xi, xj) is the

image-wise smoothness energy. The definitions of these

two energies are the same as in [19]. We propose to use a

new energy term, Ec(xk, xl), to penalize labeling two cor-

responding pixels differently:

Ec(xk, xl)|(k,l)∈Π =

{

0, xk = xl

1, xk 6= xl
. (5)



Figure 3. Example of a complex object. Our program com-
pose the final model using multiple parts that co-occur. (We
darkened the background for visualization. For reference, we
include a picture of the object on the right. Best viewed in
color)

Some representative examples comparing the segmentation

results before and after the refinement are shown in Figure

2(c). In this case the initial pixel-wise precision/recall are

72%/98%, and after refinement they are 93%/98%, a 20%
improvement. We replace the initial segments with the re-

fined ones and iterate this grouping/refining process 3 times.

2.4. Composing object models using cooccurring
segments

The extracted groups of segments are good enough for

representing most of the object instances, especially the

ones with a single part. However, some complex objects

can be fragmented as several groups. This could happen if:

1) the object has complex textures, e.g., a book with large

characters on its cover; and, 2) objects are made of multiple

parts, e.g., an opened laptop, whose screen and keyboard

are divided into two groups of segments (Figure 2(d)). Our

program solves this fragmentation issue by composing ob-

jects parts that appear coherently in multiple images.

In each image, we identify segments that co-occur and

are adjacent. If a significant portion (80%) of two seg-

ment groups co-occur, we compose new segments using

the co-occurring segments and generate a new group us-

ing the composed segments. Figure 3 shows a multi-part

chair model that our program extracted from a set of im-

ages independently collected, by composing different parts,

i.e., back, seat and two handles. Due to large errors in the

initial segmentation, our program did not discover the legs.

3. Result and analysis on the ADL dataset

From the ADL dataset, we first extract 4390 segments,

from which our program produces 113 segment groups,

each containing at least 2 segments, among which 18 groups

contain more than 5 segments each. Some examples of ob-

jects that the program discovers were shown in Figure 2(d).

Figure 4 shows some more discovered objects, including

semi-transparent, texture-less objects, ambiguous objects,

and objects made of multiple parts.

To quantitatively evaluate our program, we ask the user

to label the objects that appear in more than 5 images, move

relative to the environment at least once, and are larger than

1600 pixels (i.e., about 1% of the image size). 16 objects

satisfy these criteria. We apply a hit-miss criterion used

in object detection to decide if a segment is correct, i.e.,

whether the segment overlaps an object over 50%. We cal-

culate the group purity of each segment group as the por-

(a) Object 1: lunch box (semi-transparent, texture-less object)

(b) Object 2: eyeglass case (small, texture-less object)

(c) Object 3: keyboard#1 (ambiguous with keyboard #2)

(d) Object 4: keyboard#2 (ambiguous with keyboard #1)

(e) Object 5: laptop (object with multiple parts)

Figure 4. Example of objects discovered by our program from

the ADL object dataset. The backgrounds darkened for visu-

alization.

(a)

(b)

Figure 5. Examples of objects discovered by the modified base-

line system (“Russell, et.al. (modified)”) [33].

Figure 6. Comparison of our approach in 3 different configu-

rations and [16, 33] on the ADL dataset.

tion of correct segments that belong to the same object [41].

If there are multiple objects in the group, we compute the

group purity as the percentage of the correct segments of the

most frequent object. To qualify as a correct object candi-

date, we require that a segment group’s purity be over 80%.

We found that the larger the group, the more likely the seg-



ments belong to the same object. Therefore we use the size

of a group as the threshold to choose object candidates. We

calculate object-wise precision/recall with respect to each

choice of the group size threshold. We define precision as

the number of correct object candidates divided by the to-

tal number of groups, and recall as the number of unique

objects discovered by the program divided by the total 16
groundtruth objects. Figure 6 shows the precision/recall

profile of our program. The group size threshold increases

from right to left.

We also want to understand the effect of different com-

ponents on the discovery process. For example, Figure 6

shows the precision/recall profile of our program when we

do not use shape consistency, i.e., using color and texture

only (“Our approach (shape off)”), and if we disable the

segment grouping component, i.e., treating each connected

component as a group (“Our approach (grouping off)”).

Comparing “Our approach (shape off)” with the full system,

i.e., “Our approach”, we see that shape information helps

when combined with color and texture features. However,

our further experiments show that using shape alone does

not discover any meaningful objects at all. This is because,

unlike the objects in [27] that have distinctive contours (e.g.,

swans, horses), in an ADL environment, many objects have

similar shapes (e.g., rectangle, cylinder). We also notice

that grouping is vital, because pairwise segment matching

is prone to errors, and groups of consistent segments can be

linked by these erroneous pairwise links.

For comparing the results of our method with previous

work, two existing methods [16, 33] were applied on the

same dataset. These methods are the closest to our method,

because [33] (“Russell, et.al.”) uses multiple segmentations

as object hypothesis and [16] (“Kim, et.al.”) uses graph

analysis to find mutually coherent feature correspondences.

We used programs provided by the authors of [16, 33].

[33] uses normalized cut to generate multiple segmenta-

tions. For a consistent comparison, we also compare with a

modified system (“Russell, et.al. (modified)”) that uses our

segmentation results as the input to their program. [16] was

tuned to the Caltech101 dataset in which each image con-

tains only one object. Since each of ADL images contains

multiple objects, when applied directly, [16] does not dis-

cover any meaningful object models. Instead, we use our

segments as the input, each treated as an image, and we dis-

card links between segments from the same image.

Figure 5 shows examples of the objects that the “Russell,

et.al. (modified)” system discovers. Because this baseline

system relies solely on a BoW model, it cannot distinguish

objects with similar texture patterns but different shapes

(Figure 5(a), Figure 5(b)). We also measure the quantita-

tive performance of the baseline systems and compare them

to our method in Figure 6. For the baseline systems, we

vary the number of topics/clusters (20 − 300); increasing

the number generates more fragmented small clusters, and

Figure 7. Distinguishing highly similar objects (e.g., similar
computer monitors in different offices) might need higher-
level, e.g., contextual, information.

as a result precision generally increases. In Russell’s sys-

tems, we keep the top 5 segments that have the highest like-

lihood in each topic. In Kim’s system, we keep 20% of the

segments with the highest Page-rank and discard clusters

that contain less than 5 segments. The quantitative compar-

ison shows that our approach significantly outperforms the

baseline systems. Because Kim’s method relies heavily on

distinctive features, it performs badly on the ADL dataset.

Figure 7 shows a typical failure case of our program,

where computer monitors at different offices are grouped

together. In this case, contextual information might be use-

ful to distinguish each of them.

4. Further tests on other datasets

In addition to the ADL dataset, we evaluate our program

on two other datasets: the CMU object dataset that includes

a large amount of clutter, occlusion and viewpoint changes;

and a set of Flikr images that include a large amount of

interference from irrelevant images.

4.1. Cluttered environment, occlusion and view
point changes (CMU object dataset)

The CMU object dataset [13] consists of objects used

in a kitchen environment with severe clutter, occlusion and

viewpoint changes. We extract about 10000 segments from

500 images and the average degree of the consistency graph

is 2.7, the density of the graph is 2.62e− 4. Figure 8 shows

some objects that our program discovers. Figure 10 shows

the precision/recall profile of our program. Since only 10
of the objects in [13] were labeled, we calculate the recall

score as the percentage of the labeled objects that are suc-

cessfully identified. We manually inspect the result segment

groups, and count how many of them satisfy the 80% purity

requirement and belong to meaningful objects. We calcu-

late a precision score by dividing this number with the total

number of extracted groups.

For comparison, the baseline systems used on the ADL

dataset are also applied to this dataset. Figure 9 shows ex-

amples of objects that the “Russell, et.al. (modified)” sys-

tem discovered. The baseline system is confused by the

cluttered environment and repetitive texture patterns. Quan-

titative comparison demonstrates that our method achieves

significant improvement compared with the baseline sys-

tems (Figure 10). We noticed that Kim’s approach outper-

forms Russell’s systems here, probably because this dataset

contains many texture-rich objects, and Kim’s approach



(a) Orange juice carton (occlusion, large viewpoint change)

(b) Chowder can (occlusion)

(c) Discovered unknown object #1 (Not labeled by the authors of [13])
Figure 8. Objects that our program discovered in the CMU ob-

ject dataset [13]. Our program successfully discovers objects

despite the severe clutter, occlusion and changes of viewpoints.

(a)

(b)

Figure 9. Examples of objects discovered by the modified base-

line system [33]. The method cannot distinguish objects with

the similar BoW representations but with different shapes (a),

and, is not suitable for environments where different objects

have similar textures (b).

Figure 10. Comparison of our approach and the baseline sys-

tems [16, 33] on the CMU object dataset.

matches raw features instead of the quantized bag-of-words

used in Russell’s systems.

4.2. Interference from irrelevant images (Flickr)

We also want to evaluate how our program scales to

larger datasets and copes with interference from irrele-

vant images, for scenarios such as object discovering from

videos and Internet images.

We construct a dataset using images retrieved from

Flickr.com. First, we retrieve images tagged with “Kin-

(a) “Kindle 2nd generation” (Group size: 296, purity: 86.2%)

(b) “Apple Magic Mouse” (Group size: 242, purity: 85.5%)

Figure 11. Objects discovered by our program from 1000 most

relevant images returned by Flickr.com for (a) “Kindle 2nd

generation” and (b) “Apple Magic Mouse”. The last columns

are typical false positives for each object.

Figure 12. Starting with 100 relevant images for each object,

the maximum purity changes with respect to the number of

interference images.

dle 2nd generation” (Kindle) and “Apple Magic Mouse”

(mouse), e.g., Figure 11. The Kindle represents texture-

rich objects with regular rectangular shapes and the mouse

represents texture-less objects with more distinctive shapes.

For each object, we keep the top 100 most relevant images

returned by Flickr.com. Then we download 1000 interfer-

ence images from the scenes that might contain similar ob-

jects, such as “office”, “living room”, and “kitchen”. In the

test, we measure the performance of our program against

the different number of interference images, added 100 each

time until all the 1000 interference images are used (about

20000 segments in total, the average degree of the consis-

tency graph is 2.8, and the density of the graph is 1.56e−4).

We measure the maximum purity for segment groups

larger than 15, since, in practical applications, a good ob-

ject model should contain many segments from the same

object. Because the same interference images are added to

each object, the measurement also reflects how badly each

object is confused with the objects in the interference im-

ages. Figure 12 shows that at 50% purity, the Kindle set can

be mixed up with an interference set 7 times as large as it-

self, and the mouse set can be mixed up with an interference

set 10 times its size. The difference is probably because the

Kindle’s rectangular shape is confused with many objects

in the man-made environment. It again shows that our pro-

gram is robust to heterogeneity of object appearance.



5. Conclusion

While most of the previous papers on object discovery

deal with categories [41], this paper tackled the problem of

object instance discovery. We have shown how stricter con-

straints on the object geometric and appearance consistency

can be used to discover object instances. We handle the

heterogeneity of real life objects; we overcome the initial

“noisy” segmentation, by enforcing the geometrical corre-

spondence consistency; and we compose object models us-

ing spatial co-occurrence. The proposed approach demon-

strated robustness to severe clutter, occlusion, changes of

viewpoint, and interference from irrelevant images; the ap-

proach achieved significant improvement compared with

two existing methods.
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