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Abs t rac t .  The objective of this paper is to draw the attention of the 
ML-researchers to the domain of data analysis. The issue is illustrated by 
an attractive case study--automatic classification of non-averaged EEG- 
signals. We applied several approaches and obtained best results from a 
combination of an ID3-1ike program with Bayesian learning. 

1 I n t r o d u c t i o n  

The general task of machine learning applied to data analysis is to facilitate the 
classification of unseen examples, to extract relevant information froln the data, 
and to provide intelligent interpretation of the classification scheme. 

The research reported here relates to a broader project, aiming at the devel- 
opment of a Brain-Computer Interface (BC1), a direct link between the brain 
and an electronic device. The objective is to discover typical pat terns in the 
measured EEG-signals in order to recognise simple commands such as 'move 
right,' 'move left,' 'move up,'  or 'move down.' A description of the BCIwith first 
results are published in (Pfurtscheller, Flotzinger & Kalcher, 1992). 

Each example submitted to the learner represents a single EEG-measurement 
consisting of 70 numerical values, and is classified so that each class stands 
for one command. We started with the simple task of discerning 'move left' 
from 'move right. '  Detailed discussion of the data acquisition and preprocessing 
would go beyond the scope of this paper. Suffice it to say that,  for each learning 
example, potentials were measured on 14 electrodes placed on an intact scalp of 
a test person, in the frequency band of 8-12 Hz in 5 time-slices preceding the 
movement of the left or right hand. Thus we had 70 real-valued attributes and 
two classification classes. 

We applied several techniques to the analysis of three sets of examples. Each 
of these sets was obtained from a different, test person. The sizes of the sets 
were 213, 140, and 246 examples, respectively. For each person, we used 60% 
of the examples for learning and the rest for testing. All results were averaged 
over 10 different random selections of learning examples. (In the BCI-project, 
the machine is always trained for one particular person.) 
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Two phenomena, characterized the data: they were sparse and of low quality. 
Sparseness relates to the vast number of all possible combinations of attribute 
values, from which only tens or hundreds are available as learning examples, with- 
out any guarantee of representativeness. The low quality of the data is caused by 
the different degree of attention of the tested persons, by changes in vigilance, 
by artefacts during recording, by not using the optimal frequency band, and by 
other factors. The examples are noisy, and perhaps do not contain the expected 
information altogether, because waves measured on a single frequency band of 
14 electrodes are certainly insufficient for 'reading thoughts.' Also, there is a 
high probability that most of the attributes are irrelevant. 

In the search for the best suited data-analysis method, we postulated three 
minimum requirements: 

1) The inferred pattern must be maximally accurate so as to enable suffi- 
ciently precise classifications; 

2) The results must be as .stable as possible--i.e, the classification accuracy 
must be about the same on each of the data. sets; 

3) The method should enable interpretation, so that the researchers can use 
the results for further improvement of the experimental setting. 

2 Brief Outline of the Applied Methods 

We have applied two subsymbolic methods (Multilayer Perceptron and Learning 
Vector Quantizer), and three symbolic methods (Bayesian Classifier, Induction 
of Decision Trees, and a combination of these two). 

Multi-Layer Percep t ron  (MLP) 

The MLP is a traditional neural network whose topology builds on a few layers 
of processing units--an input layer consisting of d nodes, where d is the number 
of attributes or the dimension of the input vector (in our case d = 70); a hidden 
layer whose size is user-defined; and an output layer consisting of c nodes, where 
c is the number of classes (two, in our case). Inputs to the individual units are 
weighted. The output of ea.ch uuit (except for the input layer) is a function of the 
weighted sum of its inputs: we applied the common sigmoid activation function. 
For more detailes, see (Rumelhart, Hinton, & Williams, 1989). 

In the classification phase, the values of each individual attribute are prop- 
agated through the network. The class assigned to the output node with the 
highest value of the activation function is used as the classification value. 

Learning is carried out by error propagation from the output to the input 
layer. The difference between desired and actual output of the network is used 
to correct the weights at each layer. Usually a predetermined number of runs 
through the training set is performed. The initial weights are set to small random 
values. 

We experimented with several topologies of the MLP and achieved the best 
results for one hidden l~ver with ten units. 
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Learning Vector Quantizer (LI/'Q) 

The essence of the LVQ (Kohonen, 1990) is in dividing the d-dimensional space 
into a predefined number of regions. Each region is represented by a so called 
reproduction vector which is assigned a classification value. 
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a) before adjustment b) after adjustment 

Fig. 1. LVQ: two closest reproduction vectors adapt to the new arrival. 

In the classification phase, the new example is assigned the classification 
value of the closest reproduction vector. 

The learning scheme consists of two parts: (1) initialization defines the initial 
boundaries of the regions and the respective reproduction vectors; (2) tuning is 
a trial-and-error mechanism: the system takes the examples one by one and 
tries to classify them. If the classification a t tempt  is wrong, the reproduction 
vector is pushed slightly away (in the d-dimensional learning space) from the 
example, and the second closest reproduction vector, if it is of the same class as 
the example, is pulled closer to the example. These adjustments are performed 
for a predetermined number of runs through the whole training set. 

For the initialization, we followed the recommendation of (Peltoranta, 1992) 
to use k-means. The parameter k determines the ideal number of reproduction 
vectors. The best results were achieved for k = 2 and 3. 

Conversion to Symbolic Values  

Any transformation from numeric to symbolic values entails information loss. 
However, it can significantly reduce the learning space and stress 'regularities' 
in the data. The conversion algorithm we have implemented is based on entropy 
minimization. For each attribute, the following procedure was applied: 

1) Find the minimum and maximum value of the attribute.  Compute the 
entropy of the whole interval by Hi,,itiat = ~'=lPi logpi, where c is the 
number of classes (here, c = 2), and Pi is the probability of the i-th class; 

2) Find the optimal split of the interval into subintervals minimizing the 
overall entropy H = H1 + H2, where H1 and //2 are entropies of the indi- 
vidual intervals; 
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3) If the difference between the previous entropy and the new entropy is less 
then Pmi,~ percent, then stop. Otherwise, pick the interval with the highest 
entropy and find its ideal split, maximizing the overall entropy; 

4) Repeat the previous step until either the algorithm fails to improve the 
overall entropy by at least pmi~ percent or the number of intervals has 
reached the user-specified maximum. 

Typical number of intervals per attribute was 4. Typical value for Pmin was 
5%. 

Bayesian Classifier B 

This simple approach gives surprisingly good results even if the general require- 
ment of the pairwise independency among the attributes is not satisfied. 

In the cla~ssit~cation phase, the example is assigned the class Ci for which the 
following formula has the maximum value: 

�9 , = ' n k = l P ( v k  I@) P(@ l vl , . .  vd) P(@) d 

where d is the nmnber of attributes, Vl , . . . ,  Yd are the attribute values of the 
example to be classified, P(CI) is the a priori probability of the occurence of 
class C~, and P(vk I C~) is the a priori probability of the k-th attribute value 
in class Ci. The probabilities are calculated as relative frequencies in the data 
(even though they may not be well statistically grounded for rare values vl). 

I n d u c t i o n  of  Decis ion  Trees  [DT 

The learning principle of the a.lgorithm for the induction of decision trees consists 
of growing the tree and pruning the tree. Growing is carried out by the following 
procedure: 

Find the attribute with the maximal information content and place it at the 
root of the tree. The n distinct values of the attribute divide the data  set into n 
subsets. If all examples of a subset belong to a single class, then make the subset 
a leaf assigned a label of this class. Otherwise, find in each of the subsets the 
best attribute, splitting the subset into 'subsubsets,' and so on until either all of 
the  remaining subsets are empty or assigned a label, or until there is no unused 
attribute left (in the last case, the final subset will be assigned more than one 
class). For a formula deciding which attribute is best, see (Quinlan, 1986). 

When the tree is constructed, the next step is its pruning to avoid overspe- 
cialized descriptions and to discard noise (Niblett, 1987). Pruning consists in 
cutting off those branches that are not well statistically grounded. 

The classification procedure consists in propagating the example through 
the tree starting from the root and testing at each node the respective attr ibute 
value. Depending oll its value, the branch leading to the next node is selected. 
When a leaf is reached, then its class is assigned to the example. 
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IDT initializing Bayes 

IDT is used to reduce the dimension of the learning space which is then analyzed 
with the Bayesian Classifier. The procedure consists of the following three steps: 

1) Run IDT on the d-dimensional data and build a decision tree; 
2) Discard all attributes that have not appeared in the decision tree. The 

new dimension of the space is dl _< d; 
3) Determine a priori probabilities (in the dl-dimensional space) to serve the 

Bayesian Classifier. 

3 Experimental Results 

The most general results in accuracy are summarized in Table 1. As expected, 
the Bayesian Classifier, if run on all 70 attributes, is the clear loser because it 
lacks any ability to discern between relevant and irrelevant information. The 
subsymbolic approaches scored better. However, they were not very stable on 
data files of different quality--MLP achieved the absolutely best score on C87B 
but was practically useless on C05B because 50% accuracy can be achieved by 
mere tossing a coin. Hence, the subsymbolic methods are more sensitive to the 
quality of the learning data. The favourable results of IDT can be explained by 
its ability to assess the relevance of the individual attributes. 

Table 1. Accuracy of the predictions of the side of hand movement from EEG data 
recorded prior to the actual movement. 

C05B C16B C87B Average st.dev. 
MLP 49.7 72.1 84.1 68.6 14.3 
LVQ 51.6 71.6 82.2 68.5 12.7 
Bs 60.7 59.3 70.9 63.6 5.2 

IDT 71.3 73.6 79.3 74.7 3.4 
IDT-Bs i 70.5 77.3 79.9 75.9 3.9 

The absolute winner is the method that extracts the most significant at- 
tributes by means of IDT and then runs Bayes on them. The reason is that  the 
ordering imposed by the decision tree is too rigid. Instead of a precise ordering 
of the attribute tests, Bayes supplies conditional probabilities and thus allows 
for more flexibility. The results of this approach are also relatively stable. 

Apart from accuracy and stability, the Introduction postulated also the ira- 
portant  requirement of interpretability. Though it is possible to extract knowl- 
edge from Neural Networks (Towel], Craven & Shavlik, 1991), the process is far 
from being easy and straightforward. The results from IDT, in turn, can immedi- 
ately be interpreted, for instance, 'most important is the potential on electrodes 
5 and 10 in time slice 2, and then the potential on electrode 14 in time slice 
4.' This helps the user to develop a deeper understanding of the results of the 
analysis and supply guidelines for further experiments. 
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4 C o n c l u s i o n  

For data  analysis in vast learning spaces, the analyst must be acquainted with 
a rich repertoir of methods with their pros and cons, and be able to apply them 
in a flexible manner. 

To deal only with numeric data is an oversimplification of a real-world task. 
In our future research, we want to enrich the original data so that  they contain 
also results of measurements at other frequency bands and predicates such as 
'activation on right hemisphere precedes activation on the frontal electrodes.' It 
is encouraging to know that the combination IDT-Bayes worked well because 
this will work even if Boolean variables are added. Also, the experience saying 
that  symbolic analysis tends to produce better results than numerical is positive 
because symbolic analysis is usually much faster than numerical. 
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