
Discovering Patterns in Real-Valued Time Series

Joe Catalano, Tom Armstrong, and Tim Oates

University of Maryland Baltimore County
Baltimore, MD 21250 USA

{jcat1, arm1, oates}@umbc.edu

Abstract. This paper describes an algorithm for discovering variable
length patterns in real-valued time series. In contrast to most existing
pattern discovery algorithms, ours does not first discretize the data, runs
in linear time, and requires constant memory. These properties are ob-
tained by sampling the data stream rather than processing all of the
data. Empirical results show that the algorithm performs well on both
synthetic and real data when compared to an exhaustive algorithm.

1 Introduction

Many of the data generated and stored by science, government, and industry
are multi-variate, real-valued, and streaming. These time series data come from
such diverse sources as financial markets, climatological satellites, and medical
devices. The potential uses of time series data are as varied as their sources. In
some cases, the goal is to make accurate predictions (e.g., finding patterns in
the fluctuations of the price of one stock that predict the price of another stock
3 days hence). In other cases, the goal is to gain a deeper understanding of the
underlying system generating the data. This paper is concerned with the latter
task, and presents a novel algorithm for finding recurring patterns (sometimes
called motifs [1]) in time series.

Most algorithms for discovering patterns in time series have one or more of
the following characteristics. The most common characteristic is an inability to
work with real-valued data except through prior discretization [2,3]. Even in
those cases where real-valued data are acceptable, multi-variate data typically
are not [4]. The algorithms also tend to be batch [5], rather than incremental,
which poses problems when the datasets are large or come from a high-volume
stream. Finally, there are often assumptions about the number or temporal ex-
tent of patterns that exist in the data [6]. In contrast, we present an incremental
algorithm with linear time and constant memory requirements for finding recur-
ring patterns in real-valued, multi-variate streaming data wherein the number
and temporal extent of the patterns are not known in advance.

The algorithm obtains these desirable properties by sampling. Given a data
stream, a user-specified number of large candidate windows of data are sampled
from the stream, sub-windowed, and stored. As time progresses, comparison win-
dows of the same size are periodically sampled, sub-windowed, compared to all
of the sub-windows from each of the candidate windows, and finally discarded.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 462–469, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Discovering Patterns in Real-Valued Time Series 463

The similarity scores (according to DTW) of the k most similar comparison
sub-windows are kept for each candidate sub-window. If a candidate window
contains an instance of a pattern, then some of its sub-windows will contain
parts of that pattern, and the sampling process will yield comparison windows
and sub-windows with the same properties. To distinguish patterns from noise,
the mean similarity of the best matches for each candidate sub-window is com-
pared to a distribution of mean similarities constructed so as to enforce the null
hypothesis that the matching sub-windows do not contain instances of the same
pattern. When the null hypothesis is rejected, the candidate sub-window prob-
ably contains a part of a pattern instance, and adjacent sub-windows with this
property are “stitched” together to obtain the entire pattern.

Empirical results with a variety of datasets are reported. First, synthetic
datasets in which known patterns are added to a background of noise are used
to explore the ability of the algorithm to discover patterns of varying lengths
and frequencies of occurrence in the face of changes to user-defined parameters.
Second, the algorithm is run on real datasets for which the “true” patterns are
not known. The discovered patterns are compared to those found by an excep-
tionally expensive algorithm that performs an exhaustive search for patterns of
all lengths in the data. Results show that our algorithm finds many of the same
patterns found by the exhaustive algorithm, but with limited computation and
memory.

The remainder of this paper is organized as follows. Section 2 describes ap-
proaches to discovering patterns in data through discretization. Section 3 presents
our sampling algorithm and complexity analysis. Section 4 contains empirical re-
sults of our algorithm on real-valued data. Finally, section 5 summarizes our con-
tribution and points to future research directions.

2 Related Work

Extensive work has been done in the area of time series data mining, but little
of it has focused on mining recurring patterns in real-valued time series. Some
have applied clustering techniques to time series to mine interesting features of
the data.

Dynamic Time Warping (DTW) is used in Oates et al. [7] to cluster the
experiences of a mobile robot, using robotic sensor data as the source of the
time series, and in [8] to cluster multi-variate real-valued time series produced by
selecting one of k HMMs. While not focused on pattern discovery, they establish
that DTW can reliably be used as a similarity measure of real-valued multi-
variate data.

Colomer et al. [2] use DTW to classify patterns belonging to the same class of
operating situations in a level control system. Unlike our approach, they apply
DTW to episodes rather than to the original time series. Keogh and Pazzani [3]
propose a modification to DTW that operates on a piecewise linear representa-
tion of the data. Again this differs from our approach as it does not operate on
the raw observations.

464 J. Catalano, T. Armstrong, and T. Oates

Lin et al. [4] define a motif as a previously unknown frequently occurring
pattern, and introduce a discovery method that uses a modified Euclidean dis-
tance function to improve the complexity of the search. To achieve this perfor-
mance they must reduce the dimensionality of the time series by means of a
piecewise aggregate approximation and then further transform the time series
into a discrete representation. Chiu et al. [1] extend Lin’s work, addressing the
scalability of the motif discovery algorithm and its ability to discover motifs
when noise is present in the time series. Lin et al. [9] extend the symbolic rep-
resentation introduced in [4] to better work with algorithms for streaming time
series.

Finally, Oates [5] investigates a variation of the pattern discovery problem,
wherein they determine what makes a set of sequences different from other se-
quences obtained from the same source. The approach operates on multi-variate
real-valued time series and uses DTW as the similarity measure, but does not
use a sampling approach.

3 Algorithm

Our sampling algorithm, figure 1, accomplishes two main tasks; the first is to
discover windows from a time series that contain pattern instances and the sec-
ond is to remove noise prefixes and suffixes in windows containing patterns. It
accomplishes these goals by repeatedly sampling fixed windows of the time series
looking for pairs of windows that have a small distance under DTW. We use the
distance between the windows as a measure of similarity, with large distances
indicating dissimilarity. We further constrain the algorithm by requiring it to
discover patterns without a priori knowledge of their existence. We must then
define some threshold for rejecting a match when the DTW distance between the
windows is too large. Since the goal is to distinguish patterns from noise, a distri-
bution of DTW distances between noisy windows is computed and used as a refer-
ence for thresholding the quality of a match. The algorithm performs these tasks
using bounded time and memory by fixing the number and size of the windows
that are compared. For an incremental version we sample windows on demand.

3.1 Noise Distribution

The sampling algorithm has no a priori knowledge of the existence of patterns in
the time series. We define the null hypothesis to be that two randomly sampled
windows do not contain instances of the same pattern. A distribution of window
similarities must be computed as a basis for rejecting the null hypothesis when
two windows contain a pattern instance. This is problematic because the core
assumption is that given a large enough window of time series, it will contain
some or all of a pattern instance with high probability if the patterns occur
frequently. We create windows containing non-contiguous observations from the
time series which ensures that these windows contain a pattern instance with low
probability. That is, we create a noise window of length w by randomly sampling

Discovering Patterns in Real-Valued Time Series 465

and concatenating w individual observations. Warping these noise windows with
normal windows gives us a null hypothesis distribution.

3.2 Pattern Discovery

In the pattern discovery phase of the algorithm, we repeatedly sample candidate
windows from the time series and store the k-best matching comparison windows
to each. Our goal is to identify frequently occurring patterns, thus we rely on
sampling a sufficient number of windows to increase the probability of capturing
multiple instances of a pattern. For the algorithm to be successful, the window
length we choose must be large enough to fully contain any pattern we expect to
find, but this also means the windows will contain noise as well. Having noise in
the windows will increase the distance between them making it difficult to iden-
tify legitimate patterns. This is in addition to the problem of extracting only
the pattern from the window. To address both of these problems we consider
sub-windows. The relatively small size of a sub-window makes it useful for ad-
dressing this issue of granularity. Large windows contain noise and a large ratio
of noise to pattern will yield poor results under any distance measure because
the percentage of the window that will not have a strong matching region in
another window will be great.

The patterns are discovered as follows. Create two sets of sub-windows, the
candidate set, denoted candSW , and the comparison set, denoted compSW . It
is the candidate set from which we reject sub-windows that come from the noise
distribution and identify patterns from the remaining sub-windows. To populate
these sets, sample a window W having length w and generate all sub-windows Wi

having length w̄. This yields (w − w̄)+1 sub-windows which are added to either
set (candSW or compSW) and repeat this process to a specified bound. Nor-
malize each sub-window to have mean 0 and standard deviation 1. When both
sets are populated, apply DTW to all pairs of sub-windows between the two sets.
Group the sub-windows in compSW by the window from which they were cre-
ated and add only the best Wi in compSW from each group to the list of matches
for Wi to which it is being compared. After warping all pairs, reduce the list of
matches for each Wi in candSW to the k with the smallest distance measures.

In the final step of the algorithm, bad matches are removed from the candi-
date set. Recall the noise distribution that was created by warping normal sub-
windows to sub-windows containing pure noise. As with candidate sub-windows,
keep only the k-best matches for each noise sub-window. Sort the noise set by in-
creasing average distance and a rejection threshold, γ, is established. Given some
α, γ = �(α ∗ n)�th average warp distance where n is the number of noise sub-
windows. Reject those sub-windows that have an average warp distance greater
than γ on the basis that the observed value is common in the noise distribu-
tion and therefore is not likely to be a pattern instance. After removing the
sub-windows containing bad matches, repeat the entire process using the now
smaller candidate set, the same noise set, and a new comparison set. The pro-
cess of eliminating candidate sub-windows is inherently error-prone because the
comparison windows are randomly chosen and therefore we may not get enough

466 J. Catalano, T. Armstrong, and T. Oates

windows containing patterns to accurately accept or reject the candidate sub-
windows. By running multiple iterations of the algorithm we reduce the amount
of error introduced into the process.

sampling(timeSeries ,w , w̄ , iterations , alpha)
1 amtToSample ← amountToSample(timeSeries, w , 50)

2 compSW ← createSWSet(timeSeries, w , w̄ , amtToSample)
3 candSW ← createSWSet(timeSeries, w , w̄ , amtToSample)
4 noiseSW ← createNonContiguousSWSet(timeSeries, w)

5 combSW ← {∅}
6 addAll(noiseSW , combSW)

7 addAll(candSW , combSW)

8 for i ← 1 to iterations
9 do

10 if (iterations > 1)
11 then
12 compSW ← createSWSet(timeSeries, w , w̄ , amtToSample)
13 compareAllSubWindowPairs(candSW , compSW)

14 else
15 compareAllSubWindowPairs(combSW , compSW)

16
17 removeRejects(alpha, candSW , noiseSW)

18

Fig. 1. Batch Mode Pattern Discovery

When all iterations have completed we then stitch together the remaining
candidate sub-windows to form patterns. A pattern is formed by combining all
overlapping and adjacent sub-windows. The resulting window is then considered
to be a complete pattern instance.

The number of subwindows and the number of comparisons by DTW dom-
inates the space and time complexity, respectively. DTW has quadratic time
and space complexity, but the algorithm only considers pairs of subwindows of
length w̄, resulting in constant time and space costs. The algorithm samples n
candidate windows of length w and m comparison windows of length w requir-
ing O

(
n
)

and O
(
m

)
time and space. Each window of length w has (w − w̄ + 1)

subwindows of length w̄. Therefore, there are a total of n ∗ m ∗ (w − w̄ + 1)2

subwindows to compare and store, or O
(
nm

)
time and space. When considering

the incremental version of the algorithm, m = 1 so the complexity is linear in
the number of candidate windows.

4 Experiments

We have evaluated our algorithm by studying performance on a synthesized time
series with a recurring, embedded noisy pattern. Then we explore the uni-variate
time series of the Standard & Poor’s 500.

Discovering Patterns in Real-Valued Time Series 467

We generated a uni-variate time series of 10,000 observations sampled uni-
formly in the range [0, 10]. The first 18 observations were used as a template for
the pattern to be embedded in the data. The template is duplicated 49 times and
noise chosen uniformly in the range [−1.0, 1.0] is added to each observation in
every copy of the template. We then insert the copies into the time series starting
at position 100 and incrementing by 100 until all 49 have been embedded.

We ran the sampling algorithm on the synthetic data varying the values for w̄
and α and we fixed w as 10∗w̄. To w̄ we assigned values from the set {5, 10, 15, 20}
and to α values from the set {0.05, 0.10, 0.15, 0.20}. It is expected that the noise
distributions will be normally distributed, and the false-positive rate should
increase proportionately with greater values of α. Sub-windows that overlap
a pattern should have higher quality matches than those that do not overlap
a pattern, and when sub-window stitching is performed the stitched pattern
should be 18 observations in length and align with the start of an embedded
pattern. Running multiple iterations of the sampling algorithm for a given set of
parameters, α and w̄, should reduce the number of errors made when selecting
candidate sub-windows to keep.

Type I and Type II errors made by the algorithm when it evaluates a sub-
window for either acceptance or rejection are important statistical measures
when determining if the algorithm is performing correctly. For our sampling
algorithm, a Type I error is made when the candidate sub-window spans an
instance of the embedded pattern but is rejected. Likewise, a Type II error is
made when the candidate sub-window does not span an instance of the embed-
ded pattern but is accepted. In this experiment we know the locations of every
instance of the pattern. Therefore counting the exact number of Type I and
Type II errors is possible.

Table 1. Type I & II Errors, w̄ = 5, α = 0.05

Iteration Total Accept Error Rate
Pattern 1 209 105 49.7%
Pattern 10 43 42 2.3%
Pattern 25 27 26 3.7%
Not Pattern 1 1057 45 4.2%
Not Pattern 10 5 4 80%
Not Pattern 25 2 2 100%

Table 1 displays the totals, categorized as sub-windows that span only pattern
observations and sub-windows that span only noise observations, after one, ten,
and twenty five iterations of the sampling algorithm for w̄ = 5 and α = 0.05. The
data are a good indication that our noise distribution is an accurate model of the
noise contained in the time series and performs well at eliminating sub-windows
spanning noise. After 25 iterations, we have nearly eliminated all sub-windows
spanning noise while keeping the percentage of Type I errors to a minimum. For
different values of α (i.e. 0.10 and 0.20), the algorithm performed similarly.

468 J. Catalano, T. Armstrong, and T. Oates

4.1 Standard and Poor’s 500

In our real dataset experiment, we ran our algorithm on the daily closing price
of the S&P 500 for approximately 33 years. The data were 8760 uni-variate
time series observations, each fell in the range [4.4, 49.74]. As was the case
with the synthetic experiments, the parameters for this experiment were α =
{0.05, 0.10, 0.15, 0.20} and w̄ = {5, 10, 15, 20}.

Unlike in the previous experiment, we did not have knowledge of any patterns
occurring in this data. This made it necessary to perform an exhaustive search
of the time series to produce a basis for evaluating the quality of the patterns
discovered by our algorithm. Likewise, it is impossible to collect statistics with
regard to the quantity of Type I and II errors that were made, because there is
no way to determine when a window contains pattern observations and when it
does not.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
ve

ra
ge

 W
ar

p
C

os
t

Exhaustive Pattern Index

Exhaustive Patterns

Fig. 2. S&P 500 Exhaustive Costs w̄ = 10

Figure 2 shows the patterns found exhaustively as a function of their aver-
age warp cost and sorted from best to worst. The exhaustive search warped all
pairs of sub-windows for a given sub-window length (ignoring overlapping sub-
windows) and maintained a list of the ten best matches for each candidate. The
warp cost depicted in the figures are the average of those ten matches for each
candidate sub-window. The plot shows that a small number of the candidates had
exceptionally good matches and a small number had exceptionally poor matches.

The top-ten candidate sub-windows found using the sampling algorithm for
sub-window size 10 all were in the 93rd-percentile out of 8751 sub-windows un-
der the exhaustive search results. Three of the ten results were in the top-100
candidates in the exhaustive search results. We have experimented on additional
datasets, including commonly cited multi-variate datasets (e.g. winding, sub-
cutaneous). The results of our algorithm on these data are analogous to the
uni-variate cases.

5 Conclusion

This paper described an incremental algorithm with linear time and constant
memory requirements for finding recurring patterns in real-valued, multi-variate

Discovering Patterns in Real-Valued Time Series 469

streaming data wherein the number and temporal extent of the patterns is not
known in advance. Empirical results with synthetic data showed that it success-
fully finds known patterns and is robust with respect to the settings of user-
specified parameters. Empirical results with real data show that the patterns
found by the algorithm compare favorably to an (impractically expensive) ex-
haustive algorithm. Future work will focus on applications with high-volume
data streams (e.g., audio data) and automated representation tuning by, for ex-
ample, searching over sets of basis functions for those that yield high quality
(low match cost) patterns.

References

1. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: 9th
International Conference on Knowledge Discovery and Data Mining (SIGKDD’03).
(2003) 493–498

2. Colomer, J., Melendez, J., Gamero, F.I.: Pattern recognition based on episodes and
DTW, applications to diagnosis of a level control system. In: Proceedings of the
Sixteenth International Workshop on Qualitative Reasoning. (2002)

3. Keogh, E., Pazzani, M.: Scaling up dynamic time warping to massive datasets. In
Zytkow, J.M., Rauch, J., eds.: 3rd European Conference on Principles and Practice
of Knowledge Discovery in Databases (PKDD’99). Volume 1704., Prague, Czech
Republic, Springer (1999) 1–11

4. Lin, J., Keogh, E., Lonardi, S., Patel, P.: Finding motifs in time series. In: Pro-
ceedings of the Second Workshop on Temporal Data Mining, Edmonton, Alberta,
Canada (2002)

5. Oates, T.: Identifying distinctive subsequences in multivariate time series by clus-
tering. In Chaudhuri, S., Madigan, D., eds.: Fifth International Conference on
Knowledge Discovery and Data Mining, San Diego, CA, USA, ACM Press (1999)
322–326

6. Bozkaya, T., Yazdani, N., Ozsoyoglu, Z.M.: Matching and indexing sequences of
different lengths. In: CIKM. (1997) 128–135

7. Oates, T., Schmill, M.D., Cohen, P.R.: A method for clustering the experiences of a
mobile robot that accords with human judgments. In: AAAI/IAAI. (2000) 846–851

8. Oates, T., Firoiu, L., Cohen, P.R.: Clustering time series with hidden markov models
and dynamic time warping (1999)

9. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: Proceedings of the Eighth ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,
San Diego, CA, USA (2002)

	Introduction
	Related Work
	Algorithm
	Noise Distribution
	Pattern Discovery

	Experiments
	Standard and Poor's 500

	Conclusion

