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Abstract We address the problem of outlying aspects mining: given a query
object and a reference multidimensional data set, how can we discover what
aspects (i.e., subsets of features or subspaces) make the query object most
outlying? Outlying aspects mining can be used to explain any data point of
interest, which itself might be an inlier or outlier. In this paper, we investigate
several open challenges faced by existing outlying aspects mining techniques
and propose novel solutions, including (a) how to design effective scoring func-
tions that are unbiased with respect to dimensionality and yet being compu-
tationally efficient, and (b) how to efficiently search through the exponentially
large search space of all possible subspaces. We formalize the concept of di-
mensionality unbiasedness, a desirable property of outlyingness measures. We
then characterize existing scoring measures as well as our novel proposed ones
in terms of efficiency, dimensionality unbiasedness and interpretability. Finally,
we evaluate the effectiveness of different methods for outlying aspects discov-
ery and demonstrate the utility of our proposed approach on both large real
and synthetic data sets.

Keywords Outlying aspects mining · subspace selection · outlier explanation

1 Introduction

In this paper, we address the problem of investigating, for a particular query
object, the sets of features (a.k.a. attributes, dimensions) that make it most
unusual compared to the rest of the data. Such a set of features is termed a
subspace or an aspect. In recent works, this problem was also named outlying
subspaces detection (Zhang et al., 2004), promotion analysis (Wu et al., 2009),
outlying aspects mining (Duan et al., 2015), outlier explanation (Micenkova
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et al., 2013), outlier interpretation (Dang et al., 2014), or object explanation
(Vinh et al., 2014b). It is worth noting, however, that this task is not limited to
query objects being outliers, as in Zhang et al. (2004); Micenkova et al. (2013).
Also, the outlying aspects need not be restricted to ‘good’ (i.e., favorable)
characteristics, as in promotion analysis (Wu et al., 2009). Indeed, it has many
other practical applications where the query can be just any regular object,
with outlying aspects being potentially ‘bad’ (i.e., unfavorable) characteristics.
For example, a sports commentator may want to highlight some interesting
aspects of a player or a team in the most recent seasons, e.g., Alice scored many
goals compared to the other defenders. A selection panel may be interested in
finding out the most distinguishing merits of a particular candidate compared
to the rest of the applicant pool, for instance, among other students with a
similar GPA, Bob has far more volunteering activities. An insurance specialist
may want to find out the most suspicious aspects of a particular claim, for
example, the claim comes from Carol, a customer who made many more claims
among all those who possess the same type of vehicle. A doctor may want to
examine, for a cancer patient, the symptoms that make him/her most different
from other cancer patients, thus potentially identifying the correct cancer sub-
type and coming up with the most appropriate medical treatment. A home
buyer will be very interested in features that differentiate a particular suburb
of interest from the rest of a city.

Although having a close relationship with the traditional task of outlier
detection, outlying aspects mining has subtle but crucial differences. Here, we
only focus on the query object, which itself may or may not be an outlier
with respect to the reference dataset. In contrast, outlier detection scans the
whole dataset for all possible unusual objects, most often in the full space
of all attributes. Current outlier detection techniques do not usually offer an
explanation as to why the outliers are considered as such, or in other words,
pointing out their outlying aspects. As discussed, outlier explanation could be
used, in principle, to explain any object of interest to find any outlying char-
acteristic (not necessarily just ‘good’ characteristics). Thus, in our opinion,
the term outlying aspects mining as proposed in Duan et al. (2015) is more
general. Outlying aspects mining can be considered as a task that is com-
plementary to, but distinct from, outlier detection. More discussion on the
differences between the current work on outlier detection and the novel task
of outlying aspects mining can be found in Duan et al. (2015).

The latest work on outlying aspects mining tackles the problem from two
different angles, which we refer to as the feature selection based approach and
the score-and-search approach. In the feature selection based approach, the
problem of outlying aspects mining is transformed into the classical problem
of feature selection for classification. In score-and-search, it is first necessary
to define a measure of the outlyingness degree for an object in any specified
subspace. The outlyingness degree of the query object will be compared across
all possible subspaces, and the subspaces that score the best will be selected
for user further inspection.
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While progress has been made in the area of outlying aspects mining, in
our observation, there are still significant challenges to be solved:

– For feature selection based approaches: existing black-box feature selection
methods, as employed in Micenkova et al. (2013), are often not flexible
enough to generate multiple outlying subspaces if requested by the user.
Similarly, feature extraction approaches, as in Dang et al. (2014), generally
suffer from reduced interpretability, nor do they offer multiple alternative
explanatory subspaces.

– For score-and-search approaches: the question of how to design scoring
functions that are effective for comparing the outlyingness degree across
subspaces without dimensionality bias remains open. In the next section
we show that the existing scoring functions may not be always effective
nor efficient in evaluating outlyingness. Furthermore, the question of how
to efficiently search through the exponentially large sets of all possible
subspaces is a long-standing challenge shared by other problems involving
subspace search, such as feature subset selection (Vinh et al., 2014b,a),
subspace outlier detection (Aggarwal and Yu, 2001; Kriegel et al., 2009;
Keller et al., 2012) and contrast subspace mining (Nguyen et al., 2013;
Duan et al., 2014).

In this paper, we make several contributions to advancing the outlying aspects
mining area. We formalize the concept of dimensionality-unbiasedness and
characterize this property of existing measures. We propose two novel scoring
functions that are proven to be dimensionally unbiased, suitable for comparing
subspaces of different dimensionalities. The first metric, named the Z-score, is a
novel and effective strategy to standardize outlyingness measures to make them
dimensionally unbiased. The second metric, named the isolation path score, is
computationally very efficient, making it highly suitable for applications on
large datasets. To tackle the exponentially large search space, we propose an
efficient beam search strategy. We demonstrate the effectiveness and efficiency
of our approach on both synthetic and real datasets.

2 Related work

In this section, we first give a broad overview on the topic of outlier explana-
tion, which is a special case of outlying aspects mining. Next, we look deeper
into several recent works that are closely related to ours.

2.1 Overview on outlier explanation

The vast majority of research in the outlier detection community has focused
on the detection part, with much less attention on outlier explanation. Though
there are also outlier detection methods that provide implicit or explicit ex-
planations for outliers, such explanations are commonly a by-product of the
outlier detection process.
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A line of methods that offer implicit explanation involves identifying out-
liers in subspaces. Subspace outlier detection identifies outliers in low dimen-
sional projections of the data (Aggarwal and Yu, 2001), which can otherwise
be masked by the extreme sparsity of the high-dimensional full space. High
Contrast Subspace (HiCS) (Keller et al., 2012) and CMI (Nguyen et al., 2013)
identify high contrast subspaces where non-trivial outliers are more likely to
exist.

Another line of methods offer explicit explanation for each outlier. The
work of Micenkova et al. (2013) is such an example, which identifies subspaces
in which the outlier is well separated from its neighborhood using techniques
from supervised feature selection. Similarly, the subspace outlier degree (SOD)
method proposed by Kriegel et al. (2009) analyze how far each data point de-
viate from the subspace that is spanned by a set of reference points. Local
Outliers with Graph Projection (LOGP) finds outliers using a feature trans-
formation approach and offers an explanation in terms of the feature weights
in its linear transformation (Dang et al., 2014). Similarly, the Local Outlier
Detection with Interpretation (LODI) method proposed by Dang et al. (2013)
seeks an optimal subspace in which an outlier is maximally separated from its
neighbors.

All the above works focus on the numerical domain. For nominal or mixed
database, frequent pattern based outlier detection methods such as that pro-
posed by He et al. (2005) can offer interpretability, as the outliers are defined
as the data transactions that contain less frequent patterns in their itemsets.
Wu et al. (2009) developed a technique to find the desirable characteristics of
a product for effective marketing purposes. More recently, Smets and Vreeken
(2011) proposed a method for identifying and characterizing abnormal records
in binary or transaction data using the Minimum Description Length principle.

It is noted that most of the above mentioned methods do not offer ex-
plicit mechanisms to handle a particular query. Furthermore, the subspaces
are sometimes found using all possible outliers, and thus the explanation may
not be tailored for the object of interest.

2.2 An in-depth review of recent works

In this section, we review several recent works on outlying aspects mining in
greater detail and discuss their relative strengths and weaknesses, which will
serve as motivation for our work in the subsequent sections. The notation we
use in this paper is as follows. Let q be a query object and O be a background
dataset of n objects {o1, . . . ,on}, oi ∈ Rd. Let D = {D1, . . . , Dd} be a set of
d features. In this work we focus on numeric features. A subspace S is a subset
of features in D.
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2.2.1 Score-and-Search methods

The earliest work to the best of our knowledge that defines the problem of
detecting outlying subspaces is HOS-Miner (HOS for High-dimensional Out-
lying Subspaces) by Zhang et al. (2004). Therein, the authors employed a
distance based measure termed the outlying degree (OD), defined as the sum
of distances between the query and its k nearest neighbors:

ODS(q) ,
k

∑

i=1

DistS(q,oi), oi ∈ kNN S(q) (1)

where DistS(q,oi) is the Euclidean distance between two points in subspace
S, and kNN S(q) is the set of k nearest neighbors of q in S. HOS-Miner then
searches for subspaces in which the OD score of q is higher than a distance
threshold δ, i.e., significantly deviating from its neighbors. HOS-Miner exploits
a monotonicity property of the OD score, namely ODS1

(q) ≤ ODS2
(q) if

S1 ⊂ S2, to prune the search space. More specifically, this monotonicity implies
that if the query is not an outlier in a subspace S, i.e., ODS(q) < δ, then it
cannot be an outlier in any subset of S–and so we can exclude all subspaces of
S from the search. On the other hand, if the query is an outlier in the subspace
S, i.e., ODS(q) > δ, then it will remain an outlier in any subspace that is a
superset of S–and so we can exclude all subspaces that are a superset of S from
the search. Although the monotonicity property of the distance measure with
regards to the number of dimensions is desirable in designing efficient search
algorithms, it is unfortunately the property one wants to avoid when subspaces
of different dimensionalities are to be compared. The reason is because there is
a bias towards subspaces of higher dimensionality, as distance monotonically
increases when more dimensions are added.

In a recent work, Duan et al. (2015) propose OAMiner (for Outlying As-
pects Miner), which employs a kernel density measure for quantifying outly-
ingness degree:

fS(q) ,
1

|O|(2π)|S|/2
∏

Di∈S
hDi

∑

o∈O

e
−∑

Di∈S

(q.Di−o.Di)
2

2h2
Di (2)

Here, the scoring metric fS(q) is a kernel density estimate of q in S using a
product of univariate Gaussian kernels (which is equivalent to a |S|-dimensional
kernel with a diagonal covariance matrix), with hDi

being the kernel band-
width and q.Di being the value of q in feature Di. They stated that the
density tends to decrease as dimensionality increases, thus higher dimensional
subspaces might be preferred. To eliminate this dimensionality bias, they pro-
pose to use the density rank of the query as a quality measure. That is, for
each subspace, the density of every data point needs to be computed from
which a ranking will be tabulated. Subspaces in which the query has the best
rank are then reported.

The density rank exhibits no systematic bias w.r.t. dimensionality, i.e.,
adding more attributes to an existing subspace can either increase or decrease
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the ranking of the query. This desirable property comes with two fundamen-
tal challenges: (i) the density rank is a much more computationally expensive
measure, as the density of every point in the data set needs to be computed
for the global ranking to be established, resulting in a complexity of O(n2d),
(ii) because of the non-monotonicity of the quality measure, there is no effi-
cient way to prune the search space, thus an expensive exhaustive search is
necessary. Duan et al. (2015) overcome these difficulties by (a) introducing
a bounding method where the density rank of the query can be computed
without exhaustively computing the density rank of all other points, and (b)
only exhaustively searching the subspaces up to a user-defined maximum di-
mensionality. Despite these improvements, scaling up OAMiner is still a major
challenge. Apart from computational inefficiency, another probably more fun-
damental concern with the density rank is whether the rank statistic is always
the appropriate outlyingness measure for comparing different subspaces, as
illustrated in the following example.

Example 1—Ranking does not preserve absolute degree of deviation: Al-
though in subspace {D1, D2} (Fig. 1a), the query point (red square) is ranked
the first in terms of kernel density measure in equation (2), users could possi-
bly be more interested in subspace {D3, D4} (Fig. 1b), where the query point
only ranks the 5th, but deviates markedly from the norm. Thus, while the
rank provides a normalized measure for comparing densities across subspaces,
important information regarding the absolute degree of deviation is lost.
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Fig. 1 Is the rank statistic most appropriate for comparing subspaces?
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2.2.2 Feature selection/transformation approaches

The first feature selection based approach for mining outlying aspects was in-
troduced in Micenkova et al. (2013). Outlying aspects mining, or the outlier
explanation problem as termed therein, is cast as a two-class feature selection
problem. More specifically, for each outlier (query point) q, a positive class is
constructed with synthetic samples drawn from a Gaussian N(q, λ2I) distri-
bution, where λ = α · 1√

d
·k-distance(q), with k-distance(q) being the distance

from q to its k-th nearest neighbor. Here, each feature is assumed to be nor-
malized to [0, 1], hence

√
d is the upper bound on the distance between any

two points. The parameter α controls the spread of the positive population
while normalization by

√
d is intended to ensure that α has the same effect in

subspaces of different dimensionality. In their experiments, Micenkova et al.
(2013) found k = 35 and α = 0.35 to work well. The negative class is formed
by a sub-sample formed by the k nearest neighbors of q in the full feature
space, plus another k random samples from the rest of the data, for a total of
2k points. The number of positive and negative samples are matched, so that
the classification problem is balanced.

While the feature selection based approach was shown to work well, two
remarks are in order. First, the k-nearest neighbors in the full space may be
significantly different, or even totally different, from the k-nearest neighbors in
the subspace. This is especially true when the full space is of high dimension-
ality while the subspace has low dimensionality, which is the case in outlying
aspect mining—we are more interested in low-dimensional subspaces for bet-
ter interpretability. In Fig. 2(a) we plot the average percentage of common k
nearest neighbors (k = 35) between the full space and random subspaces of 3
dimensions, with the queries being randomly chosen from a standard Gaussian
population of 1000 points. As expected, the proportion of shared nearest neigh-
bors steadily decreases as the dimensionality of the full space increases. Thus,
the k-nearest neighbors in the full space are not necessarily representative of
the locality around the query in the subspaces. There could be situations where
the query appears to be well separated from its k-nearest full-space neighbors,
while in fact not being well separated from its subspace neighborhood. Fol-
lowing the same feature selection approach, Vinh et al. (2014b) instead chose
to keep the whole dataset as the negative class, while over-sampling the syn-
thetic positive class. The disadvantage of this approach is reduced scalability
compared to the sampling approach adopted by Micenkova et al. (2013).

The second potential drawback of a feature selection based approach is
with regard to the spread of the positive synthetic distribution. As proposed in
Micenkova et al. (2013), the variance of the positive distribution is the same in
every dimension and is determined based on k-distance(q)—the distance from
q to its k-th nearest neighbor—in the full space. This choice is expected to
affect all subspaces equally. However, in our opinion, some subspaces may be
affected by this setting more than others, for example, subspaces in which the
query is a local outlier with respect to its neighborhood, as in Fig. 2(b). The
spread of the positive population is determined based on a statistic in the full-
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(b) The synthetic positive population
heavily overlaps with the nearby cluster of
inliers in this subspace.

Fig. 2 Pitfalls of nearest neighbors and synthetic samples

space irrespective of the characteristics of the subspace. As such, although the
subspace in Fig. 2(b) is a good explaining subspace (for the query clearly being
a local outlier), the feature selection approach may eventually rule out this
subspace as the positive synthetic examples (of which the standard deviation
is represented by the red circle) heavily overlap with the negative examples.

Dang et al. (2014) recently introduced Local Outliers with Graph Projec-
tion (LOGP). LOGP is an outlier detection method that offers outlier expla-
nation at the same time. More specifically, for each data point, LOGP seeks a
linear transformation in which that point is maximally separated from its near-
est full-space neighbors. Then, in that transformed space, an outlier score is
computed for that point as the statistical distance from the point to its neigh-
bors. Finally, the outlier scores for all objects are sorted to identify the outliers.
As for outlier explanation, the weight vector in the linear transformation can
be employed to sort the features according to their degree of contribution to
the outlyingness of the point. Dang et al. (2014) suggested taking the features
corresponding to the largest absolute weight values accounting for 80% of the
total absolute weight. LOGP can be straightforwardly applied in the context of
outlying aspects mining for finding the most outlying subspace of the query.
A critical observation regarding LOGP is that, similar to the feature selec-
tion approach, LOGP also attempts to separate the query from its full-space
neighborhood. Again, we note that the neighborhood in the full space can be
significantly different to the neighborhood in the subspace (cf. the example in
Fig. 2a). In such cases, using the full space as a ‘reference point’ to predict
what will happen in subspaces can be misleading.

Compared to score-and-search based methods, the major advantage of fea-
ture transformation/selection approaches is that they often do not perform an
explicit search over the space of all subspaces, thus are generally faster. How-
ever, this also entails a major drawback in that such methods generally cannot
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provide alternative solutions, i.e., a list of high-ranked subspaces, if requested
by the user. Furthermore, we point out that the issue of feature redundancy
should be handled differently in the two paradigms: feature selection for classi-
fication vs. feature selection for outlying aspects mining. In the former, feature
redundancy can reduce classification accuracy (Peng et al., 2005), while in the
latter, feature redundancy does not necessarily reduce interpretability. None
of the previous feature selection approaches considers this issue.

3 Problem definition

Before developing new measures and algorithms for outlying aspects mining,
we formalize the problem, by defining the following concepts.

Definition 1 Top k-outlying subspaces: Let ρS(q) denote an outlyingness
scoring function that quantifies the outlyingness degree of the query q in a
subspace S. The top k-outlying subspaces are the k subspaces in which the query
deviates most from the rest of the data, as ranked by the scoring function ρ(·).

Note that in this definition, the ranking is carried out on the subspaces.
The degree of deviation might be either sufficient or insufficient to declare the
query to be a subspace outlier. Such a declaration is not our main interest,
however. It is our focus to identify the top k-outlying subspaces, ranked by
the degree of deviation of the query for user inspection. Further, we categorize
the features into 3 non-overlapping groups as follows:

Definition 2 Feature classification: Given an outlyingness scoring func-
tion ρ(·) and a percentile ranking threshold ǫ ∈ [0, 1],

1. A trivial outlying feature Di is an individual feature in which the query
q’s outlyingness score is ranked within the top (ǫ × 100)% among all the
data points according to ρDi

(·).
2. The top-k non-trivial outlying subspaces are subspaces which (a) comprise

no trivial outlying features and (b) have the top-k highest outlyingness
score, as ranked by ρ(·), amongst all the possible subspaces.
A feature is called a non-trivial outlying feature if it forms part of at
least one top-k non-trivial outlying subspace.

3. Inlying features are features that are not trivial outlying features, nor do
they form part of any top-k non-trivial outlying subspace.

This explicit categorization will be helpful in guiding our subsequent ap-
proaches. Indeed, we now propose that trivial outlying features should be
discovered first (using a likely straightforward approach), then taken out of
the data, leaving only non-trivial outlying features and inlying features. The
rationale for this proposal is as follows. First, trivial outlying features by them-
selves have high explanatory value for the users, as they can be easily visualized
and interpreted. In a trivial outlying feature, the query either has an extreme
value, or lies deep within the data but far away from any nearby clusters.
Coupling trivial outlying features with other features can potentially increase
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confusion and false discoveries. An illustration is in Fig. 3(a). The feature D1

is a trivial outlying aspect w.r.t. the query. This can be seen by observing the
histogram of D1 alone. When coupled with another (either non-trivial outly-
ing or inlying) feature D10, the resulting subspace will still likely have a good
outlyingness score for the query, but this does not offer any additional insight.
Second, when a trivial outlying feature exists, the top scoring subspace list
can be swamped with different combinations of that trivial feature with other
features, thus preventing the discovery of other interesting subspaces.

Example 2—Effect of trivial outlying features: We take the UCI Vowel data
set with n = 990 objects in d = 10 features (data details given in Section 7.4).
We then linearly scale and shift all features to the range [0,1] and pick a ran-
dom data point as the query. For the query, we artificially increase its value in
feature D1 to 1.1 (i.e., outside the [0,1] range). Thus, it can be seen that D1 is
a trivial outlying feature for the query. We then employ the density rank mea-
sure (Duan et al., 2015) and carry out an exhaustive search over all subspaces
of up to 5 features. The top-10 outlying subspaces for the query are {D1},
{D1, D10}, {D1, D9}, {D1, D7}, {D1, D6}, {D1, D2, D3}, {D1, D4}, {D1, D3}
and {D1, D2}, which are all combinations of D1 and other features. When D1

is explicitly identified and removed, using the same search procedure, other
outlying subspaces can be revealed, for example, {D3, D6, D9} in Figure 3(b).
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Fig. 3 Trivial outlying features can hinder the discovery of interesting outlying subspaces

4 Outlyingness Scores

As measures for outlyingness, one can consider a variety of scoring metrics in
the current outlier detection literature. Before considering several such mea-
sures, we discuss several desiderata that a measure should possess in the con-
text of outlying aspects mining.
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4.1 Desiderata

– (i) Dimensionality unbiasedness: As outlyingness measures are used to
compare subspaces of potentially different dimensionalities, an ideal mea-
sure should have no bias towards any dimensionality. An example of a di-
mensionally biased measure is the Outlying Degree (OD) score built upon
the Euclidean distance employed in Zhang et al. (2004), which monotoni-
cally increases as dimensionality increases, thus it is biased towards higher
dimensional subspaces.

Definition 3 Monotonic scoring function: An outlyingness scoring
function ρ(·) is monotonically increasing (decreasing) w.r.t. dimensionality
if ρS1

(q) ≥ ρS2
(q) (respectively ρS1

(q) ≤ ρS2
(q)), where S1 ⊃ S2, for all

queries.

Theorem 1 The Outlying Degree defined in equation (1) using the Eu-
clidean distance is a monotonically increasing scoring function.

This result is straightforward, given that the Euclidean distance is a mono-
tonic measure, in the sense that DistS1(q,o) ≥ DistS2(q,o) if S1 ⊃ S2. The
kernel density measure defined in (2), on the other hand, is not a monotonic
measure. Despite the common belief that the density tends to decrease as
dimensionality increases, the kernel density measure can actually increase
with dimensionality. To see this, we note that the kernel density in (2) can
be rewritten as a sum of distance-like terms:

fS(q) =
1

n

∑

o∈O







e
−∑

Di∈S

(q.Di−o.Di)
2

2h2
Di

(2π)|S|/2
∏

Di∈S
hDi






(3)

where the kernel density values in the parentheses can be considered as the
‘distances’ between oi’s and q. Now note that

fS∪Dj
(q) =

1

n

∑

o∈O







e
−∑

Di∈S

(q.Di−o.Di)
2

2h2
Di

(2π)|S|/2
∏

Di∈S
hDi






· e

−(q.Di−o.Di)
2

2h2
Dj

(2π)1/2hDj

(4)

is a weighted sum of ‘distances’. Note further that the kernel density value

in the newly added dimension Dj , i.e., (
√
2πhDj

)−1e

−(q.Di−o.Di)
2

2h2
Dj , unlike

probability mass, is not restricted to lie within [0, 1] and in fact can be
much larger than 1, hence increasing the density value. While the kernel
density is not a monotonic function w.r.t. dimensionality, its values can
be orders of magnitude different in scale at different dimensionalities. To
demonstrate this point, let us consider the following example.
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Example 3—Effect of dimensionality : We generate a 10-dimensional
data set of 1000 points, with 10 equal-sized spherical Gaussian clusters
with random mean in [0, 1]10 and diagonal covariance matrix σI10×10 with
σ ∈ [0, 1]. We randomly choose 10 d-dimensional subspaces for d from 1 to
10. For each subspace, we compute the average OD score and log kernel
density score for all data points. The mean average scores over 10 sub-
spaces at different dimensionalities are presented in Figure 4(a), where
the Outlying Degree is monotonically increasing while the kernel density
is monotonically decreasing. Next, using the Outlying Degree, kernel den-
sity and density rank as the scoring functions, for each data point in turn
being designated as the query, we carried out an exhaustive search on
subspaces of up to 5 dimensions to find out the top outlying subspace for
each query. The dimensionality distribution of the top subspaces accord-
ing to each scoring function is presented in Figure 4(b), where it can be
observed that both the Outlying Degree and kernel density exhibit a bias
towards higher-dimensional subspaces. The density rank measure, on the
other hand, shows a more balanced result set, with top-scoring subspaces
being present in considerable number at each dimensionality.
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Fig. 4 Dimensionality bias: the OD and density measure tend to be biased towards higher
dimensionalities.

– (ii) Efficiency : As search algorithms will likely have to search through a
large number of subspaces, it is desirable for the scoring function to be
evaluated efficiently. It is worth noting that certain normalization strate-
gies, such as ranking, require computing the raw outlyingness values of all
data points, and thus can be computationally expensive.

– (iii) Effectiveness: The scoring metric should be effective for ranking sub-
spaces in terms of the outlierness degree of the query.

– (iv) Interpretability : The numeric score given by a measure should be inter-
pretive and easily understood. In this respect, rank-based measures, such as
the density rank, are arguably the most interpretable measures. The main
drawback of rank-based measures is that the absolute degree of outlierness
is lost.
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Of these desiderata, efficiency can be formally analyzed in terms of time
and space complexity. Effectiveness can be quantitatively assessed when some
ground truth is known. Interpretability is arguably a semantic concept that is
notoriously evasive to formal analysis and quantification. Thus, we will only
be discussing this desideratum qualitatively. Dimensionality unbiasedness is a
novel and important concept that was either totally neglected (Zhang et al.,
2004) or only casually mentioned in previous work (Duan et al., 2015). We
provide a formal description of dimensionality unbiasedness in Section 5.

4.2 Existing scoring measures

We next consider several scoring metrics. One of the most popular outlyingness
measures is the local outlier factor (LOF) (Breunig et al., 2000). As the name
implies, LOF was designed to detect local outliers, i.e., points that deviate
significantly from their neighborhood. LOF is built upon the concept of local
density: points that have a substantially lower density than their neighbors are
considered to be outliers. Since the exact technical definition of LOF is quite
intricate, we do not give its definition here. Interested readers are referred to
the original work of Breunig et al. (2000).

In the context of outlying aspects mining, LOF has several desired features.
First, points lying deep within a cluster, i.e., inliers, have a baseline value of
approximately 1 regardless of the subspace dimensionality. This suggests that a
normalization scheme such as converting a raw score to ranking, which requires
computing the scores for all data points, might not be needed. Second, the LOF
for a query can be efficiently computed in O((nd+n log n)·(MinPtsUB)

2
) time

where MinPtsUB is the maximum neighborhood size parameter in LOF. This
is the time required to compute the distances from q to its MinPtsUB neigh-
bors, and the distance from each of these neighbors to their own MinPtsUB
neighbors, and also the time required to sort the distances to answer kNN
queries. When LOFs for all data points in the data set need to be com-
puted, one can consider some data indexing structure that helps to reduce
the computational complexity of kNN queries. However, when the LOF of a
single query point is to be computed on demand as in outlying aspects min-
ing, one must also take into account the overhead of building indexing struc-
tures. LOF can detect local outliers, i.e., points that deviate significantly from
their neighborhood but need not deviate significantly from the whole data set.
For high-dimensional data sets, Kriegel et al. (2008) recently introduced the
Angle-Based Outlier Detection (ABOD) score. In the context of outlying as-
pects mining, we focus mainly on subspaces of lower dimensions (for improved
interpretability), thus we do not consider ABOD further.

We have already discussed the density rank measure in the previous section.
The drawback of the density rank is that while it might be a good measure for
comparing different objects in the same subspace, it might not be always rele-
vant for comparing the outlyingness of the same object in different subspaces
(c.f. example in Fig. 1). As an alternative for the density rank, we introduce the
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density Z-score in the next section. We then introduce another novel measure
that we term the isolation path score.

4.3 Density Z-score

We propose the density Z-score, defined as:

Z(fS(q)) ,
fS(q)− µfS

σfS

(5)

where µfS and σfS are, respectively, the mean and standard deviation of the
density of all data points in subspace S. A larger negative Z-score corresponds
to a lower density, i.e., a possible outlier. As observed in Fig. 1, the den-
sity Z-score correctly points out that subspace {D3, D4} is more interesting
than subspace {D1, D2}. Compared to the density rank, the density Z-score
retains some information on the absolute degree of deviation while still be-
ing dimensionally-unbiased, with the latter point being demonstrated later in
the experiments. The density Z-score is, however, an expensive statistic with
O(n2d) time complexity, requiring the density of every data point to be com-
puted. For the density rank, certain computational shortcuts can be applied to
compute the correct ranking just for the query without computing the density
(and rank) for all other data points (Duan et al., 2015). This is because the
rank is a coarse-grained statistic that does not require precise values for the
raw density, but just their relative ordering. However, for the density Z-score
it is unlikely that a similar computational shortcut exists.

4.4 The Isolation Path Score

We now introduce a novel scoring function named the isolation path score. This
score is inspired by the isolation forest method for outlier detection (Liu et al.,
2008). The isolation forest method is built upon the observation that outliers
are few and different, and as such they are more susceptible to being isolated.
In Liu et al. (2008), an isolation tree is a binary tree with each inner node
having a random feature and a random splitting point, and leaf nodes having
only a single data point (or identical points). Outliers tend to lie closer to the
root, thus having a shorter path length from the root. The isolation forest does
not rely on distance computation, thus it is fast. Also, it employs sub-sampling
quite aggressively with each tree being suggested to use only 256 examples,
which makes it highly scalable. In the context of outlying aspects mining, the
motivation for the isolation path score is as follows: in an outlying subspace, it
should be easier to isolate the query from the rest of the data (or a data sub-
sample). When employing random binary trees as the isolation mechanism,
the expected path length from the root should be small. The difference here
is that in this context, since we only care about the path length of the query,
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we focus on building only the path leading to that query point while ignoring
other parts of the tree, hence the name isolation path.

The procedure for computing the isolation path length of the query point
with respect to a random sub-sample of the data is given in Algorithm 1. This
algorithm isolates the query by a series of random binary splits, each divides
the data space into two half-spaces, until the query is isolated, or until all the
remaining data points, including the query, have the same value in the random
feature selected at that stage. In the latter case, the path length is adjusted
by an amount of ζ(|X|) = 2(ln |X| + γ) − 2, where γ ≃ 0.5772 is the Euler
constant. This is the average tree height of a random sample of the same size
as the remaining data points (c.f. Sec. 5 Theorem 4). This adjustment takes
into account the fact that the more points there are with the same value as
the query, the less outlying it is. In order to have an accurate estimation of
the path length, we employ an ensemble approach using multiple sub-samples
of the original data set and compute the average. This final statistic is called
the isolation path score.
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Fig. 5 Isolation path illustration. The query is the red square.

The working mechanism of the isolation path is illustrated in Figure 5. In
Figure 5(a), the query (red square) is an outlying point in a 2D space {x, y}.
Each split is illustrated as a numbered vertical or horizontal line (correspond-
ing to an x-split or y-split). Each split divides the space into two half-spaces.
The half-space that does not contains the query point is discarded, and the
process repeats until the query is isolated. The series of splitting operations
for Fig. 5(a) are, {horizontal split-retaining bottom half-space} → {vertical
split-retaining right half-space} → {vertical split-retaining right half-space}
→ {horizontal split-retaining bottom half-space} → {vertical split-retaining
right half-space}. The number of splits is 5, corresponding to a path length of
5. Similarly, in Figure 5(b), 10 splits are needed to isolate a random inlier.

The proposed isolation path score possesses several desired characteristics:

Dimensionality unbiasedness: We give a theoretical analysis on dimension-
ality unbiasedness for the isolation path score in the next section. Dimension-
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Algorithm 1 Isolation Path: iPath(X,q)
1: Inputs: data sub-sample X ⊂ O, query q
2: len← 0
3: while TRUE do
4: if |X| == 1 then break;
5: Select a random attribute Di with range [min,max]
6: if min == max then {len← len+ ζ(|X|); break}
7: split ← Sample a point within [min,max] uniformly at random
8: X← {∀o ∈ X on the same side with q w.r.t split in Di}
9: len← len+ 1
10: end while
11: Return len

ality unbiasedness implies that an expensive standardization scheme such as
converting raw scores to a ranking or Z-score is not necessary.

Efficiency : the isolation path score is computationally very fast as it re-
quires no distance computation.

Theorem 2 The average-case time complexity of iPath(X,q) on a subsample
X of ns records is O(ns), while its worst-case time complexity is O(n2

s).

Proof We can define the following recurrence for the average case computa-
tional complexity of building a isolation path on ns samples:

T (ns) =

{

0, if ns = 1.

ns + T (ns

2 ), if ns > 1.
(6)

where we have employed the assumption that by choosing a random data
point as a split point, the sample size reduces on average by a factor of 1/2
after each split, and in order to realize a split over ns data points, we need
to make ns comparisons. This is the 3rd case of the master theorem (Cormen
et al., 2009), where a = 1, b = 2 and f(ns) = ns. According to the master
theorem, if T (ns) = aT (nb ) + f(n), f(n) = Ω(nc), c > logb a and ∃k < 1 such
as f(nb ) ≤ kf(n), then T (n) = O(f(n)). In our case, f(ns) = Ω(nc

s) = Ω(ns),
c = 1 > logb a = log2 1 = 0, and f(ns

b ) = f(ns

2 ) = ns

2 = kf(ns), with
k = 0.5 < 1. Therefore, T (ns) = O(ns).

In the worst case, each split separates only 1 data point while the query is
the last point to be separated in that sequence. This requires 2+3+ . . .+n =
O(n2) comparisons.

⊓⊔

The average time complexity of building an ensemble of T paths is O(Tns),
while the space complexity is O(ns). The isolation path score admits a fixed
time and space complexity that is independent of the data size and dimen-
sionality.
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5 Dimensionality Unbiasedness

In this section, we make the first attempt, to the best of our knowledge, to for-
mally capture the concept of dimensionality unbiasedness for outlying aspects
mining measures. At a high level, we require unbiased measures to have a base-
line value that is independent of dimensionality, or in other words, remaining
constant w.r.t. dimensionality. So what constitutes a baseline value?

Before answering this question, we shall briefly digress and consider a sim-
ilar problem: the problem of adjusting clustering comparison measures for
cardinality bias, i.e., bias towards clusterings with more clusters (Vinh et al.,
2010). Clustering is a fundamental task in data mining, which aims to group
the data into groups (clusters) of similar objects. In order to evaluate the
quality of a clustering algorithm, its clustering result can be compared with
a ground-truth clustering. For the clustering comparison problem, numerous
measures exist. One issue faced by many measures, such as the well-known
Rand index, is that their baseline value for the case of no similarity between
two clusterings is not a constant. Further, this baseline tends to increase when
one or both clusterings have a higher number of clusters. As a result, these
measures are biased towards clusterings with higher numbers of clusters. In
order to correct different measures for this cardinality bias, several adjusted
measures have been introduced, such as the adjusted Rand index, adjusted
mutual information (Vinh et al., 2010) and more recently, standardized mu-
tual information (Romano et al., 2014). The commonly adopted methodology
for adjustment is by making these measures have a constant baseline value,
by subtracting their expected value obtained under a baseline scenario (also
termed the null hypothesis) of no similarity between two clusterings. In the
baseline scenario, it is assumed that the two clusterings are generated ran-
domly subject to having a fixed number of clusters and number of points in
each cluster. As there is clearly no correlation between the two clusterings,
an unbiased clusterison comparing measure should have a constant baseline
value, independent of the number of clusters.

Similar to the clustering comparison problem, we shall also consider a base-
line case in which the data distributes in such a way that there is no greater
outlyingness behaviour in higher dimensional spaces. The average value of a
measure over all data points in a baseline case is called the baseline value.
We require an unbiased score to have a constant baseline w.r.t. the subspace
dimensionality. A possible baseline case is when the data is bounded and uni-
formly distributed. In such a case, it is reasonable to expect that (i) no data
point is significantly outlying and (ii) the average outlyingness degree should
not increase/decrease as dimensionality increases.

Definition 4 Dimensionality unbiasedness: A dimensionally unbiased out-
lyingness measure is a measure of which the baseline value, i.e., average value
for any data sample O = {o1, . . . ,on} drawn from a uniform distribution, is
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a quantity independent of the dimension of the subspace S, i.e.,

E[ρS(q)|q ∈ O] ,
1

n

∑

q∈O

ρS(q) = const. w.r.t. |S|

We now prove some dimensionality-unbiasedness results for existing mea-
sures. First, we show that the rank and Z-score normalization can turn any
measure into a strictly dimensionally-unbiased measure as per Definition 4.

Definition 5 The Rank of an outlyingness scoring metric ρ is defined as

R(ρS(q)) , |{oi ∈ O, ρS(oi) ≺ ρS(q)}|+ 1 (7)

Here, we employ the notation ρS(a) ≺ ρS(b) to denote object a being more
outlying than object b according to ρ in subspace S, with ties broken arbitrar-
ily.

Definition 6 The Z-score of an outlyingness scoring metric ρ is defined as:

Z(ρS(q)) ,
ρS(q)− µρS

σρS

(8)

where µρS
and σρS

are, respectively, the mean and standard deviation of the
ρ-score of all data points in subspace S.

The density rank and density Z-score that we have discussed in the previous
section are specific instantiations of these normalizations.

Theorem 3 Given an arbitrary scoring metric ρ, then Z(ρ) and R(ρ) are
dimensionally-unbiased as per Definition 4.

Proof Given a data set O of n objects, we can show that

E[R(ρS(q))|q ∈ O] =
1 + 2 + . . .+ n

n
=

n+ 1

2
,

which is independent of the dimensionality of the subspace S. Similarly,

E[Z(ρS(q))|q ∈ O] =
1

n

n
∑

i=1

Z(ρS(oi)) =
1

n

n
∑

i=1

ρS(oi)− µρS

σρS

= 0 (9)

⊓⊔

Note that for the Rank and Z-score normalization, not only the mean of
the normalized measures is a constant, but also the variance of the normalized
measures is also a constant w.r.t dimensionality. Indeed, it is easily seen that
Var[Z(ρS(q))|q ∈ O] = 1 and Var[R(ρS(q))|q ∈ O] = 1

3n(n
2 − 1). Also, we

note that the proof of Theorem 3 did not make use of the uniform distribution
assumption. In fact, the Z-score and Rank normalization hold their constant
average value for any data set under any distribution. This raises the question
whether these normalizations are overly strong normalization schemes. Indeed,
if the data was deliberately generated in such a way that there are more outliers
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in higher dimensional subspaces, then the average outlyingness degree should
in fact increase w.r.t. dimensionality to reflect this.

Next, we prove that the isolation path score is intrinsically dimensionally
unbiased under Definition 4, without the need for normalization.

Theorem 4 The isolation path score is dimensionally unbiased under Defini-
tion 4.

Proof First, it is noted that for computing the average isolation path within a
data set, we simply build a full isolation tree (since no point is designated as
the query). Since an isolation tree is built recursively, the average path length
of its leaf nodes can also be computed recursively as:

L(n) =

{

0, if n = 1.

1 +
∑

split P (split)
(

P (< split)L(< split) + P (≥ split)L(≥ split)
)

, if n > 1.

(10)

where L(n) denotes the average path length of a random tree built based
on n samples. Note that for a data set of n distinct points in any splitting
attribute, there are in fact at most n−1 distinct split intervals that will result in
non-empty subtrees, and within any interval, all split points produce identical
subtrees. P (split) is the probability that a split interval is chosen. P (< split)
and P (≥ split) denote the fraction of points falling on each side of the split
point, while L(< split) and L(≥ split) denote the average path length of the
left and right sub-tree respectively. Using the baseline-case assumption of the
uniform data distribution, if the split point is uniformly chosen at random, then
it has equi-probability to be in the interval between any two consecutive data
points, thus P (split) = 1

n−1 . Let 1 ≤ i < N be the index of split points such

that spliti ≤ spliti′ , ∀i < i′, then P (< spliti) =
i
n and L(< spliti) = L(i),

and similarly P (≥ spliti) = n−i
n and L(≥ spliti) = L(n − i). We therefore

arrive at the following recurrence:

L(n) =

{

0, if n = 1.

1 + 1
n−1

∑n−1
i=1

(

i
nL(i) +

n−i
n L(n− i)

)

, if n > 1.
(11)

Due to the symmetry of the terms in the sum and by multiplying by n(n− 1):

n(n− 1)L(n) = n(n− 1) + 2

n−1
∑

i=1

iL(i) (12)

By subtracting equation (12) for L(n − 1) from equation (12) for L(n), we
obtain a simplified closed form:

L(n) = L(n− 1) +
2

n
= 2

n
∑

i=2

1

i
= 2Hn − 2

where Hn is n-th harmonic number, which can be estimated by ln(n)+γ, with
γ being the Euler’s constant. Since L(n) is independent of dimensionality, the
isolation path score is dimensionally unbiased under Definition 4. ⊓⊔
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Of the remaining outlyingness measures, LOF (Breunig et al., 2000) in its
raw form appears to also approximately satisfy our definition of dimensionality
unbiasedness. More specifically, in Breunig et al. (2000, Lemma 1), it has been
proven that for a compact cluster of points, most points have an LOF value
of approximately 1 within a small multiplicative factor independent of the
space dimensionality. The distribution of data in Definition 4 satisfies this
requirement (a single uniform cluster).

5.1 Summary of Desiderata for Scoring Measures

In Table 1, we give a brief summary for the desiderata of scoring measures. In
terms of interpretability, ranking is arguably the easiest-to-understand mea-
sure, followed by the Z-score, which can be interpreted as the number of stan-
dard deviations from the mean raw score. The other scores are generally less
comprehensible to the average user. Subjectively, we found LOF the least
interpretable measure due to its rather intricate technical definition. We ex-
perimentally evaluate the effectiveness of various measures in Section 7.

Table 1 Summary of Desiderata for Scoring Measures (n = data size; d = #dimensions; T
= #random paths; ns = sample size)

Scoring Measures Unbiasedness Efficiency Interpretability
Outlying Degree ✗ ✓(O(nd)) ✓

Kernel Density ✗ ✓(O(nd)) ✓

LOF ✓ ✓(O((nd+ n logn)) ✗

Isolation path ✓ ✓(O(Tns)) ✓

Density Z-score ✓ ✗(O(n2d)) ✓✓

Density Rank ✓ ✗(O(n2d)) ✓✓✓

6 The Beam Search Procedure

For score-and-search approaches, after a scoring function has been determined,
it remains to use this score to guide the search within the set of all possible
subspaces. There are 2d−1 such subspaces. When the maximum dimensional-
ity dmax is specified, the number of subspaces to search through is in the order
of O(ddmax ), i.e., still exponential in dmax . While we have not attempted to for-
mally prove the hardness of the score-and-search problem using the proposed
scoring metrics, it is reasonable to assume that those problems are “hard”. In
fact, the problem of searching for the best outlying subspace using the raw
kernel density score is a special case of the MAX SNP-hard contrast subspace
mining problem (Duan et al., 2015), where the positive class reduces to a single
query point. A heuristic approach is thus essential.

In this work, we propose a beam search strategy. Beam search is a breadth-
first-search method that avoids exponential explosion by restricting the num-
ber of nodes to expand to a fixed size (i.e., the beam width) while discarding
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all other nodes (Russell and Norvig, 2003). The effectiveness of beam search
depends mostly on the quality of the heuristic pruning procedure. In this work,
we design the heuristic rule based on the following speculation: a highly-scored
subspace will also exhibit good scores in some of its lower dimensional projec-
tions. Of course, there are exceptions to this speculation. Take the example in
Fig. 6(a) for example. Consider a point close to the center of the circle, it is
an outlier in the 2D space, yet does not exhibit any outlying behaviour in its
1D projections. We can further generalize this example to the case where the
data distribute uniformly on the surface of a high dimensional hypersphere,
and the query lies at the center of the sphere. In this setting, in any lower di-
mensional projection, the query will appear to be an inlier, thus that subspace
will have a low score. While this example shows that our speculation does
not always hold true, we point out that such an exception requires a careful
and somewhat artificial setting. In reality, it is reasonable to expect that a
good outlying subspace will show some telltale sign in at least one of its lower
dimensional projections. For this reason, we propose to build the subspaces
incrementally in a stage-wise manner.

The overall search procedure is described as follows. In the first stage, all
subspaces of 1 dimension are inspected to screen out trivial outlying features
for user inspection. The user might then decide whether to take these trivial
outlying features out of the data. In the second stage, we perform an exhaus-
tive search on all possible 2D subspaces. The subsequent stages implement
a beam search strategy: at the l-th stage, we keep only the W top-scoring
subspaces (the beam width) from the previous (l − 1)-th stage. Each of these
subspaces is then expanded by adding one more attribute and then scored.
The search proceeds until a user-defined maximum set size has been reached.
The framework is presented in Algorithm 2. The number of subspaces consid-
ered by beam search is therefore in the order of O(d2 +Wd · dmax) where W
is the beam width and dmax is the maximum subspace dimension.

6.1 Filtering trivial outlying aspects

We now discuss possible approaches for filtering out trivial outlying aspects.
This problem is not a challenging one, both computationally and method-
ologically. Given that there are only d univariate variables to be screened, the
computational requirement is modest. Furthermore, most outlyingness scoring
metrics work well on univariate variables. Here, given a scoring metric, we pro-
pose to use a parameter ǫ ∈ [0, 1] to specify the percentile ranking threshold
for the query. Any attribute in which the query’s outlierness score is within
the top (ǫ× 100)% is deemed a trivial outlying attribute.

7 Experimental Evaluation

In this section, we design a series of experiments to assess the effectiveness and
efficiency of the proposed method and scoring metrics against the state of the
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Algorithm 2 Beam Search Framework
1: Inputs: data O, query q, maximum dimension dmax, number of top subspaces k, thresh-

old for trivial outlying aspect ǫ, beam width W

2: Stage 1: Filter out trivial outlying aspects (optional)
3: Stage 2: Exhaustively score all 2D subspaces. Update global result list of top k sub-

spaces. Make candidate list of top W subspaces L(2).
4: for l = 3 to dmax do
5: (l-th Stage)
6: - Initialize the candidate list L(l) ← ∅
7: - For each candidate subspace S ∈ L(l−1):
8: - For each attribute Di ∈ D \ S:
9: - If subspace {S ∪Di} not yet considered:
10: - Score {S ∪Di}.

11:
- If the worst-scored subspace in global result list is worse than {S∪
Di} then replace.

12:
- If |L(l)| < W , append {S∪Di} to L(l), else if the worst-scored sub-
space in the candidate list L(l) is worse than {S∪Di} then replace.

13: end for
14: Return {trivial outlying features, top k subspaces}

art. For scoring metrics, we compare with LOF (Breunig et al., 2000), with the
MinPtsLB and MinPtsUB parameters set to 10 and 30 respectively, and the
density rank in Duan et al. (2015). For outlying subspaces mining methods,
we compare our framework with the projection based approach LOGP (Dang
et al., 2014) and the feature selection based approach GlobalFS (Vinh et al.,
2014b), with all parameters set as recommended in the respective papers. For
the isolation path, we have found that 500 paths on subsamples of size 256
generally work well, thus we employ this setting unless otherwise stated. In
this work we focus on large datasets with the number of data points n ≫
256. However, in case n is not substantially larger or even smaller than 256,
we have found that setting the subsample size to ∼ ⌊n/4⌋ yields reasonable
results. All experiments were performed on an i7 quad-core desktop PC with
16GB of main memory. We implemented the isolation path score, LOF, density
rank and density Z-score in C++/Matlab. The Beam search framework was
implemented in Matlab. All source code will be made available on our web
site. Implementations of LOGP (Matlab) and GlobalFS (C++) were kindly
provided by the respective authors (Dang et al., 2014; Vinh et al., 2014b).

7.1 Basic Properties

We first design several experiments on synthetic datasets to verify the basic
properties of different scoring functions.

• Experiment 1—Convergence of isolation path score: The convergence
property of isolation forests was comprehensively established in Liu et al.
(2008, 2012). Herein, we briefly confirm this convergence in the context of
isolation path. We generate 1000 random data points uniformly distributed
on a circle with a small amount of Gaussian noise as in Figure 6. The query is
at the center of the circle. In the first experiment, we fix the subsample size for
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the isolation path algorithm to 256 while the number of paths in the ensemble
is varied from 1 to 10,000. In Fig. 6(b) it can be observed that the average path
length converges quickly using just approximately 100 paths. It is also noted
that the path length of the query q is significantly smaller than the average
path length of a random inlier o. This demonstrates that the isolation path
length score is able to characterize non-trivial outliers, i.e., outliers that cannot
be characterized by inspecting each feature separately. In the next experiment,
we fix the number of paths to 500, but vary the size of the subsample from
50 to 500. The average path length grows as expected, approximately in the
order of O(log ns) where ns is the subsample size. Nevertheless, the average
path length of q is consistently smaller than that of the inlier o.
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Fig. 6 Convergence of isolation path score

• Experiment 2—Dimensionality unbiasedness: We generate 10 data sets,
each consisting of 1000 points from a uniform distribution U([0, 1]d). The space
dimension is varied within [2, 20]. We then compute the average mean isolation
path score, density Z-score LOF, Outlying Degree score and log density of all
data points. In addition, we also compute the average mean subspace size of
the outlying subspace returned by LOGP for all data points. In Fig. 7(b), we
note that the LOF score and isolation path score shows a flat profile as the
number of dimensions increases. For the Isolation path score, note that the
average isolation path score coincides with 2Hn − 2, as dictated by Theorem
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4. On the other hand, the outlying degree, log density score and LOGP all
exhibit clear bias towards subspaces of higher dimensionalities.

An interesting question to ask is how the scoring functions behave under
an arbitrary data distribution. Towards this end, we generate 10 data sets,
each consisting of 1000 points from 10 equal-sized spherical Gaussian clus-
ters with random mean in [0, 1] and diagonal covariance matrix σId×d with
σ ∈ [0, 1]. The space dimension is varied within [2, 20]. The result is pre-
sented in Fig. 7(a). Under an arbitrary data distribution, it is not possible
to predict whether the average outlyingness score should increase or decrease
as dimensionality increase. Nevertheless, the density Z-score, by construction,
has zero-mean across all dimensionalities. The LOF score and isolation path
score both show a slight tendency to increase as the number of dimensions
increases, but this variation is minor, compared to the Outlying Degree, log
density score and LOGP, which all exhibit a strong bias towards subspaces of
higher dimensionalities.
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Fig. 7 Dimensionality unbiasedness (best viewed in color)

• Experiment 3—Scalability : In this experiment, we test the scalability of
the isolation path score in comparison with the next most scalable metric,
namely LOF, with respect to the number of data points. Note that we do not
test scalability w.r.t. the number of dimensions, as scoring metrics are often
used for scoring low dimensional spaces (i.e., d ≤ 5) in the context of outlying
aspects mining. Higher dimensional outlying subspaces are hard to interpret.
We generate n data points in a 5-dimension space where the number of data
points n ranges from 103 to 106 points (LOF) and 107 points (isolation path
score). The data distribution is a mixture of 100 equal-sized spherical Gaussian
clusters with random mean and covariance. For each n value, we randomly take
100 points as queries and record the average time required for computing the
LOF and isolation path score for these queries. For LOF, we also test the
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KD-tree based version for fast KNN queries. It is observed that the time for
building the KD-tree is negligible compared to the time for KNN queries when
the data size is sufficiently large. The result is presented in Fig. 8. It can be
observed that the average cost for computing the isolation path score is very
small and does not increase appreciably w.r.t. the data set size, thus making
it suitable for mining very large data sets.
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Fig. 8 Scalability w.r.t. dataset size

7.2 Identifying trivial outlying features

We demonstrate the usefulness of mining trivial outlying features. For this
experiment, we employ the KDD Cup’99 data set. This benchmark data set
is used commonly in the anomaly detection community. Though it has been
criticized for not reflecting real-life conditions, we employ this data set since
our primary goal is not about anomaly detection. This data set was also ana-
lyzed by Micenkova et al. (2013) where the authors extracted a small subset
of 3500 records, and found a number of outlying aspects for the anomalies.
Here, we extract 100,000 normal records and 18,049 outliers of 40 types of
attacks from both the training and testing datasets. Each record is described
by 38 attributes. We demonstrate that it is an easy yet meaningful task to
explicitly identify trivial outlying aspects. We employ the LOF and isolation
path score with the rank threshold parameter set to 0.5%, i.e., attributes in
which the query’s score lies within the top 0.5% are deemed trivial outlying
features. Note that the density rank and Z-score are too expensive for data
sets of this size. We search for trivial outlying features for each of the total
118,049 records.

For the isolation path score, the results are summarized as follows: amongst
18,049 outliers, 6,166 records are found to possess some trivial outlying fea-
tures, i.e., 34.3%. This is in good contrast to only 4.1% of normal records
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having trivial outlying features. Note again that here we do not attempt to
declare whether any record is an anomaly. In Fig. 9(a) we present the propor-
tion of records in each type of attack sharing the same trivial outlying features.
Several intuitive insights can readily be extracted from this table. For exam-
ple, most land attacks share the trivial outlying feature named land. Most
guess password attacks (guess passw) have an extreme number of failed logins
(num failed logins), as expected.

Explanations for other types of attacks require deeper domain knowl-
edge. Take the processtable DoS attack for example. The attack is launched
against network services, which allocate a new process for each incoming
TCP/IP connection. Though the standard UNIX operating system places lim-
its on the number of processes that a user may launch, there are no limits on
the number of processes that the superuser can create. Since servers that run
as root usually handle incoming TCP/IP connections, it is possible to com-
pletely fill a target machine’s process table with multiple instantiations of
network servers. To launch a process table attack, a client needs to open a
connection to the server and not send any information. As long as the client
holds the connection open, the server’s process will occupy a slot in the server’s
process table (Garfinkel et al., 2003). Most processtable attacks thus have
extremely high connection times, as seen in Fig. 9(a).

Another example is the warezmaster/warezclient attacks. Warezmaster
exploits a system bug associated with file transfer protocol (FTP) servers on
which guest users are typically not allowed write permissions. Most public do-
main FTP servers have guest accounts for downloading data. The warezmaster
attack takes place when an FTP server has mistakenly given write permissions
to guest users on the system, hence any user can login and upload files. The
attacker then creates a hidden directory and uploads “warez” (copies of illegal
software) onto the server for other users to download (Sabhnani and Serpen,
2003). A warezclient attack can be launched after a warezmaster attack has
been executed: users download the illegal “warez” software that was posted
earlier through a successful warezmaster attack. The only feature that can be
observed to detect this attack is downloading files from hidden directories or
directories that are not normally accessible to guest users on the FTP server.
The feature “hot” can be utilized to detect whether such suspicious activities
took place: if many hot indicators are being observed in a small duration of
time during the FTP session, it can be concluded that warezclient attack is
being executed on the target machine (Sabhnani and Serpen, 2003). In Fig.
9(a) it can be observed that many warezclient attacks share the “hot” and
“is guest login” trivial outlying features.

For LOF, using the same 0.5% rank threshold, 29.6% of outliers were iden-
tified as having trivial outlying features (compared to 34.3% when using the
isolation path score), while 13.6% of inliers were deemed to have trivial out-
lying features (which is significantly higher compared to 4.1% when using the
isolation path score). On this data set, it took LOF 2,524 seconds to score
all 118,049 points in all features, compared to 120 seconds when the isola-
tion path score was used. Fig. 9(b) presents the proportion of records in each
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Fig. 9 Trivial outlying aspects on KDD Cup’99 data set–shading scales indicate the propor-
tion of points sharing the same trivial outlying attributes in each attack type (best viewed
in color)

type of attack sharing the same trivial outlying features. While LOF also de-
tects a number of ‘highlighted’ cells where a large proportion of attacks of
the same type share the same outlying features, somewhat surprisingly, sev-
eral intuitive pairs, such as land–land, guess passw–num failed logins, and
warezclient–hot, warezclient–is guest login were not detected. A closer
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inspection reveals that, as LOF is designed to detect local outliers, it is not
sensitive towards groups of global outliers, as in the above cases. When an
anomaly cluster becomes large and dense, the inner part of that cluster will
be treated by LOF as inliers. This is known as the masking effect (Liu et al.,
2012). The isolation path score, on the other hand, deals effectively with mask-
ing, since subsampling will thin out the anomaly cluster for easier detection.

The Consensus Index: In order to quantitatively assess the results, we
propose the Consensus Index (CI). It assesses the generalization performance
of a method from the query point to other data points of the same class.
More specifically, if a set of outlying features for a query point is good, then
many other data points of the same class should also share such features, i.e.,
distinguishing features of the class. Thus, for each class, we count the number
of times each feature is ‘voted’ as an outlying feature by some query points in
that class, and form the consensus matrix C, where Cij represents the number
of times the j-th feature is selected as an outlying feature by all query points
in the i-th class. Normalizing each row of C by the number of query points
in the respective class gives the heatmap visualization in Figure 9. For each
class, a small number of ‘highly-voted’ cells indicates better generalization.
To quantify this consensus between members of the same class, we employ an
entropy-based measure: for each class (i.e., row of C), we first add 1 to each
cell (a Laplacian smoothing factor) to prevent degenerate distributions, then
we compute the entropy for the row distribution as follows:

H(i) =

d
∑

j=1

−Cij + 1

Ni
log

Cij + 1

Ni

where Ni =
∑d

j=1(Cij +1). The consensus index is computed as the averaged
normalized row entropy

CI ,

∑nC

i=1 H(i)

nC log d

where nC is the number of classes. CI ranges within (0, 1], with smaller val-
ues indicating better consensus amongst queries of the same class, i.e., better
generalization. For the KDD Cup’99 data set, the CI of LOF is 0.90 while for
the isolation path score, the CI is 0.75. Thus the isolation path score appears
to also return better results quantitatively. Note that, while these CI values
seem high, i.e., close to 1, the minimally achievable consensus (i.e., normal-
ized entropy) for a class is −[(d− 1)/(ni + d) log(1/(ni + d))− (ni + 1)/(ni +
d) log((ni + 1)/(ni + d))]/ log(d), which is achieved when all ni queries of the
i-th class vote for the same feature. This baseline minimum value can be high,
e.g., 0.44 when d = 40, ni = 100, and approaches zero when ni → ∞.

7.3 Identifying non-trivial outlying high dimensional subspaces

We employ a collection of data sets proposed by Keller et al. (2012) for bench-
marking subspace outlier detection algorithms. This collection contains data
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sets of 10, 20, 30, 40, 50, 75 and 100 dimensions, each consisting of 1000 data
points and 19 to 136 outliers. These outliers are challenging to detect, as they
are only observed in subspaces of 2 to 5 dimensions but not in any lower dimen-
sional projection. Note our task here is not outlier detection, but to explain
why the annotated outliers are designated as such. These data sets were also
employed in several previous studies in outlying aspects mining (Micenkova
et al., 2013; Duan et al., 2015; Vinh et al., 2014b). Since the data size is rel-
atively small, here we employ a range of different approaches, namely LOF
score (including rank and Z-score variants), Outlying Degree (including rank
and Z-score variants), density score rank and density Z-score, the isolation
path score, GlobalFS (Vinh et al., 2014b) and LOGP (Dang et al., 2014).

For this data set, since the ground-truth (i.e., the annotated outlying sub-
space for each outlier) is available, we can objectively evaluate the performance
of all approaches. Let the true outlying subspace be T and the retrieved sub-
space be P . To evaluate the effectiveness of the algorithms, we employ the
sensitivity, sen , |T ∩ P |/|T | and the precision, prec , |T ∩ P |/|P |. The av-
erage sensitivity and precision over all outliers for different approaches on all
datasets are reported in Figure 10. Note that since there are many methods
being tested, we report the results for each metric on two separate subplots.

On these data sets, the density Z-score performs competitively overall,
and works better than the density rank variant. The isolation path score also
performs competitively and is observed to work better than several previous
approaches, including GlobalFS, density rank and LOGP. Of the two feature
selection based approaches, GlobalFS’s performance is close to the isolation
path score and is significantly better than LOGP. Again, we note that LOGP
seeks a transformation that distinguishes the query from its full-space neigh-
bors. In this case, it appears that full-space neighbors are not a relevant source
of information to guide the search. To verify this hypothesis, we test to see how
similar the full-space neighborhood of the query is, compared to its outlying-
subspace neighborhood. It turns out that the average proportion of common
neighbors drops steadily as the number of dimensions increases, from 22% (10
dimensions) to just above 16% (100 dimensions), similar to the trend observed
in Fig. 2(a). Thus, the topology of the data in the full space needs not be
similar to that in the outlying subspaces. This observation can shed light on
the poor performance of LOGP. While GlobalFS also being a method in the
feature transformation/selection category, it does not rely on any statistic of
the full space when building its synthetic data. It therefore exhibits better
performance.

The Outlying Degree performs competitively, and albeit being a biased
score, it out perform LOF on these data sets. This is because all the artifi-
cial outliers are designed to be global outliers. LOF appears to discover many
’local’ outlying aspects, in which the query appear to be locally outlying. Un-
fortunately, these findings cannot be verified using the ground truth. While the
OD has high precision, its dimensionality bias is also clearly exposed: for every
query, the top subspace found by the OD always comprises 5 features, which is
the maximum cardinality allowed, whereas the ground-truth subspace some-
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Fig. 10 Performance on identifying non-trivial outlying high-dimensional subspaces (best
viewed in color)

time comprises only 2-3 features. For this reason, the sensitivity of the OD is
low. Of the normalized variants, only the OD Z-score improves upon OD, while
the OD Rank degrades the results. We are also interested in seeing whether
normalizing the LOF (to rank or Z-score) could improve the performance, but
the answer appears to be negative in both cases: normalizing the LOF de-
creases the performance significantly, especially at higher dimensionalities. A
possible explanation could be since LOF is already dimensionally-unbiased,
normalizing LOF does not offer any additional benefit but instead disrupting
its values. It is observed, however, that the LOF Z-score performs better than
the LOF Rank.

Parameter sensitivity : We test the performance of the beam search pro-
cedure w.r.t. the beam width parameter on the 75-dimension data set of this
benchmark. The results are presented in Fig. 11, with the beam width ranges
from 10 to 200. For most scoring metrics, the performance improves grad-
ually and stabilizes after the beam width reaches 100. Note that increasing
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the bandwidth is guaranteed to return better solutions in terms of the chosen
scoring metric, but not necessary better performance w.r.t. the ground-truth.
Apparently, the performance of the density rank decreases slightly as the beam
width increases.
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Fig. 11 Parameter sensitivity: performance w.r.t. beam width parameter (best viewed in
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Execution time: The wall clock execution time for various methods is pre-
sented in Fig. 12. The two feature transformation/selection approaches Glob-
alFS and LOGP are significantly faster than score-and-search approaches over-
all. Among the score-and-search methods, the isolation path score based ap-
proach is the most efficient.
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7.4 Other data

We have tested the methods on several real data sets from the UCI machine
learning repository (Bache and Lichman, 2013), as summarized in Table 2.
These are data sets for classification. We select a subset of the data points to
act as queries. For each query, we exclude all data points of the same class
except the query, and mine the outlying features for the query. For these data
sets, since the annotated ground-truth outlying subspace for each data point
is not available, we employ the Consensus Index as a measure of generalization
performance. For all search and score methods, the parameters for the beam
search were set as dmax = 3 (maximum subspace dimension) and W = 100
(beam width), and the top scoring subspace was reported. For feature selec-
tion (GlobalFS) and transformation (LOGP) approaches, we also extract an
explaining subspace of a maximum of 3 features. Note that for this experiment,
whenever it takes an excessive amount of time for a method to complete (e.g.,
several days or weeks) based on an estimation from the first query, then we ex-
clude that method from the experiment (marked as ‘*’ in Table 3). Also, since
other proposed methods do not have any strategy for handling trivial outlying
features, we did not filter out trivial outlying features in this experiment.

A brief description for the data and the respective testing protocol is as
follows: (1) The pen digit data set consists of 10,992 samples of 16 features
for the 10 digits 0-9, i.e., 10 classes. We randomly picked 100 samples from
each class as query points. (2) The vowel data set contains 990 samples of 10
features in 11 classes. We took all the data points as queries. (3) The English
letter data set contains 20,000 samples of 16 features for the 26 letters A-Z.
We took 2,291 samples corresponding to three random letters as queries. (4)
The forest cover type dataset consists of 581,012 samples of 54 features in 7
classes. We randomly took 100 data points in each class as queries. (5) The
Ionosphere dataset comprises 351 samples of 33 attributes. We took all data
points as queries. (6) The breast cancer data set consists of 569 instances of
two classes: malignant and benign, and 30 features. We took all data points as
queries. (7) The satellite dataset consists of 6,435 data points of 36 features.
We randomly took 100 data points from each class as queries. (8) The Shuttle
data set contains 58,000 samples of 9 features in 7 classes. We randomly took
100 samples from each class as queries (or all samples if a class contains less
than 100 data points). (9) The image segmentation data set consists of 2310
data points of 19 features in 7 classes. We randomly took 100 data points from
each class as queries.

Note that in this experiment, we are more interested in ‘long’ data sets (i.e.,
n ≫ d) rather than ‘wide’ data sets (i.e., n ≪ d). The reason is that, when
we have a relatively small number of samples and extremely large number of
dimensions, such as a microarray data set comprising a few hundreds patients
(samples) and a few tens of thousands of genes (features), it is often the case
that each sample will exhibit many trivial outlying features, just by chance.
That is because the data is so sparse. On the other hand, it is much more
meaningful and challenging to discover outlying features when the data is
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Table 2 Summary of UCI data sets

Data set # Samples (n) # Features (d)
Ionosphere 351 33
Vowel 990 10
Breast 569 30
Image segmentation 2310 19
Satellite 6435 36
Digit 10,992 16
Letter 20,000 16
Shuttle 58,000 9
Forest 581,012 54

dense. From the performance summary in Table 3, it can be observed that the
proposed density Z-score measure achieves good results whenever applicable,
but it is not very scalable, along with LOF and the density rank measures. For
large datasets, the isolation path score consistently achieves better results than
the other two scalable alternatives, namely LOGP and GlobalFS. Note that
GlobalFS complexity is exponential in log n, i.e., O(dlogn), thus it is generally
applicable up to medium-sized data, but becomes infeasible when the data size
becomes large, e.g., on the Forest cover type data set.

We note that there is an important assumption underlying the Consensus
Index as a quantitative performance measure that deserves some discussion.
The assumption is that the classes are homogeneous, i.e., each class can be
characterized by a relatively compact set of features. It is useful to discuss the
notion of ‘natural clusters’ here. A natural cluster is a set of tightly coupled
data objects in some subspace, ideally of a small cardinality. A homogeneous
class comprises a single natural cluster, or several natural clusters all charac-
terized by the same subspace. In the traditional context of feature selection
for classification, the goal is to identify this set of features that characterize
each class. Of course, it may also happen that some class is heterogeneous, i.e.,
comprising several natural clusters, each characterized by a different subset of
features. The Consensus Index works best when the classes are homogeneous.
In such cases, we can draw meaningful conclusions about the generalization
performance of different methods, from individual queries to the whole class.
Studies on class homogeneity are a challenging problem and fall outside the
scope of this paper. It is also worth noting that the Consensus Index on its own
as a performance measure can be misled by a malicious method which assigns
the same feature to all queries, in such case the CI is maximized. Such a solu-
tion, however, will be poor in distinguishing different classes of queries. To this
end, we take the top 5 ‘voted’ features across all queries and test the 10-fold
cross validation error using a k-NN classifier (with k=10). The result is pre-
sented in Table 4 where it can be observed that the isolation path, LOGP and
GlobalFS are the methods that perform better in terms of the cross validation
error rate.
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Table 3 Performance on UCI data sets: Consensus Index (lower the better) and average
execution time (seconds)

Data set
Methods (CI & mean±std execution time in seconds)

LOF Den. Rank Den. Z-Score OD Z-Score
Vowel 0.94 12.7 ± 0.51 0.93 6.3 ± 0.34 0.90 6.3 ± 0.3 0.95 5.5 ± 0.5
Ionos. 0.75 21.4 ± 2.8 0.82 13.7 ± 2.5 0.75 14.1 ± 2.5 0.82 16.1 ± 2.2
Breast 0.78 20.0 ± 6.9 0.77 11.7 ± 3.3 0.65 12.1 ± 3.8 0.77 14.7 ± 2.8
Img. Seg. 0.79 142.8 ± 6.9 0.64 60.6 ± 3.8 0.70 60.6 ± 3.9 0.66 91.3 ± 4.5
Satellite * * * *
Digit * * * *
Letter * * * *
Shuttle * * * *
Forest * * * *

Data set
Methods (CI & mean±std execution time in seconds)

Isolation path LOGP GlobalFS♦

Vowel 0.92 2.44 ± 0.21 0.98 0.0 ± 0.0 0.90 2.97 ± 0.2
Ionos. 0.80 15.1 ± 1.4 0.92 0.0 ± 0.0 0.87 2.0 ± 0.0
Breast 0.73 7.0 ± 1.1 0.72 0.0 ± 0.0 0.89 2.0 ± 0.1
Img. Seg. 0.67 31.4 ± 4.3 0.67 0.0 ± 0.0 0.71 2.9 ± 0.3
Satellite 0.87 137.6 ± 37.2 0.97 0.0 ± 0.0 0.93 16.4 ± 23.8
Digit 0.85 31 ± 2.3 0.92 0.0 ± 0.0 0.89 8.2 ± 4.1
Letter 0.71 30.5 ± 8.7 0.96 0.0 ± 0.0 0.92 12.3 ± 6.7
Shuttle 0.88 16.0 ± 2.7 0.97 0.1 ± 0.0 0.94 8.1 ± 5.6
Forest 0.88 211.7 ± 131.8 0.87 2.4 ± 1.7 *
*: expected to take an excessive amount of time to complete, i.e., few days to few weeks
♦: GlobalFS was run with 6 threads in parallel to speed up the experiment

Table 4 % Cross-validation error on UCI data sets using top-5 ‘voted’ features

Data set Iso. path LOF Den. Rank Den. Z-Score LOGP GlobalFS OD Z-score
Vowel 6.26 4.24 5.56 4.85 8.59 3.74 4.44
Ionosphere 11.11 17.38 14.25 12.54 16.81 9.40 11.97
Breast 11.78 10.72 11.95 8.79 11.95 8.79 8.26
Img. Seg. 5.97 28.48 6.36 6.06 16.93 17.75 6.02
Satellite 16.13 * * * 15.88 17.64 *
Digit 18.94 * * * 16.77 22.73 *
Letter 47.44 * * * 29.97 39.09 *
Shuttle 0.08 * * * 0.36 0.09 *
Forest 55.89 * * * 70.16 * *
*: results not available due to excessive execution time

8 Discussion and Conclusion

In this paper, we have discussed the fundamental issues of outlying aspects
mining. We formalized the concept of dimensionality unbiasedness, and es-
tablished this property for several existing measures. We have also proposed
two novel outlyingness scoring metrics. The density Z-score exhibits good per-
formance, but is computationally expensive, thus is only applicable for small
numeric data sets. On the other hand, the isolation path score is an efficient
measure that also exhibits good performance, making it suitable for mining
very large data sets.

While exhibiting desirable characteristics with respect to effectiveness and
efficiency, the methods presented herein is not without limitations. Most no-
tably, the isolation path, which is built upon the foundation of isolation forest,
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is not designed to detect local outlying subspaces, i.e. subspaces in which the
query is only a local outlier w.r.t. its neighborhood. Second, scalability to both
large and high dimensional data set remain a significant challenge. This is true
especially for the rank or Z-score normalization, since the outlying score for all
data points in all subspaces must be calculated. Example application scenarios
include text corpus of millions of documents in tens to hundreds of thousands
of words. Such large scale applications is currently beyond the scope of many
methods investigated herein.

The above limitations suggest several exciting avenues for future research.
First, a local version of the isolation path can be developed for local outlying
subspaces. Second, it is interesting to develop hybrid frameworks that com-
bine the efficiency of feature selection/transformation based approaches and
the versatility and effectiveness of score-and-search based methods, capable of
generating multiple alternative explanations and scalable to much larger high
dimensional datasets. Third, in the spirit of the no-free-lunch theorem, it is
likely that no measure is optimal in all settings. Therefore, an ensemble ap-
proach to outlying aspects mining, leveraging the strengths of multiple scoring
metrics and methods would likely be more effective.
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