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ABSTRACT
As reserving a certain number of potential partners plays a significant role in alleviating existing partners’ collaborative inter-
ruption risks, we investigate the process of discovering potential partners to improve the supply chain network’s resilience. Most
of the existing research confines its focus on discovering potential partners in the supply chain on the basic of sufficient partners’
information, but very few works consider discovering potential partners in the supply chain network according to the struc-
ture of the supply chain network when the partner information is insufficient. In this situation, a novel model which applies
projection-based link prediction method to discover potential partners in the supply chain network is proposed. The proposed
model is composed of three stages. The first stage is predicting the candidate partnerships links based on the projection one-
model graph which is transformed from the supply chain network according to its structure. The second stage is discovering
potential partners by comparing the acquired connectivity of candidate partnership links with the maximal connectivity of exis-
tent partnerships. In the third stage, a resilience evaluation framework considering the both connectivity and flexibility indexes
is presented to determine whether the supply chain network’s agility is improved. In the experimental design, a supply chain net-
work which is formed from a real dataset containing mobile phone suppliers, manufacturers and packers is used to evaluate the
proposed algorithm’s prediction accuracy. The results reveal that the algorithm achieves highest area under curve (AUC) scores
and the supply chain network’s resilience is improved by discovering potential partners.

© 2020 The Authors. Published by Atlantis Press B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

Traditionally, discovering potential partners in the supply chain is
considered as a process of ranking candidates according to suf-
ficient partners’ information, such as the factors of cost, quality,
delivery time, supply capacity and the precedence of tasks, etc.
However, in order to adapt to the course of economy and tech-
nology globalization [1], discovering potential partners in the sup-
ply chain has evolved into discovering partners in the supply chain
network. Compared with the simple linear supply chain, the struc-
ture of supply chain network is complex. As a result, there is now
a widespread need to take into consideration the influence of the
supply chain network structure on discovering potential partners
[2,3]. To characterize the supply chain network’s structure, some
models on the basic of network theory have been presented [4], in
which the network involves a series of nodes and linkswhich refer to
the suppliers, manufactures, packers and connections among them
respectively. In order to make transactions or provide products and
services, companies in the supply chain network work on interplay
relationships with other enterprises, which generates various links
including cooperation links, material links, information links, cap-
ital links and logistics links [5].
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Recently, discovering potential partners in the supply chain net-
work has led to a spectrum of attention by researchers. As stated by
Hua, Sun and Xu [5], discovering potential partners in the supply
chain network plays a significant role when enterprises are facing
the interruptions of cooperations with their existing partners.Men-
sah et al. [6] put emphasis on the necessity of discovering poten-
tial partners by revealing that any suppliers’ unexpected events may
have a catastrophic influence on operations of the supply chain and
cascade throughout the entire supply chain network. To understand
how to discover potential partners in the supply chain network, oth-
ers have suggested adopting the mathematical approach to explore
this process. Salo and Jarimo [7] established a mixed-integer linear
model to discover candidates in the virtual enterprise supply chain
network. Sarkis et al. [8] proposed a strategic discovering agile can-
didates model on the basic of analytical network process (ANP)
methodology. Guneri and Yucel [9] provided a weighted additive
fuzzy programmingmethod for predicting potential partners in the
supply chain network. Chuang and Yeh [10] introduced two multi-
objective genetic algorithms building an optimum mathematical
discovering potential partners model. Han and Shin [11] applied
fuzzy sets theory (FST) to discovering potential partners in the sup-
ply chain network.

Although the above methods have advantages in different contexts,
partner information’s scarcity is a large obstacle of exploring the
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potential partnerships in their implementations. Some papers aim-
ing at discovering potential partners have tried to employ FST to
overcome the incompleteness and uncertainty of partner informa-
tion in the supply chain network [11–14]. The FST is an effective
method to handle uncertain information, which can deal with the
incomplete and uncertain information about the candidates and
their performances [12]. Zhao et al. further pointed out that the FST
can be applied to solve the problem of prediction [15]. However,
the method of using fuzzy sets and fuzzy logic theories ignores the
structure of the supply chain network and needs to select an adap-
tive initial set-point to complement an optimum value search. If
the structure of the network is complex, the loss ratio and the delay
must be increased.

In reality, discovering potential partners in the supply chain net-
work can effectively alleviate the bad influence that existent cooper-
ation partnership disruptions bring. Once the supply chain network
members’ cooperation is interrupted, the situation of sharp increase
in supply costs, loss in profits, even brand damage and worse social
impact will appear and the supply chain network will have diffi-
culty in restoring normal operations in a short period of time. The
purpose of this paper is to present a model of discovering potential
partners to reconstruct possible supply chain network on the basic
of projection-based link prediction in the supply chain network to
avoid the losses in the early stage. The innovation of the work lies in
that we shed light on how to use projection-based link prediction to
discover potential partners in the supply chain network. This appli-
cation of link prediction provides a technical basic for the further
supply chain management’s advance. Specifically, the contributions
of this article are the following:

• The model depicting discovering potential partners in the
supply chain network as predicting potential partnerships links
in the network composed of participating enterprises nodes is
proposed.

• Projection-based link prediction converts the supply chain
network into projection one-model graphs according to the
supply chain network’s structure and compares the acquired
connectivity of candidate partnership links with the maximal
connectivity of existent partnerships to discover potential
partners.

• The resilience evaluation framework of supply chain network
considering the connectivity and flexibility index is presented
to evaluate the supply chain network agility after discovering
potential partners.

The reminder of this article is arranged as follows: Section 2 intro-
duces the concepts and applications of link prediction. Section 3
depicts the link prediction for discovering potential partners in
the supply chain network. Section 4 proposes a novel model based
on projection-based link prediction. Section 5 presents the exper-
iments and results of proposed algorithm in a real mobile phone
supply chain network. Section 6 makes conclusions and provides
directions for future research.

2. THEORETICAL BACKGROUND

Discovering potential partners in the supply chain network is
able to be implemented successfully by formulating evaluation

criteria according to valid partner information, but it will be dif-
ficult under the circumstance of partner information inaccuracy.
There is a novel way of discovering potential partners in the supply
chain network, which uses link prediction to predict potential part-
nerships links by analyzing the supply chain network’s structure.
Link prediction refers to how to make use of the structure of net-
work or the label of known nodes to predict the connection prob-
ability of potential links which have not been connected yet in the
network.

Link prediction has been applied to many significant fields for var-
ious goals. In the popular online social networks including Face-
book and LinkedIn, a list of people you may know can be suggested
[16]. In the ecommercewebsites, personal recommendations can be
generated to recommend products that customers most likely need
[17]. Especially, the bipartite network is a classical form of com-
plex networks in link prediction, where the nodes are divided into
two disjoint parts, and the links connect with nodes which belong
to different parts [18]. Link prediction in the bipartite network has
gained a large-scope applications. For example, in the scientist-
papers cooperation network [19], long-term collaboration trends
in scientific collaborations are able to be identified by using link
prediction. In the author-topic network, appropriate topics can be
provided for academic authors according to the citations number
of a publication and the condition of collaboration between authors
[20]. In the term-document network [21], documents which have
possibility to have substantial impact in a term can be discovered.
In the club members–activities network [22], the relationships of
club members can be predicted which is similar to recommend
friends in the social network. In the disease–gene, drug–target and
drug–therapy network, interactions in medical sciences also can be
predicted [23].

Recently, many scholars have proposed various approaches to pre-
dict potential links in bipartite networks [24–29]. Benchettara et al.
[24] introduced new indicators of network structure characteristics
to measure the appearance possibility of potential links and applied
classical supervisedmachine learning approaches tomodelling pre-
diction problems. Kunegis et al. [25] used the odd element of the
underlying spectral conversion to transform graph kernels into
bipartite networks resulting in several new link predictions. Li and
Chen [26] proposed a recommendation approach based on kernel
to predict whether there existed a potential link. Shams and Harati-
zadeh [27] presented a SibRank approach, which represented users’
preferences as a signed bipartite network in order to improve the
neighbor-based collaborative ranking methods. Zhang et al. [28]
identified false and missing links in bipartite networks by employ-
ing the processes of local diffusion to evaluate the internal similar-
ity. Chang et al. [29] predicted potential links inWikipedia which is
a characteristic bipartite network by making use of a strengthened
supervised machine learning method.

A commonway of predicting potential links in a bipartite network is
to project the bipartite network into a projection one-model graph.
Allai et al. [30] introduced novel approaches of the weighted projec-
tion graph and internal links to analyze bipartite networks. In their
approaches, all nonexistent links are listed, then those whose inter-
nal linksweights are greater than predetermined threshold value are
potential links. However, listing all nonexistent links spent a large
amount of calculation time and the selection of a suitable thresh-
old in advance is difficult. Aslan and Kaya [20] put forward a link
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prediction approach on the basic of strengthening weighted projec-
tion then applied it to discovering the possible citation links in a
real-world author-topic network. The drawback of theirmethod lies
in that the dataset and application affect the selection of threshold
greatly. Gao et al. [31] presented an approach that predicts candi-
date node pairs by mapping the bipartite network onto a projected
graph. Due to lack of a proper threshold value, it is difficult to assess
whether potential links are superior to previous links. To fill these
gaps, we presented a model on the basic of projection-based link
prediction [31] to discover potential partners in the supply chain
network.

Mathematically, the concept of link prediction is defined in the fol-
lowing: Suppose G = (V,E) is a network in which V is the nodes
set, E is the links set. Link prediction is aimed to discover a poten-
tial link (u, v) connecting with nodes u and v, of which u, v ∈ V
and (u, v) ∉ E [32]. Based on the definitions, link prediction in the
bipartite network can be viewed as a particular case of link predic-
tion. The bipartite network can be represented by a bipartite graph,
denoted as a triple G = (U,V,E), in which U and V are nodes sets
that are disjoint, u ∈ U, v ∈ V, E ⊆ |U| ∗ |V| is the links set of the
bipartite network G [20]. There exists no links connecting nodes in
the same U or V part. Link prediction in a bipartite network is a
process of discovering potential links between nodes in U and V,
as displayed in Figure 1, the solid lines indicate existent links and
dashed lines indicate potential links.

3. THE LINK PREDICTION FOR
DISCOVERING POTENTIAL PARTNERS
IN THE SUPPLY CHAIN NETWORK

Figure 2 illustrates a supply chain network consisting of par-
ticipating enterprises such as suppliers, manufacturers, packers,
distributors and retailers, spans undirected links representing part-
ner interrelationships between upstream and downstream parties
along the network. Discovering potential partners in the supply
chain network is imperative stimulated by the dynamic market. To
launch better cooperation, existing enterprisesmay consider choos-
ing better parties as their potential partners. Although some enter-
prises may have their relatively fixed partners, they still have the
rights to reserve a number of potential partners to avoid economic
losses in case of market failure or cooperation disruption. Discov-
ering potential partners in the supply chain network can be viewed
as predicting potential partnerships links in a network composed of
participating enterprise nodes.

Figure 1 Discovering potential links of
the bipartite network.

The network shown in Figure 2 can be divided into four bipartite
networks comprising of suppliers-manufacturers, manufacturers-
packers, packers-distributors, distributors-retailers relationship, as
displayed in Figure 3. Suppose G = (S,M,E) is a suppliers-
manufacturers bipartite network which is a segment of the supply
chain network, wherein S = {s1, s2, ...sm} is the suppliers set and
M = {m1,m2, ...mn} is the manufacturers set, (s,m) ∈ E, S and
M are disjoint node sets. E is the links set in the bipartite supply
chain network G. Figure 4 shows prediction of potential partner-
ships links in the suppliers-manufacturers bipartite network. The

Figure 2 A traditional supply chain network.

Figure 3 A traditional supply chain network is divided into four
bipartite networks: (a) suppliers–manufacturers bipartite network,
(b) manufacturers–packers bipartite network, (c) packers–
distributors bipartite network, (d) distributors–retailers bipartite
network.

Figure 4 Prediction of potential partnerships links at time in a
suppliers–manufacturers bipartite network at time t.
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top circular dark nodes imply suppliers and the bottom circular
dash nodes imply manufactures, the solid lines refer to the already
existent partnerships and dashed lines refer to the potential part-
nerships links between suppliers and manufacturers, which refers
the fact that the supplier already cooperated with the manufac-
turer and that the supplier will collaborate with the manufacturer
in the future respectively. The objective of link prediction is to dis-
cover the potential partnerships links (dashed links) at time t + 1
in the suppliers-manufacturers bipartite network on the basis of
the existent partnerships links (solid links) observed at time t. We
only illustrate the link prediction for discovering potential part-
ners in a suppliers-manufacturers bipartite network, the proposed
model also applies to manufacturers-packers, packers-distributors
and distributors-retailers bipartite networks.

4. THE PROPOSED MODEL

Amodel of discovering potential partners was proposed to improve
the supply chain network’s resilience. It is made up of three sig-
nificant stages. Firstly, the candidate partnerships links are pre-
dicted according to the supply chain network’s structure and its
projection one-model graph. Secondly, comparing the acquired
connectivity of candidate partnership links with the maximal con-
nectivity of existent partnerships to discover potential partners.
Thirdly, to determine whether the supply chain network’s resilience
is improved, we presented the resilience evaluation framework
according to the supply chain network connectivity and flexibility
index.

In the model, to predicate the potential partnerships links in
the supply chain network, the suppliers-manufactures bipartite
network is first converted into projection one-model graphs, which
is given in Definition 1.

Definition 1. Let G = (S,M,E) be a suppliers–manufacturers
bipartite network, its S-projection one-model graph is defined as a
unipartite graph Gs = (S,Es) where the set of links is

Es = {(si, sj) |si, sj ∈ S, ∃mi ∈ M,mi ∈ Γ (si) ∩ Γ (sj)} .
Similarly, its M-projection one-model graph is defined as a unipar-
tite graph Gm = (M,Em), where the set of links is

Em = {(mi,mj
)

|mi,mj ∈ M, ∃si ∈ S, si ∈ Γ (mi) ∩ Γ (mj
)} ,

where Γ (si) and Γ (sj) are the sets of partners of si and sj respec-
tively in the bipartite supply chain network. We may find that if
nodes si and sj have at least one common partner in the M, there
will be a link connecting with nodes si and sj in the S-projection
one-model graph. Figure 5(a) shows that a suppliers-manufacturers
bipartite network is projected into two one-model graphs which are
S-projection one-model graph Gs = (S,Es) as Figure 5(b) shown
and M-projection one-model graph Gm = (M,Em) as Figure 5(c)
shown.

4.1. Predicting Candidate Partnership Links

To discover the potential partners in the bipartite network, we
define the candidate partnership link based on the projection one-
model graph.

Figure 5 A suppliers–manufacturers bipartite network is
projected into two one-model graphs:
(a) suppliers–manufacturers bipartite network, (b)
S-projection one-model graph, (c) M-projection one-model
graph.

Definition 2. Let G = (S,M,E) be a suppliers–manufacturers
bipartite network. By adding a new link

(

si,mj
) ∈ S ∗M to G, we

structure a new suppliers–manufacturers bipartite network G′ =
(

S,M,E′), where E′ = E ∪ {(si,mj
)}. Let G′

s = (

S,E′s) and G′
m =

(

M,E′m) be the S-projection one-model graph and M-projection
one-model graph ofG′. IfGs = G′

s andGm = G′
m,

(

si,mj
)

is defined
as the candidate partnership link in the suppliers–manufacturers
bipartite network.

For example, the unlinked node pair (s1,m2) in Figure 5 (a) is the
candidate partnership link. In fact, in Figure 5 (b), are the nodes s2,
s3 and s4 are linked with s1 in the original S-projection one-model
graph. In Figure 5 (c), all the nodes m1, m3, m4 and m5 are linked
with m2 in the original M-projection one-model graph. Therefore,
adding the new link (s1,m2) makes no change to the S-projection
and M-projection one-model graph.

To estimate the connecting possibility of candidate partnership
links, pattern and pattern covered by the candidate partnership are
given in Definitions 3 and 4 respectively.

Definition 3. Suppose si and sj are two supplier nodes in a suppli-
ers–manufacturers bipartite network G = (S,M,E). If there exists a
node x ∈ M such that (si, x) ∈ E and

(

sj, x) ∈ E, the link [si, sj] in
the S-projection one-model graph is defined as a pattern.

Definition 4. Suppose (si, x) is a candidate partnership link in
a suppliers–manufacturers bipartite network G. For each supplier
node sj ∈ Γs (si)∩Γ (x), we call [si, sj] a pattern covered by the can-
didate partnership link (si, x),
where Γs (si) is the neighbors set of supplier si in the S-projection
one-model graphGs, and Γ (x) is the partners set of manufacturer x
in a suppliers–manufacturers bipartite network.

There are one or more patterns can be covered by a candidate part-
nership link in the projection one-model graph. If a candidate part-
nership link covers more patterns, the connecting possibility of the
candidate partnership link will be higher. Thus, the number of pat-
terns covered by the candidate partnership link can represent the
probability of its link appearance.
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In Figure 5(a), the concrete links (s1,m3) and (s2,m3) indicate that
manufacturem3 cooperates with suppliers s1 and s2 simultaneously.
It forms a pattern [s1, s2], which means there is a link E (s1, s2) in
the S-projection one-model graph Gs. In Figure 5(a), we also see
that manufacturer m2 doesn’t cooperate with s1. By adding a new
link E (s1,m2) in the bipartite network, we assume that manufac-
turer m2 cooperates with the supplier s1, then all patterns covered
by (s1,m2) are [s1, s2], [s1, s3] and [s1, s4] which are identical to the
existing ones in the S-projection one-model graph. This indicates
that the candidate partnership (s1,m2) has similarity to the current
existing partnerships and high probability to exist in the discovery
of potential partners. If a pair of unconnected nodes (s1,m2) is not
a candidate partnership link, and Γs (s1)∩Γ (m2) = ∅, there will be
no pattern it covers, whichmeans that there are no existing partner-
ships similar to (s1,m2) and nodes s1 andm2 should not be linked.
Therefore, we are able to carry out the link prediction just in the
set of candidate partnerships and overlook all noncandidate links,
which will scope down the search range of potential partners.

We also note that the number of patterns which are covered by the
candidate partnership link (si, x) is equivalent to the size of the setΓs (si) ∩ Γ (x). The larger the size is, the larger the number of pat-
terns that are covered by the candidate partnership link (si, x) is,
which means the linking probability of nodes si and x is higher. For
example, in Figure 5(a), node pairs (s4,m3) and (s1,m2) are all can-
didate partnerships links, however, the number of patterns which
are covered by them are diverse. The candidate partnership link
(s4,m3) only covers pattern [s4, s1] and [s4, s2], whereas the candi-
date partnership (s1,m2) covers patterns [s1, s2], [s1, s3] and [s1, s4].
Obviously, the candidate partnership link (s1,m2) has a higher pos-
sibility to appear than the candidate partnership link (s4,m3).
4.2. Discovering Potential Partners

In this work, the potential partners set is extracted by using both
the structural information of the weighted projection network and
the candidate bipartite network with connectivity values.

In a projection one-model graph, each pattern is given a weight to
its corresponding link. To obtain the pattern weight of [si, sj], we
need to take three impact factors into account:

• The number of communal partners of nodes si and sj in a
suppliers–manufacturers bipartite network

The pattern covered by the candidate partnership link is showed
by a link in the projection one-model graph. Every link E

(

si, sj)
in the projection one-model graph Gs refers to that the supplier
nodes in pattern [s1, s2] have communal partners in the bipar-
tite supply chain network G. Nevertheless, the link E

(

si, sj) in Gs
does not specify the number of their partners. For example, two
different suppliers–manufactures bipartite networks are given in
Figure 6(a) and Figure 6(b). However, their projection one-model
graphs are identical as can be seen in Figure 6(c). In order to prevent
this situation from happening, we need to make use of a weighted
projection one-model graph where each link (s1, s2) is given to a
weight in the light of the number of communal partners of supplier
nodes s1 and s2 in a suppliers–manufacturers bipartite network.
Nodes s1 and s2 in Figure 6 (a) have only one communal partner,
so their link in the projection one-model graph ought to be given

to a lower weight. Whereas, supplier nodes s1 and s2 in Figure 6(b)
have four communal partners, thus, the link between them in the
projection one-model graph ought to be given to a higher weight.

• The degree of communal partners of nodes si and sj in a
suppliers–manufactures bipartite network

In the pattern [s1, s2], the degree of communal partners of nodes
s1 and s2 in a suppliers–manufactures bipartite network ought to
be taken into account. If the communal partners of nodes s1 and
s2 have smaller degrees, and we deem that the weight of pattern[s1, s2] is higher. For example, the projection one-model graph of
Figure 7(a) is represented in Figure 7(b) and the projection one-
model graph of Figure 8(a) is represented 8(b). Links

(

s1,m′) of
the two suppliers–manufacturers bipartite networks above are both
candidate partnerships links, and the pattern [s1, s2] is both cov-
ered by them. In Figure 7(a), the degree of communal partner m
between nodes s1 and s2 is two, the degree of communal partner
m between nodes s1 and s2 in Figure 8(a) is six. In Figure 7(a), the
manufacturem only collaborates with suppliers s1 and s2. However,
in Figure 8(a), the manufacture m collaborates with six suppliers,
and s1, s2 have less similarity because m is a communal partner of
six suppliers. Obviously, s1 and s2 in Figure 7(b) have higher simi-
larity becausem is a communal partner of only two suppliers s1 and
s2. Therefore, the link E (s1, s2) ought to be assigned higher weight.
• The degree of nodes si and sj in a suppliers–manufacturers

bipartite network

Figure 6 Two different suppliers–manufacturers bipartite
networks and their projection one-model graph.

Figure 7 Candidate partnership link and its
projection.

Figure 8 Candidate partnership link and its projection.
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The degree of nodes si and sj also affects the pattern [si, sj]
weight in a suppliers–manufacturers bipartite network. If si
and sj nodes have smaller degrees, we give higher weight to
the pattern. For instance, two different suppliers–manufacturers
bipartite networks which have the same candidate partnership
link

(

s1,m′) are displayed in Figure 7(a) and Figure 9(a). In
Figure 7(a), the degree of node s1 is one and the degree of node
s2 is two. In Figure 9(a), the s1 node’s degree is three and the s2
node’s degree is four. In Figure 7(a), the supplier s1 only coop-
erates with the manufacturer m, and supplier s2 cooperates with
manufacturersm andm′. However, in Figure 9(a), suppliers s1 and
s2 cooperates with other manufacturers except m and m′, and the
manufacturer m is the only manufacturer they cooperates with in
common. Therefore, supplier s1 and s2 in Figure 9(a) have less simi-
larity, and pattern [s1, s2]weight in Figure 7(b) could be higher than
pattern [s1, s2] weight in Figure 9(b).

According to the above analysis, the pattern weight can be defined
as follows:

Definition 5. Suppose that Gs = (S,Es) is the S-projection one-
model graph of a suppliers–manufactures bipartite network G =
(S,M,E). Let (si, sj) ∈ Es be a link in Gs, the weight of a pattern[si, sj] is defined as

pw
(

si, sj) = 2
d (si) + d

(

sj
) ∑

m∈Γ(si)∩Γ(sj)
1

d (m)
. (1)

where d (si) is the supplier si node’s degree, d (si) is the supplier sj
node’s degree and d (m) is the manufacturer m node’s degree in a
suppliers–manufacturers bipartite networkG = (S,M,E).Γ (si) andΓ (sj) are the sets of partners si and sj in a suppliers–manufactures
bipartite network.

In Definition 5, if si and sj nodes have more communal partners
with lower degree in a suppliers–manufacturers bipartite network,
we will learn that link E

(

si, sj) in the S-projection one-model graph
will be given to a higher weight. Obviously, candidate partnership
link which covers the patterns whose weights are higher will have
higher possibility to be connected.

In the model, each candidate partnership link is given to an indi-
cator named connectivity, which is a metric of the candidate part-
nership link appearance probability. The connectivity of candidate
partnership link can be defined in the following:

Definition 6. The connectivity of candidate partnership link (si, x)
in a suppliers–manufacturers bipartite network G = (S,M,E) is
defined as

C (si, x) = ∑{si,sj}∈𝓁(si,x)
pw

(

si, sj) . (2)

Figure 9 Candidate partnership link and its projection.

where pw
(

si, sj) is the weight of pattern [si, sj], Γs (si) is the set of
neighbors of supplier si in the S-projection one-model graph Gs =
(S,Es), Γ (x) is the partners set of manufacturer x in a suppliers–
manufacturers bipartite network G = (S,M,E) and 𝓁 (si, x) is the
set of patterns which are covered by the candidate partnership link
(si, x) with 𝓁 (si, x) = {{si, sj} |sj ∈ Γs (si) ∩ Γ (x)} . (3)

In the Definition 6, the connectivity of the candidate partnership
link (si, x) indicates the sum total of the weights of pattern covered
by the candidate partnership link (si, x). According to the formula
(2), if the number of patterns covered by the candidate partnership
link (si, x)which has higher weights is larger, the connectivity of the
candidate partnership link (si, x) will be higher.
A significant index of network structure, called clustering coeffi-
cient of link, characterizes the connectivity between a link’s two cor-
responding nodes and other surrounding nodes [33]. With the aim
of discovering potential partners in the supply chain network accu-
rately, we adopt the link’s clustering coefficient to measure the exis-
tent partnership link’s connectivity.

Definition 7. The connectivity of existent partnership link (s,m)

in a suppliers–manufacturers bipartite network G = (S,M,E) is
defined as

C (s,m) = Z (s,m)

min (ds−1, dm−1) . (4)

where Z (s,m) represents the number of unclosed triangles which
include the existent partnership links in a suppliers–manufacturers
bipartite network, ds and dm denote degrees of existent supplier
node s and existent manufacturer nodem respectively.

Since the weight of pattern reveals the links’ similarity, the con-
nectivity of candidate partnership link indicates the probability of
candidate partnership link to be connected. Only when the connec-
tivity of the candidate partnership link is greater than or equal to
the maximal connectivity of existent partnership, will we recognize
it as a potential partner relationship.

4.3. The Resilience Evaluation Framework

The resilience evaluation framework is a metric of a supply chain
network’s capability of making preparations for accidents, mak-
ing response to interruptions and reverting to the same or a better
operation state and thus includes network rejuvenation [34]. The
framework takes the connectivity and flexibility of the supply chain
network as criteria to assess the resilience improvement after dis-
covering potential partners. The connectivity index quantifies con-
necting changes of the supply chain network after discovering
potential partners. The analysis of supply chain network’s flexibility
can unveil configuration variation of the network which is affected
by discovering potential partners [35,36]. Connectivity index indi-
cates the speed of the supply chain network respond to market
disruptive events and flexibility index means the capacity of trans-
forming the supply chain network’s range number and range het-
erogeneity to handle a series of turbulent market changes [37].
According to Scholten and Schilder [38], increased connectivity
value and flexibility value resulted in a more resilient supply chain
network.
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The resilience evaluation framework is formulated as follows:

R = f
(

connectivity, flexibility) . (5)

wherein, the connectivity is described as,

connectivity = (

C (si, x) + C (s,m)

C (s,m)

) ∗ 100. (6)

It evaluates the ratio of total connectivity of links after discovering
potential partners to the connectivity of the existent network. If the
value of connectivity is greater than 1, it means that the connecting
relationship of the supply chain network is improved by introducing
new potential partners.

The flexibility of the network is depicted as

flexibility = (

emax − v + 1
e − (v − 1) ) ∗ 100. (7)

where emax indicates the number of discovered candidate part-
nership links whose connectivity is greater than or equal to the
maximal connectivity of existent partnership links, e denotes
the number of candidate partnership links whose connectivity is
smaller than the maximal connectivity of existent partnership links
and v represents the number of existent partnership links. If the
value of flexibility assumes greater than 1, it implies that the adapt-
ability of the network is increased by the process of discovering
potential partners.

4.4. The Algorithm of Proposed Model

Based on the proposed model, we present a discovering poten-
tial partnerships (DPPs) algorithm in supply chain bipartite
network. The first step is to projectively transform the given sup-
pliers–manufacturers bipartite network into projection one-model
graphs. The second step is to calculate the weights of patterns cov-
ered by the candidate partnership links in the light of formula (1).
Then, the connectivity of each candidate partnership link (si, x) is
calculated according to formula (2) and if the acquired connectiv-
ity of candidate partnership links is greater than or equal to the
maximal connectivity of existent partnership links, we will find the
potential partners. In the end, the algorithm evaluates the resilience
of original and post-experiment supply chain networks. The algo-
rithm of proposed model is described as follows:

Algorithm of discovering potential partners
Input: The suppliers-manufactures bipartite network G = (S,M,E);
Output: Potential partners and the resilience comparison results of original
and post-experiment supply chain network;
Step 1: Construct the set of patterns
1. Es = ∅
2. For each supplier node si in S do
3. For each manufacturer node x in Γs (si) do
4. For each supplier node sj in Γ (x) do

5. Es = Es ∪ {(si, sj)}
6. End for
7. End for
8. End for

Step 2: Compute the weight of each pattern
9. For each link E

(

si, sj) in Es do

10. Compute the weight of pattern [si, sj] based on the formula (1);
11. End for
Step 3: Compute the connectivity of candidate partnership link
12. For each supplier node si in the projection one-model graph Gs do
13. For each partner sj of si in the projection one-model graph Gs do
14. For each manufacturer node x connected with s2 in the suppliers-
manufactures bipartite network G do
15. If

(

si, x) ∉ E then
16. C

(

si, x) = C
(

si, x)+ pw
(

si, sj);
17. End if
18. End for
19. End for
20. End for
Step 4: Compute the connectivity of existent partnership link according to
formula (4);
21. If C

(

si, x) ≥ max (C (s,m))

22. Output potential partners.
23. End if
Step 5: Evaluate the resilience of supply chain network
24. For original and post-experiment supply chain network
25. Compare the connectivity value based on the formula (6)
26. Calculate flexibility value based on the formula (7)
27.Output the resilience comparison results of original and post-
experiment supply chain network.
28. End for

5. ANALYSIS AND DISCUSSION OF THE
EXPERIMENTAL RESULTS

To evaluate the proposed DPP algorithm for discovering poten-
tial partners in the supply chain network, we test it by perform-
ing experiments on a realistic mobile phone bipartite supply chain
network. The experiments were carried out on computer with 4GB
memory and operating system of Intel Core i5 Windows 7. The
algorithm was operated in Matlab R2018a and the experimental
results are visualized by Gephi.

5.1. Dataset

A real mobile phone supply chain network dataset is used to
perform our experiments. Unlike some of the traditional link
prediction literatures which use experimental dataset available
to be downloaded from open-source and free websites, such as
www.gephi.org, www.linkprediction.org, the dataset in this work is
collected and integrated from the Mobile Phone Newspaper, Eco-
nomicDaily, the Logistic Business of Headscm andAlibaba.com. In
our test, we consider cellular phone brands such as Apple, Huawei
and Mi and their suppliers, manufactures and packers.

Figure 10 illustrates a bipartite network of mobile phone suppliers
andmanufacturers. It depicts the participation of 125 suppliers and
9 manufacturers. They are marked as yellow and green respectively
in the figure. If a supplier provides the manufacturer some mobile
components such as chips, batteries and screens, the corresponding
nodes will be connected by a link in the bipartite network. There
are 941 links in total connecting suppliers with manufacturers.
Figure 11 shows a manufacturers–packers bipartite network. The
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Figure 10 Original structure of suppliers–manufacturers
bipartite network.

Figure 11 Original structure of
manufacturers–packers bipartite network.

dataset characterizes 23 firms including 9 manufacturers and 14
packers, as marked in green and red in the graph. Each link reflects
a manufacturer cooperates with a packer, and there are totally 126
of it shown in the figure.

5.2. Evaluation Metric

To evaluate the prediction result of the DPP algorithm, we divide all
the existent links into ET and EP which are the training set and the
testing set respectively, satisfying ET ∪ EP = E, ET ∩ EP = ∅. In our
experiment, a random 10-fold cross-validation (CV) is conducted,
where the nodes of a suppliers–manufactures bipartite network is
portioned into 10 subsets randomly, for which, one of the subset
acts as the testing set and the remaining 9 subsets play as the training
sets. The procedure of CV is implemented 10 times on training sets
and each of the 10 subsets served as the validation set exactly. In a
random10-fold CV, the proposed algorithm’s final area under curve
(AUC) value is obtained by calculating the average AUC value of
the 10 tests.

AUC was initially a metric to assess the prediction quality of the
algorithms [39], which refers to the area under the receiver oper-
ating characteristic (ROC). ROC curve aims to assess the effect of

classifier. In our experiments, the AUC value is able to be regarded
as the probability when the similarity score of an existent link is
higher than the similarity score of a nonexistent link. To compare
the links’ similarity scores, existent links and nonexistent links can
be chosen randomly. In n comparisons, assume that there are n′
times where the existent link’s similarity score is higher than nonex-
istent link’s similarity score and there are n′ timeswhere the existent
link’s similarity score is equal to nonexistent link’s similarity score.
The AUC is defined as

AUC = n′ + 0.5n′′
n . (8)

In general, if the AUC score is higher, the prediction quality of the
proposed algorithm is better. It is clear that the highest AUC score
in formula (8) is 1, which represents a complete correct result. In
fact, if all similarity scores are random, the AUC score is 0.5 approx-
imately.

5.3. Comparison Baselines

With the goal of comparing the proposed algorithm’s AUC value
with other link prediction algorithms’ AUC value, we choose three
algorithms from the baselines of Preferential Attachment (PA)
index, Local Naive Bayes common neighbor (LNBCN) index and
Local Naive Bayes Adamic-Adar (LNBAA) index for performance
comparison.

PAindex is based on the probability that a potential link connects
with the node x which is proportioned to its degree kx. The prob-
ability that a potential link connects with node x and y, which is
proportioned to kx × ky [40], the PA is defined as

SPAxy = kx × ky. (9)

LNBCN index is formed by Local Naive Bayes Model and com-
mon neighbor index which obtains similarity score by calculat-
ing all common neighbors’ number and it is defined as SCNxy =||Γ (x) ∩ Γ (y)||, in whichΓ (x) denotes the x node’s neighbor set [41],
the LNBCN is defined as

rLNBCNxy = ||SCNxy || log s + ∑
vw∈Oxy

logRw. (10)

where vw indicates a node,s = P (AO) /P (A1), P (A1) refers to the
probability of connected links and P (A0) represents he probability
of unconnected links, RW = N∆w + 1/N∧w + 1, N∆w counts the
number of v′ws neighbor node pairs which are connected,N∧w is the
number of v′ws neighbor pairs which are not connected.

LNBAA index is combined with Local Naive Bayes Model and
Adamic-Adar indexwhich is different fromcommonneighbors and
the definition of it is SAAxy = ∑

w∈Γ(x)∩Γ(y) 1/ log kw, where kw denotes

the degree of node w which is the common neighbor of node x and
node y [42]. The LNBAA is defined as

rLNBAAxy = ∑
vw∈Oxy

SAAxy
(

log s + logRw
)

. (11)

where the meaning of s and Rw are identical with the parameter of
formula (9).
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5.4. Results and Discussion

In this section, we discuss the presented results in relation to the
experiment. Table 1 displays the main structure of the suppliers–
manufacturers bipartite network, which lists the numbers of suppli-
ers, manufacturers, total links, links in testing set and training set.
Table 2 reflects the main structure of the manufacturers–packers
bipartite network. Table 3 lists the number of discovered potential
partnerships links by the proposed algorithm of DPP, and other
algorithms based on PA, LNBCN and LNBAA respectively in the
suppliers–manufacturers bipartite network. Table 4 enumerates the
number of discovered potential partnerships links by the aforemen-
tioned algorithms in the manufacturers–packers bipartite network.
As the experimental results of the different algorithms summarized
in Tables 3 and 4 shows, DPP finds the most potential partners in
both suppliers–manufacturers and manufacturers–packers bipar-
tite networks, followed by PA, LNBCN and LNBAA.

Table 5 displays the AUC values of the four algorithms in 10 tests on
the suppliers–manufacturers dataset. In this table, we find that the
AUC values of DPP is highest in 10 tests, which reveals that theDPP
algorithm has highest prediction accuracy compared with other
three algorithms. Table 6 displays theAUCvalues of four algorithms
in 10 tests on the manufacturers–packers dataset. From this table,
it is clear to see that DPP algorithm achieves highest AUC scores
in 10 tests compared with PA, LNBCN and LNBAA algorithms.
Compared with results in Table 5, Table 6 displays more signifi-
cant advantages of DPP over the other three algorithms. This is due
to the fact that the manufacturers–packers bipartite network has
sparser nodes and links than the suppliers–manufacturers bipartite

Table 1 Structure information of the suppliers–manufacturers bipartite
network.

Suppliers Manufacturers Links Links in
Testing Set

Links in
Training Set

125 9 941 94 847

Table 2 Structure information of the manufacturers–packers bipartite
network.

Manufacturers Packers Links Links in
Testing Set

Links in
Training Set

9 14 126 13 113

Table 3 The number of discovered potential partnerships links by
algorithms in the suppliers–manufacturers bipartite network.

DPP PA LNBCN LNBAA

124 119 97 92
DPP, discovering potential partnerships; PA, Preferential Attachment; LNBCN, Local Naive
Bayes common neighbor; LNBAA, Local Naive Bayes Adamic-Adar.

Table 4 The number of discovered potential partnerships links by
algorithms in the manufacturers–packers bipartite network.

DPP PA LNBCN LNBAA

16 11 9 5
DPP, discovering potential partnerships; PA, Preferential Attachment; LNBCN, Local Naive
Bayes common neighbor; LNBAA, Local Naive Bayes Adamic-Adar.

network. By adding some new potential partners to a sparse net-
work, will the graph show bigger improvement than a dense struc-
tured network.

Figures 12 and 13 shows the updated structures of suppliers–
manufacturers and manufacturers–packers networks after poten-
tial partner discovery respectively. Compared with Figure 10, there
are 124 potential manufacturers partners for suppliers are discov-
ered in Figure 12. Similarly, there are 16 potential packers part-
ners for manufacturers are discovered in Figure 13 compared with
Figure 11. As we implement that resilience evaluation framework,
the connectivity of the updated suppliers–manufacturers network
in Figure 12 is 1.257 which is greater than the value of 0.843 in the
original network. And the flexibility value of the updated suppli-
ers–manufacturers network 1.364 which is higher than the value
of 0.982 its corresponding original network. In the same measure
for the updated manufacturers–packers networks, the connectivity
is imcreased from 0.621 to 1.048, and the flexibility ascends from
0.764 to 1.115. Obviously, by discovering potential partners via
projection-based link prediction improves the resilience of the sup-
ply chain network significantly.

Figure 14 illustrates the suppliers–manufacturers–packers tripartite
supply chain network after discovery of potential partners in the
suppliers–manufacturers and manufacturers–packers networks. In
the figure, each yellow node represents a supplier, green node sym-
bolizes a manufacturer and red node refers to a packer, the links
among the parties refer to their partnerships. To show the effect

Table 5 Comparison of AUCs of DPP with other algorithms on the
suppliers–manufacturers dataset.

Test DPP PA LNBCN LNBAA

1 0.9976 0.9917 0.9760 0.9759
2 0.9980 0.9920 0.9777 0.9776
3 0.9970 0.9913 0.9750 0.9749
4 0.9968 0.9908 0.9786 0.9785
5 0.9963 0.9889 0.9765 0.9765
6 0.9964 0.9899 0.9773 0.9772
7 0.9982 0.9923 0.9770 0.9769
8 0.9973 0.9913 0.9763 0.9761
9 0.9978 0.9917 0.9747 0.9747
10 0.9969 0.9905 0.9769 0.9769
Average 0.9972 0.9910 0.9766 0.9765
AUC, area under curve; DPP, discovering potential partnerships; PA, Preferential Attach-
ment; LNBCN, Local Naive Bayes common neighbor; LNBAA, Local Naive Bayes
Adamic-Adar.

Table 6 Comparison of AUCs of DPP with other algorithms on the
manufacturers–packers dataset.

Test DPP PA LNBCN LNBAA
1 0.9740 0.8938 0.7482 0.7482
2 0.9781 0.9096 0.7556 0.7548
3 0.9841 0.9246 0.7524 0.7524
4 0.9746 0.8980 0.7526 0.7518
5 0.9790 0.9035 0.7542 0.7538
6 0.9805 0.9108 0.7607 0.7599
7 0.9632 0.8742 0.7436 0.7432
8 0.9738 0.8890 0.7464 0.7456
9 0.9762 0.9064 0.7558 0.7554
10 0.9842 0.9194 0.7568 0.7556
Average 0.9768 0.9029 0.7526 0.7521
AUC, area under curve; DPP, discovering potential partnerships; PA, Preferential Attach-
ment; LNBCN, Local Naive Bayes common neighbor; LNBAA, Local Naive Bayes
Adamic-Adar.
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Figure 12 Structure of suppliers–manufacturers after
potential partner discovery.

Figure 13 Structure of manufacturers-packers
after potential partner discovery.

Figure 14 Structure of supply chain network after experiment.

of the network by fulfilling the discovering task, we take the node
labeled 126 as an example, which is a Huawei mobile phone man-
ufacturer and connects with 89 upstream suppliers and 6 down-
stream packers. There are 534 combinations of supply chain from
the suppliers to packers. By implementing the partner discovery
process, it is found that 12 suppliers and 1 packers that are nonex-
istent nodes in the original bipartite networks can be its potential
partners. This results in 707 possible combinations, a 32% increase
to the original network. From this point, it also implies that the
longer the supply chain extends, the more potential supply chains
could we have. Furthermore, the connectivity of the tripartite net-
work centered at node 126 increased from 0.647 to 1.176, and the
flexibility increased from 0.851 to 1.370, indication great resilience
improvement by implementing potential partner discovery. Obvi-
ously, the process of discovering potential partners helps the man-
ufacture increase its robustness and reduce the vulnerability when
there is a turbulence in the market. It could also enhance the risk
response capacity of the supply chain network and ensure the prof-
itability for the participants of the network.

6. CONCLUSIONS

Enterprises that fail to provide necessary supply chain visibility
often find too late that interruptions, delays, scrap, risk exposure
and quality failures were due to a dangerous reliance on inherent
and insufficient supply chain partners. Discovering potential part-
ners in supply chain network helps to improve resilience, visibil-
ity and collaboration throughout the partner network. This study
proposes a projection-based link prediction approach to discover
potential partners in the supply chain network to increase sup-
plier chain resilience and reduce cooperation challenges. Themodel
firstly predicts candidate partnership links based on the supply
chain network’s structure and its projection one-model graphs. Sec-
ondly, it discerns the potential partners by comparing the connec-
tivity of the acquired candidate partnership links with the maximal
connectivity of existent partnership links. Thirdly, a resilience eval-
uation framework is used to assess to what extent that supply chain
network’s connectivity and flexibility are improved. The application
of the model is demonstrated through an experiment of a mobile
phone supply chain network. Results of experiment reveals that
the proposed algorithm exceeds three other link prediction algo-
rithms in the aspect of AUC index showing higher prediction pre-
cision over them. Both connectivity and flexibility are improved
in terms of the resilience of the post-discovery network to the
original one.

Future research directions on the basic of this paper are as follows:

• The proposed potential partner discovery algorithm obtains
divides the multi-tier supply chain network into bipartite
supply chain networks, which ignores the globality of the
supply chain network. Further work will be needed to
concentrate on the integrity of the supply chain
network.

• The proposed model is based on the static supply chain
network and ignores the new entrants to the network. Further
studies should consider the significance of the supply chain
network evolution.
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