Mach Learn (2018) 107:177-207 @ CrossMark
https://doi.org/10.1007/510994-017-5682-0

Discovering predictive ensembles for transfer learning
and meta-learning

Pavel Kordik!® - Jan Cerny! - Tomas Fryda!

Received: 10 May 2016 / Accepted: 4 October 2017 / Published online: 21 December 2017
© The Author(s) 2017

Abstract Recent meta-learning approaches are oriented towards algorithm selection, opti-
mization or recommendation of existing algorithms. In this article we show how data-tailored
algorithms can be constructed from building blocks on small data sub-samples. Building
blocks, typically weak learners, are optimized and evolved into data-tailored hierarchical
ensembles. Good-performing algorithms discovered by evolutionary algorithm can be reused
on data sets of comparable complexity. Furthermore, these algorithms can be scaled up to
model large data sets. We demonstrate how one particular template (simple ensemble of fast
sigmoidal regression models) outperforms state-of-the-art approaches on the Airline data set.
Evolved hierarchical ensembles can therefore be beneficial as algorithmic building blocks in
meta-learning, including meta-learning at scale.

Keywords Meta-learning - Ensemble learning - Evolutionary algorithms - Evolutionary
programming - Combining classifiers - Regression models - Model blending - Automatic
algorithm selection - Map reduce

1 Introduction

In predictive modeling, the algorithm selection step is often responsible for sub-optimal
results and/or computational complexity of the modeling stage.

Many algorithm selection approaches (Kordik et al. 2011; Sutherland et al. 1993; Ben-
susan and Kalousis 2001; Botia et al. 2001) simply identify the best algorithm from a set
of candidates. This set of candidate algorithms needs to be constructed first. The prevailing
approach is to pick candidates manually from a set of available algorithms. However algo-
rithm performance evaluation involves multiple runs of the algorithm (e.g. cross validation)

Editors: Pavel Brazdil and Christophe Giraud-Carrier.

B Pavel Kordik
pavel.kordik @fit.cvut.cz

L FmIT CVUT, Thakurova 9, Praha 6, Czech Republic

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-017-5682-0&domain=pdf
http://orcid.org/0000-0003-1433-0089

178 Mach Learn (2018) 107:177-207

and it is very time consuming. The number of candidate algorithms is high even when only
default parameter settings for individual algorithms are considered.

In machine learning, parameters of algorithms are quite important, many of them hav-
ing direct impact on plasticity of generated predictive models. Often, candidate algorithms
are evaluated with their default parameter settings. More sophisticated algorithm selection
approaches include parameter optimization as part of the selection process. Recent studies
have showed the potential of Bayesian methods (Hutter et al. 2011) outperforming both
random search (Bergstra et al. 2011) and grid search (Coope and Price 2001).

When ensembles of algorithms (Brown et al. 2006) are taken into account (and they should
be considered because of their superb performance on many predictive tasks Hoch 2015;
Stroud et al. 2012) the problem of algorithm selection becomes even more difficult. There is
a potentially an infinite number of possible candidate algorithms, their parametrizations and
ensembles to choose from. Furthermore, the generalization performance of algorithms is not
the only quality criterion. For large scale machine learning tasks, the algorithm run-time is
of great importance.

Itis necessary to take into account the computational complexity of the algorithm selection
process. It is not feasible to run all candidate algorithms on a new data set to select the best
performing one, simply because there are an infinite number of available algorithms.

One approach to select a training algorithm for a new data set in a reasonable time is to use
a meta-data collected during training on similar data sets. Meta-learning approaches (Kordik
et al. 2011) utilizing meta-data have been studied intensively in the past few decades. They
can predict performance of algorithms on new data sets and consistently is posible to select
good performing algorithm among multiple candidates.

The majority of meta-learning approaches (Kordik et al. 2011; Sutherland et al. 1993;
Bensusan and Kalousis 2001; Botia et al. 2001) simply select one from a set of few predefined
fully specified data mining algorithms. Selected algorithm produces models with the best
generalization performance for the given data. Later methods incorporate a further algorithm
selection step on the top of recommendations (Sun and Pfahringer 2013).

More advanced meta-learning approaches combine algorithm selection and hyperparam-
eter optimisation such as CASH (Thornton et al. 2013) elaborated within the INFER project.
In Salvador et al. (2016a, b, c) data mining workflows are optimized including data cleaning
and preprocessing steps, together with selected hyperpameters of modeling methods.

We focus on modeling stage only and optimize structure of algorithmic ensembles together
with their hyperparameters as explained in Sect. 5. In this way, we can discover new algo-
rithmic building blocks.

The hierarchical structure of algorithmic ensembles is represented by Meta-learning algo-
rithm templates introduced in Sect. 5. Our templates indicate which learning algorithms are
used and how their outputs are fed into other learning algorithms.

We use the genetic programming (Koza 2000) to evolve the structure of templates and a
parameter optimization to adjust parameters of algorithms for specific data sets. Our approach
allocates exponentially more time for evolution of above-average templates which is similar
to the Hyperband approach (Li et al. 2016). In later stages of our algorithm, templates that
survived from previous generation have more and more time to show their potential.

We show that evolved templates can be successfully used to generate models on similar
data sets.

Furthermore, templates evolved (discovered) on small data sets can be reused as building
blocks for large data sets.

Building predictive models on large data samples is a challenging task. Learning time of
algorithms often grows fast with the number of training data samples and dimensionality of

@ Springer

Mach Learn (2018) 107:177-207 179

a data set. Hyper-parameter optimization can help us to generate more precise models for
given task, but it adds significant computational complexity to the training process. We show
that templates evolved on small data subsamples can outperform state of the art algorithms
including complex ensembles in terms of performance and scalability.

The next section discusses related work and shows how recent results in the field of meta-
learning and automated machine learning are relevant for our research. Before we define the
concept of meta-learning templates in Sect. 4, we need to describe building blocks of our
templates (base algorithms and ensemble methods in Sect. 3). Introduction to templates is
followed by a brief explanation of the evolutionary algorithm designed to evolve templates
(Sect. 5). Experiments described in later sections aim to show that hierarchical templates can
outperform standard ensembles (on standard benchmarking data samples in Sect. 6), they
can be used for transfer learning and scaled up for large scale modeling (Sect. 9).

2 Related work

This contribution is tightly related to meta-learning. The definition of meta-learning is very
broad. One of the early machine learning related definition (Vilalta and Drissi 2002) states
that a meta-learning system must include a learning subsystem, which adapts with experience.
Another definition (Brazdil et al. 2009) requires meta-learning to start at a higher level
and be concerned with accumulating experience over several applications.
Finally according to Vanschoren (2010) meta-learning monitors the automatic learning
process itself and tries to adapt its behaviour to perform better.

2.1 Knowledge base meta-learning approaches and workflows

One of the main direction in meta-learning is constructing a meta-level system utilizing a
knowledge repository (Vanschoren et al. 2012; Brazdil et al. 2009). The repository is intended
to store a meta-data describing problem being solved and the performance of base learners.

Then for any new problem, one looks at problems with similar meta-data to select best
performing algorithms (Kordik et al. 2011). ESPRIT Statlog (Sutherland et al. 1993) com-
pared the performance of numerous classification algorithms on several real-world data sets.
In this project, metadata (statistical features describing the data sets) were used for algorithm
recommendation. The MetaL project (Bensusan and Kalousis 2001), built upon Statlogs out-
comes, utilized landmarking (Pfahringer et al. 2000) metadata (results of fast algorithms,
executed on a data set in order to determine its complexity). Ranking of algorithms can
be obtained by fast pairwise comparisons (Leite and Brazdil 2010) just on the most useful
cross-validation tests (Leite et al. 2012). Another project was METALA (Botia et al. 2001),
an agent-based distributed data mining system, supported by meta-learning. Again, the goal
was to select from among available data mining algorithms the one producing models with
the best generalization performance for given data.

The problem with recommending a particular algorithm is that the portfolio of algorithms
is potentially infinite. Especially “Frankenstein” ensembles winning Kaggle competitions
(Puurulaetal. 2014) are good example how complex the topology of machine learning ensem-
bles can be. In Bonissone (2012) so called lazy meta-learning is applied to create customized
ensembles on demand. Individual models, ensembles and combination of ensembles in time
series forecasting can be selected adaptively (Lemke and Gabrys 2010) by meta-learning.

Recommendation and optimization of data mining workflows (Grabczewski and Jankowski
2007; Jankowski 2013; Sun et al. 2013) is another important research direction aiming at

@ Springer

180 Mach Learn (2018) 107:177-207

automation in data science. In this article, we optimize hierarchical modeling templates that
are more general than simple ensembles but still narrow enough when compared to uni-
versal data mining templates including data preparation. Planning and optimization of full
data mining workflows is also elaborated in Nguyen et al. (2014); Kietz et al. (2012), where
meta model and Al planer are combined. On the contrary, we focus on predictive modeling
stage only and we extend the search to the domain of hierarchical ensembles of predictive
algorithms.

2.2 Ensembling as meta-learning

Even simple model ensembling methods such as Boosting (Schapire 1990), Stacking (Wolpert
1992) or Cascade generalization (Gama and Brazdil 2000) can be considered meta-learning
methods with respect to the above definitions of the meta-learning. They all use information
from previous learning steps to improve the learning process itself. There are many more
ensembling approaches and these can be even further combined in a hierarchical manner
resembling structures in the human brain as we show in this article.

Theoretical derivation and experimental confirmation that hierarchical ensembles are the
best performing option for some classification problems can be found in Ruta and Gabrys
(2002, 2005).

Aggregation or hierarchical combination of ensembles has been studied (Analoui et al.
2007; Costa et al. 2008; Sung et al. 2009) intensively not only in predictive modeling. In
particular, gradient boosting (Friedman 2000) and multi-level stacking of neural networks
(Bao et al. 2009) were parts of the winning solution in the Netflix competition (Toscher and
Jahrer 2009; Bennett et al. 2007).

These hierarchical ensembles are single purpose architectures often tailored to one par-
ticular problem (data set), where they exhibit excellent performance, but very likely fail with
different data. The prevailing approach to constructing these ensembles is manual trial-and-
error combined with extensive hyper-parameter optimization.

2.3 Growing ensembles and their optimization

One of the first growing ensembles introduced was the GMDH MIA approach (Mueller et al.
1998) that can be also considered as adaptive layered stacking of models. Our GAME neural
networks (Kordik 2009) grow inductively from data to match the complexity of given task
and maximize the generalization performance.

Another growing ensemble of neurons (or network) called NEAT (Stanley and Miikku-
lainen 2001) was primary designed for reinforcement learning controllers. Evolutionary
approaches are used to optimize topology and parameters of these ensembles.

When it comes to optimization of ensembles, genetic programming was also used to evolve
trees of ensemble models, as suggested in Hengpraprohm and Chongstitvatana (2008), but
only to a limited degree with only one type of ensemble, and the article deals with the Cancer
data only.

Interesting approach to ensemble building (Caruana et al. 2004) is to prepare ensembles
from libraries of models generated using different learning algorithms and parameter settings
of algorithms.

The Neural Network ensembling method (GEMS), proposed in Ulf Johansson (2006)
trains models independently, then combines them using genetic programming into trivial
hierarchical ensemble using weighted average. Weights are evolved by means of genetic
programming rather than derived from model performance as in Boosting for instance.

@ Springer

Mach Learn (2018) 107:177-207 181

Multi-component, hierarchical predictive systems can be constructed by a grammar-driven
genetic programming in Tsakonas and Gabrys (2012) an approach very similar to ours.
They used very limited ensembling templates, trivial base models and focus on maintaining
diversity during evolution. We focus more on time efficiency.

Some of the modern scalable neural networks (Buk et al. 2009; Smithson et al. 2016;
Fernando et al. 2016) can be constructed using indirect encoding. You can evolve structures
at macro level (Real et al. 2017) optimizing large building blocks or at micro level (Zoph and
Le 2016) optimizing internal structure of neuron cells. Neuroevolution of deep and recur-
rent networks (Miikkulainen et al. 2017; Rawal and Miikkulainen 2016) is computationally
expensive but results looks very promising.

In predictive modeling and supervised learning, it is often more efficient to optimize con-
tinuous parameters of algorithms independently of the topology (in contrast to TWEANN
approach Stanley and Miikkulainen 2001). Most popular approach for continuous hyper-
parameter optimization is a simple brute force grid search or random search (Bergstra and
Bengio 2012). More sophisticated approaches are based on Bayesian methods (Salvador
et al. 2016b). Recently introduced Bandit based method HyperBand (Li et al. 2016) uses
performance of base learners to speed up the learning process and can be therefore consid-
ered a meta-learning approach. When learning of models can be prematurely terminated, we
can save significant amount of resources, speeding up learning by giving more resources to
promising learners. Disadvantage of this approach can be that complex models need more
time to adapt and it is hard to estimate their final performance in early stages of learning.

The CASH approach in Auto-WEKA (Thornton et al. 2013) combines algorithm selection
and hyperparameter optimization (Hutter et al. 2011) in the classification domain. In our
approach we optimize the topology of ensembles as well.

2.4 Scalable meta-learning

The proper topology for a given problem is particularly important when machine learning
models are evaluated by multiple criteria. The most important criterion is the generalization
performance, but often also time of model training/recall should be taken into consideration
(Chan and Stolfo 1997; Sonnenburg et al. 2008).

Our results on the Airline data set suggests that simple ensemble of sigmoid models can
significantly outperform deep learning models (Arora et al. 2015) when it comes to scalability
and learning efficiency.

A recent paper on large scale evolution of image classifiers (Real et al. 2017) is another
example of time sensitive approach, where one can trade-off generalization performance for
learning/recall speed.

Anytime learning (Grefenstette and Ramsey 2014) aims at building algorithms capable
of returning best possible solution given a training time. Anytime ensembling methods such
as Speedboost (Grubb 2014) can not only generate approximate models rapidly from weak
learners, but they are capable of using extra time resources, when available, to further improve
their performance. In this manner, we developed evolutionary search in Sect. 5.

Before discussing anytime optimization of our ensembles, we describe the building blocks
and ensembling mechanisms used.

@ Springer

182 Mach Learn (2018) 107:177-207

3 Base algorithms and ensembling strategies

We build ensembles from fast weak learners (Duffy and Helmbold 1999). Many of our base
models resemble neurons with different activation functions. We can use base models to con-
struct both classification and regression ensembles. In this article, we focus on classification
tasks only, however regression models can also be present in classification ensembles.

The classification task itself can be decomposed into regression subproblems by separation
of single classes from the others. These binary class separation problems can be approxi-
mated by regression models—by estimating continuous class probabilities. The maximum
probability class is then considered as output value. The classifier consisting of regression
models is further referred to as ClassifierModel.

3.1 Base algorithms

Training regression models (as components of probabilistic classifiers) is fast and straight-
forward. We use several activation functions in simple perceptrons, namely Sigmoid,
SigmoidNorm, Sine, Polynomial, Gaussian, Exponential and Linear.

To train coefficients of linear or polynomial models, the General Least Squares method
(Marquardt 1963) is applied. For models that are non-linear in their coefficients, an iterative
optimization process is needed. We compute analytic gradients of error for all fast regression
models and employ quasi-Newton method (Shanno 1970) to optimize their parameters.

The LocalPolynomial base model as well as Neural Network (NN), Support Vector
Machine (SVM), Naive Bayes classifier (NB), Decision Tree (DT), K-Nearest Neighbor
(KNN) were adopted from the RapidMiner environment (RapidMiner).

3.2 Ensembling algorithms

The performance of models can often be further increased by combining or ensembling
(Brazdil et al. 2009; Kuncheva 2004; Wolpert 1992; Schapire 1990; Woods et al. 1997;
Holena et al. 2009) base algorithms, particularly in cases where base algorithms produce
models of insufficient plasticity or models overfitted to training data (Brown et al. 2006).

A detailed description of the large variety of ensemble algorithms can be found in Brazdil
et al. (2009). We briefly describe the ensembling algorithms that are used in our experiments.
Bagging (Breiman 1996) is the simplest one; it selects instances for base models randomly
with repetition and combines models with simple average. Boosting (Schapire 1990) special-
izes models on instances incorrectly handled by previous models and combines them with
a weighted average. Stacking (Wolpert 1992) uses a meta model, which is learned from the
outputs of all base models, to combine them. Another ensemble utilizing meta models is the
Cascade Generalization (Gama and Brazdil 2000), where every model except the first one
uses a data set extended by the output of all preceding models. Delegating (Ferri et al. 2004)
and Cascading (Alpaydin and Kaynak 1998; Kaynak and Alpaydin 2000) both use a similar
principle: they operate with certainty of model output. The latter model is specialized not
only in instances that are classified incorrectly by previous models, but also in instances that
are classified correctly, but previous models are not certain in terms of their output. Cascad-
ing only modifies the probability of selecting given instances for the learning set of the next
model. Arbitrating (Ortega et al. 2001) uses a meta-model called referee for each model. The
purpose of this meta-model is to predict the probability of correct output. All methods used
in this study were implemented within the FAKE GAME open source project (Fake Game).

@ Springer

Mach Learn (2018) 107:177-207 183

4 Meta-learning templates

The meta-learning template (Kordik et al. 2011) is a prescription how to build hierarchical
supervised models. In the most complex case, it can be a collection of ensembling algorithms
and base algorithms combined in a hierarchical manner, where base algorithms are leaf nodes
connected by ensembling nodes. Regression models or classifiers deeper in the hierarchy can
be more specialized to a particular subset of data samples or attributes. This scheme decom-
poses the prediction problem into subproblems and combines the final solution (model) from
subsolutions. The procedure of problem decomposition depends on ensembling methods.
Typically, it distributes data to member models and when all outputs are available, they are
combined to the ensemble output.

Note that meta-learning templates are not data mining models, but algorithms. Models are
produced when templates are executed.

Figure 1 shows an example of a meta-learning template. When executed, the full training
data set is passed to a top level Bagging that generates 4 bootstrap training data sets for
members of the ensemble. The second bootstrap training data set is used to train a KNN
classifier by Boosting and samples, where this classifier demonstrates high error, are more
likely to be used in the training set for the second member model of the Boosting: the stacking
of NN and DT classifiers. Bottom level NN and DT are evaluated on the training data and
upon their responses a SVM meta-model is trained. The Stacking is evaluated and a weight
is assigned to its output in Boosting. The output of Boosting is averaged with the other three
top level base models and the whole classifier is finished (see the left-hand tree in Fig. 2).

The resulting classifier is depicted in Fig. 2. The tree in the center shows how the input
attributes are presented to the model. The propagation of input vector is straightforward in
this example, but some ensembles (e.g. Cascading) involve evaluation of member models
(their outputs are added to input vectors of subsequent models). The right-hand tree shows
how outputs of base models are blended to produce the final output.

(a) Bagging (b) |Bagging
| DT || Boosting 2NN || DT
sm=5 sm=10
+ + + + 2NN
DT Boosting 5NN DT Stacking(SVM)
(sm=5) (sm=10)
2NN Stacking
(SVM) (©
ClassifierBagging{DecisionTree(splitmin=5),Cl

| assifierBoosting{2NearestNeighborClassifier,
ClassifierStacking(SVM)

S5NearestNeighborClassifier,
DecisionTree(splitmin=10)}

Fig.1 An example of hierarchical combination of algorithms. Using this meta-learning template, a classifier
can be produced (see Fig. 2). The template can be represented by a a tree, b embedded boxes or ¢ by text

@ Springer

184 Mach Learn (2018) 107:177-207

Executing template on training data Using the model on new data
\ \ A
Bootstrap Data Majority
sampling propagation, voting

v v v v

Sequential w e
weighted p ti
i M ropagation,
7~ N N
Copy train set Data
N Collect outputs propagation
Build SVM

—

A A A

Weighted
voting

Combine
outputs
by SVM

Ol

NN DT NN DT NN DT
(sm=2)
Build model from the template Propagate input vector(s) Compute output(s) of the model

Fig. 2 An ensemble classifier can be produced by the hierarchical combination of algorithms depicted in
Fig. 1. Executing the template will distribute data to leaf base models according to procedures specified by
ensembling algorithms. Base models and ensembles are constructed until the root ensemble (base model) is
finished. Using the model involves propagating and presenting an input vector to leaf models and combining
their outputs by ensembling procedures

(a) (b) (c) A Example of fully predefined template:
Ensemble Y A
Bagging
A (sample ratio=0.5)
5 x Ensemble X A
*
* x Ensemble * x Ensemble X (parameters)
(parameters) 5 x Boosting
A (exp weight=2)

20 x Algorithm A A
20 x Algorithm * (parameters)
20 x Decision Tree

(maxdepth=2, min conf=0.02)

* x Algorithm *
A
Y

Fig. 3 Nested ensembles can be represented by a template. Using wildcards, specific (or predefined in other
words) template can be generalized to represent set of templates

Generalization

Whereas data mining workflows are directed acyclic graphs, meta-learning templates are
hierarchical structures. Inner nodes in our templates are ensembling algorithms and leaf
nodes are base algorithms. Fully predefined templates are algorithm configurations con-
taining parameters of both ensembles and base algorithms. Templates can be generalized
using wildcards (see Fig. 3) to represent a subspace of the search space of topologies and
parametrizations of hierarchical ensembles.

Similarly to the Holland’s schema theorem (Holland 1975), we can define fitness of a
template as average/maximum fitness of individual algorithms represented by this particular
template. Wildcards here are used just as placeholders for random decisions on type of
ensembles or base algorithms and their parameters. On the contrary, in rooted tree schema
theory (Rosca 1997) wildcards represent sub-trees.

5 Discovering templates
The meta-learning template can be designed manually using an expert knowledge (for exam-

ple, bagging boosted decision trees showed good results on several problems) so it is likely
to perform well on a new data set. This is however not guaranteed.

@ Springer

Mach Learn (2018) 107:177-207 185

In our approach we optimize templates on data sub-samples using a genetic programming
(Koza 2000). In this way, we can search the space of possible architectures of hierarchical
ensembles and optimize their parameters simultaneously.

5.1 Evolving templates by genetic programming

Applying genetic programming or grammatical evolution involves resolving (a) represen-
tation of individual, (b) design of genetic operators and evolution, (c) fitness function
formulation and (d) construction of initial population.

Algorithm 1 Evolve Meta-learning Template

Function EvolveTemplate(maxTime, useMetaDB)
Data: Dataset data
Result: Meta-learning template for data
if Big (data) then
| data_sample = Reduce (data, size)
if useMetaDB then
| Generate initial population using the Metadatabase
else
| Initialize population randomly from a minimal form
while (time < maxTime) do
generation = 1
while (generation < max_generations) do
Evaluate fitness of individuals on data_sample
if stagnation then
| generation = max_generations
Select individuals in tournament
Apply mutations
Prepare new generation
if size < getSize(data) then
size =2 * size
data_sample = Reduce (data, size)

| return best_template

5.1.1 Encoding templates to chromosomes

Encoding is straightforward, because in genetic programming (GP) individuals are repre-
sented as trees. Each specific template has ensembles in inner nodes and base algorithms in
leaf nodes whereas their parameters are associated with corresponding nodes (not encoded
as individual nodes as in Koza’s representation). Generalized templates contain wildcards
in their chromosomes. Wildcards are represented as lists of genes. One of these genes is
randomly selected when an individual should be produced from a template. Meaning when
20 base models should be generated, the heuristics selects randomly twenty times from list
of available algorithms.

5.1.2 Adaptive control for anytime learning
The pseudo-code of Algorithm 1 shows how to evolve meta-learning templates. There are two
parameters, a time limit for the algorithm and an attribute that decides whether a metadatabase

should be used to streamline the evolution. Later we discuss advantages and disadvantages
of using the metadatabase.

@ Springer

186 Mach Learn (2018) 107:177-207

The algorithm has several internal parameters and many of them are adaptive. Time limit
influence most of internal parameters, because only fast templates on small data samples
can be evaluated for small time allocations. With more time available the search for best
performing meta-learning templates can intensify and explore bigger part of the search space.

The algorithm receives a data set as an input. When the data set has more than 200
dimensions or 500 instances (constants experimentally chosen based on results on several
data sets), a sample is generated using random subsampling or stratified sampling in case
of small or imbalanced data. We sample both instances and attributes when constrains are
violated to get a representative data subset.

5.1.3 Initial population and subsequent evolutions

Aninitial population of the first evolution (generalized templates) is generated from a minimal
form, similarly to Stanley and Miikkulainen (2001); Mueller et al. (1998). In case that the
metadatabase is not used, base models form the population. The advantage is that each type
of base model is considered before ensembles are taken into account. Also the population
grows from a minimal form. With the metadatabase, the initial population is filled by best
individuals from most similar meta data (pairwise similarities of attributes statistics). For
subsequent evolutions, we use population from the last epoch of the previous evolution.

While time is available, we run a sequence of evolutions that are gradually exploring the
state space of possible templates. The first evolution runs on a small data sample (200 x 500
maximum) and after maximum of hundred generations (or when a stagnation is detected),
data is doubled (both dimensionality and numerosity if possible) and next evolution follows.
In each subsequent evolution, templates are more specific and the percentage of wildcards
decrease. Also, ranges of explored parameters increase as templates get more precise and
specific.

This is quite similar to the Hyperband approach (Li et al. 2016), when exponential more
time is given to perspective learners. Here, many template topologies are eliminated on a
small data subset. Just the most successful templates are examined on larger sets and their
parameters are extensively finetuned.

The optimization process is designed to be time-constrained. For each algorithm, we
estimated its scalability so that we can predict the run-time given size of a data set and
parameter settings. Parameters like maximum template depth, maximum allowed computa-
tional complexity of template, intervals of base algorithm parameters, size of data samples
are then increased adaptively set based on time available. Similarly as in Li et al. (2016),
we give exponential allocation to search in promising parts of the state space. For particular
details see [Software: Fake game, data mining software (https://fakegame.sourceforge.net/)],
(Kordik et al. 2014) or our open source implementation (Kordik 2006).

5.1.4 Fitness evaluation

Fitness evaluation is also time-effective. It is estimated by a multiple crossvalidation (CV)
(Browne 2000; Kordik et al. 2014). The fitness of a template is proportional to the average
performance of models generated on training folds and evaluated on testing folds, while the
data is divided into folds multiple times. We need a reliable estimate of a generalization
performance of models/templates even when time allocated for the optimization is very short
(e.g. 1 min). For short time allocations, data samples are small (up to 300 instances) and
repeated CV runs are necessary to reduce variance of cross-validation estimates. With more

@ Springer

https://fakegame.sourceforge.net/

Mach Learn (2018) 107:177-207 187

time available, our fitness estimates are refined with additional fitness evaluations starting
with the most promising estimates with high variation of recent evaluations. An approach
similar to Moore and Lee (1994) or (Li et al. 2016) helping us to allocate additional resources
for promising candidates.

After fitness evaluation, the selection is implemented by a tournament. We do not use
crossover, just mutations similar to the approach used in a standard GP (Koza 2000). Muta-
tions grow/modify both topology and parameters of templates.

Structural mutations are realized using the context free grammar (Whigham 1995) rules
shown in Table 1 defining how templates can grow from simple base classifiers to large
hierarchical ensembles often containing regression ensemble sub-trees.

Parameters of a node are mutated by applying Gaussian noise to the current value. The
mutation probabilities and distribution of noise are controlled by adaptive parameters for
anytime learning.

Exploration versus exploitation capabilities of evolutions are ale influenced by adaptive
mutation probabilities and intervals. For exact parameter settings and adaptation strategies
please consult (Fake Game; Kordik et al. 2014).

Table 1 Context free grammar rules

template — classify
classify — baseClassification metaClass
metaClass — ClassBagging(classify”)|Class Boosting (classify™)
metaClass — ClassCascadeGen (classify™)|ClassStacking (classify" 1)
metaClass — ClassArbitrating(classify”); where n is number of classifiers in ensemble

baseClassification — classifierModel| NeuralNetClassifier|DecTree|
KNN|SVM|NaiveBayes|Polynomial|Sine

classifierModel — regression® ; where c is the number of classes
regression — baseRegression metaReg
metaReg — RegBagging(regression”)|Reg Boosting RT (regression’)

metaReg — RegStacking (regression, regression’)
RegCascadeGen(regression”)|Reg Delegating (regression’)

metaReg — RegDivide(regression’); where n is number of models in ensemble

baseRegression — Sigmoid|Sigmoid Norm|Exponential|Gaussian|Linear|
Polynomial|Sine|Local Polynomial|Neural N et

@ Springer

188 Mach Learn (2018) 107:177-207

5.1.5 Metadatabase

When a metadatabase is enabled, the population of general templates can be then seeded
from this metadatabase. The probability that a template is selected for seeding the population
is inversely proportional to the squared distance of meta data vectors and proportional to a
robust performance of the template. The robust performance is defined as average rank of
template performance on similar data sets. Then, as the algorithm runs, templates consisting
of one base algorithm are evaluated on the data set and stored into the metadatabase. Their
performance is used as landmarking attribute (Pfahringer et al. 2000) and together with data
statistics make up meta-features. The meta-features vector is then compared to other vectors
stored in the metadatabase and the most similar records are returned. The records contain a list
of best templates which are inserted into the initial population. The fitness of each template
is updated during evolutions and when the optimization terminates, winning templates are
saved as a new record into the metadatabase or corresponding records are updated with the
new templates.

Section 7.5 provides experimental results showing that using the templates from a meta-
database is beneficial for most of the data sets. On the other hand, a metadatabase can lead
to templates overfiting and one should avoid seeding the initial population with templates
evolved on data that has been already used, as we show later in the experimental part.

5.2 Exploring models produced by templates

The final template is comprehensively tested and the generalization performance of models
generated by this template should be the highest among candidate templates. The quality of
the selected template can also be observed in the shape and consistency of decision boundaries
of models produced from selected template.

As an example, we ran the evolution on the Two Intertwined Spirals data set (Juille and Pol-
lack 1996) (10 min on a standard PC). The template that was finally selected can be written as:
ClassifierCascadeGenProb{4x KNN(k=2,vote=true, measure=ManhattanDistance)}. We
used our RapidMiner plugin [Software: Fake game, data mining software (https://fakegame.
sourceforge.net/)] to visualize the structure and behavior of the classifier produced when this
template was executed. The template contains the ClassifierCascadeGenProb ensemble of
three 2NN classifiers. In the Cascade Generalization (Gama and Brazdil 2000) ensemble,
every model except the first one uses a data set extended by the output of all previous models.
In this particular case, the first 2NN classifier is produced on the Spiral data set, the input of
the second 2NN classifier is enriched by two outputs of the first classifier (probabilities of
membership in one of the two intertwined spirals). The third classifier receives two original
’spiral” inputs plus four output probabilities from the already generated classifiers, etc.

This behavior can be observed in Fig. 4a. As can be seen in the thumbnail images, where the
background color should match the color of data points for the perfect classifier, the first KNN
algorithm is capable of making a nearly perfect model, except for small regions with absent
learning data. The other classifiers specialize in these regions, so the final cascade ensemble
classifies the Spiral data even better. Figure 4b shows the decision boundaries of a recently
evolved template that outperformed the Cascade generalization of KNN classifiers: Classi-
fierModel{outputsx LocalPolynomialModel}}. The LocalPolynomialModel was added to
our base algorithm recently and it apparently performs better than KNN on this problem. The
evolved algorithm works as follows. It builds a lazy model based on the LocalPolynomial
regression to model probability of each class (spiral) given the input coordinates. Final output

@ Springer

https://fakegame.sourceforge.net/
https://fakegame.sourceforge.net/

Mach Learn (2018) 107:177-207 189

Base KNN classifiers

(a)

(b)

Cascade Generalization Ensemble

Fig. 4 The template performing cascade generalization ensemble of three 2NN classifiers was discovered by
the evolution on the Spiral problem. The thumbnail images show the response of classifiers to the change of
their two most relevant inputs

is decided by ClassifierModel choosing higher probability returned by two LocalPolynomial
models.

Templates evolved on the Spiral data should also produce good models for similar
problems, e.g. for any other complex separation problem in two dimensions. Experiments
described in the sections are to reveal the universality of discovered templates.

6 Small data sets for evaluation

To evaluate transfer learning capabilities (Pan and Yang 2010) of meta-learning templates, it
is necessary to experiment with a wide range of data sets. First of all, we use small data sets
of different complexity.

Table 2 lists the data sets used as well as their size, dimensionality and number of classifi-
cation classes (outputs). Most of the data sets are taken from the UCI repository (Frank and
Asuncion 2010). Other data sets (mostly artificial) are tailored to evaluate data separation
capabilities of algorithms for low dimensional problems. The Spirals data set was used in the
previous section and was designed as a benchmark for global approximation methods.

Spread is a two-dimensional artificial data set, which was created with an evolutionary
algorithm to be unsolvable by the basic classification algorithms available in the RapidMiner.
The fitness function was inversely proportional to the performance of the best classifier and
the chromosomes contained parameters of a data set generator.

Data sets (Texturel and Texture2) come from a generator of images for pattern recognition
(Texture 2008). Four features were extracted from these images, one using the local binary
pattern and the other three with a 5 x 5 convolution matrix for each color component (rgb)
We generated balanced data sets with 250 instances for each class (segment). Texturel was
formed by three segments (750 instances) and Texture2 by ten segments (2500 instances).

Splitting data into learning and testing sets to avoid overfitting is a well known principle.
In the process of evolution of templates it is necessary to estimate the quality of templates
and to balance well the data used for learning and for evaluation. Also, when some testing
data is used to select best performing template, we should not use it for testing any more,
because the error estimate might be biased.

@ Springer

190 Mach Learn (2018) 107:177-207

Table 2 Data sets are obtained

mostly from the UCI repository data set Origin Inputs Classes Instances

and are small to medium-sized Balance UCI 5 3 624
Breast UcCI 9 2 698
Diabetes ucCI 8 2 767
Ecoli UCI 8 7 335
Glass ucI 9 7 213
Heart UCI 13 5 269
Texturel TSB 4 3 750
Texture2 TSB 4 10 2500
Ionosphere ucl 34 2 350
Spirals TIS 2 2 192
Vehicle UCI 18 8 845
Wine ucCl 13 3 177
Segment ucCl 19 7 2309
Fourier ucCl 76 10 1999
Spread EVO 2 19 2500

7 Examining properties of templates

First of all, we designed an experiment to verify if hierarchical ensembles can outperform
simple ensembles and base model. For this experiment, we selected the Glass data set, because
ithas quite complex decision boundaries and hierarchical ensembles can therefore reveal their
potential.

7.1 Hierarchical ensemble

We compare three configurations of the optimization process with the same time allocation of
2 h. In the first configuration, we restrict the search to trivial templates with base algorithms
only (depth 0). The second configuration allows the evolution to consider also ensembles
of base algorithms (depth 1). The third configuration extends the search to the second level
hierarchies—ensembles of ensembles (depth 2). There was no additional restriction on type
of base models or ensembles. We used 20 fold cross validation to increase size of the train
sets.

Table 3 shows that the generalization performance of templates increases with depth. It is
interesting that all levels were dominated by the same base model (Decision Tree). We can
conclude that for this particular problem (Glass data) the hierarchical ensemble represents
significant improvement over base models or regular ensembles.

Of course, ensembles and hierarchical ensembles are not always beneficial (for example
when problems are linearly separable, there is no need for ensembles, because most of base
algorithms are capable of solving the task perfectly alone). That is also the motivation for
our optimization procedure to explore trivial templates first and then gradually extend the
search space to more complex ensembles and hierarchies.

@ Springer

Mach Learn (2018) 107:177-207 191

Table 3 A trivial template (maximal template depth limited to 0) was evolved on the Glass data set for given
time (this is equivalent to the selection among base algorithms with optimized parameters), then we run same
experiment with maximal depth 1 (simple ensembles of base algorithms allowed) for the same amount of time
and so on

Depth limit Max Acc Avg Acc The best meta-learning template
found in the search space
0 0.67 0.64 DecisionTree(depth=9,conf=0.04,alt=7)
1 0.76 0.71 ClassifierBagging {40x Decision-
Tree(depth=46,conf=0.494,alt=3) }
2 0.78 0.74 ClassifierBoosting{9x ClassifierBoosting{8x

DecisionTree(depth=12,conf=0.5,alt=2)} }

Results are averaged from 50 runs for each depth limit. Table shows the best template found for given depth
limit and their maximal and average classification accuracies on test data sets

7.2 Template overfitting

The next experiment is to examine the sensitivity of meta-learning templates to data overfit-
ting. A the same time, we will explore the robustness of our approach in terms of generating
stable solutions for very similar problems.

The experimental setup is rather complicated so we use Fig. 5 to illustrate it. The Ecoli
data set was divided into two folds of equal size (training and testing). The training fold
was subsequently divided into learn and validation folds multiple times, with division ratio
iterating from 0.1 (10% learning, 90% validation) to 1 (100% learning, 0% validation).
Learning sets of increasing size were used to evolve meta-learning templates and to produce
models by executing templates on the same data. These models were evaluated on the training
set and on the testing set producing the validation and test errors. Whereas the test errors are
unbiased estimates of model performances, the validation errors gradually translate to the
training errors (possibly biased) as the size of the learn set increases. Note that for 100% learn
data fraction, full training set is used to evolve templates and build models so the validation
error becomes the training error.

Ecoli data set

Training data (50%) Testing data (50%)

/ \ .:. Validation error

Learn (i%) | Validation (100-i%)

Model(i) generated

Template(i) evolved
Fig. 5 The workflow evaluating sensitivity to overfitting and stability of solution. Note that validation error
is not computed just from the validation set but also from learn set, because the multiple CV is performed

Test error

@ Springer

192 Mach Learn (2018) 107:177-207

Error rate
0.4 -

0.35 4

IS

0.2 4
Validation error

= Test error

0.15 T T T T T T T T T |
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Learn data fraction

Fig. 6 The difference between test and validation errors is not significant. Glyphs indicate percentages of
base algorithms and meta-algorithms in winning templates

We averaged results from 20 repetitions of this setup and plotted the development of errors
(see Fig. 6). The level of data overfitting is reasonably low. Even when the same (training)
data set is used to evolve the template, build the model and estimate its error, the error is
not significantly different from the unbiased estimate computed on independent Testing set.
This is mainly due to the fitness function used in the evolution of templates, which favors
templates generating models performing well on unseen data. Glyphs summarize numbers of
base algorithms and meta-algorithms appearing in evolved templates for each division ratio.
For tiny learning data sets (ratio below 0.3) diverse templates were evolved in each repetition,
whereas for ratios above 0.8, evolved templates were almost identical.

Note that this behavior is demonstrated on the Ecoli data set, but can be observed also on
other data sets. Below, we experiment with diverse portfolio of small data sets to examine
which templates are discovered an if they can be reused on other data sets.

7.3 Templates evolved for various data sets

Templates evolved on data sets (see Table 5) were serialized to a text description representing
their internal structure. As you can see in the Table 4, for some data sets trivial templates
were evolved (for example the KNN algorithm for Heart and Pendigits), for other data sets a
regular ensemble performed best (for example the Boosting of Decision Trees for Segment)
and hierarchical templates were the best solution for Vehicle or Texture2, Wine or Breast data
sets and others. Note that depicted templates are representatives of final templates selected
in multiple runs on benchmarking data sets. In each independent (no metadatabase) run of
the evolution on a single data set, final template can differ. Diversity of the final templates
may be minimal for some data set and significant for other, however they are very similar in
terms of functionality and complexity.

The occurrence of individual algorithms can be counted for evolved templates. Almost
40% of solutions were hierarchical templates, the same percentage contained the Clas-

@ Springer

Mach Learn (2018) 107:177-207 193

Table 4 Templates evolved on individual data sets serialized into text description

Data Meta-learning templates evolved on
benchmarking datasets

Glass StackingProbabilities{4x
KNN(k=2,vote=true,measure=ManhattanDistance) }

Balance Boosting{57x ClassifierModel{outputs x
PolynomialModel(degree=4)} }

Breast ClassifierModel{outputs x CascadeGenModel{7x
CascadeGenModel {5x GaussianModel} } }

Diabetes SVM(kernel=dot)

Ecoli ClassifierArbitrating{ 2x ClassifierBagging{3x
SVM(kernel=anova)} }

Heart KNN(k=15,vote=false,measure=CosineSimilarity)

Texturel ClassifierArbitrating{4x ClassifierModel{outputs x
PolynomialModel(degree=2)} }

Texture2 CascadeGenProb{8x Boosting{2x ClassifierModel{outputs x
ExpModel} } }

Tonospher DecisionTree(maxdepth=20,conf=0.25,alt=10)

Spirals CascadeGenProb{8x ClassifierArbitrating
{4xKNN(k=3,vote=false,measure=MixedEuclideanDistance) } }

Pendigits KNN(k=3,vote=false,measure=CosineSimilarity)

Vehicle ClassifierArbitrating{ 6x ClassifierModel{outputs x
DivideModel(mult=6.68){7x PolynomialModel(degree=3)}}}

Wine CascadeGenProb{9x ClassifierModel{outputs x
BoostingRTModel(tr=0.1) {8x GaussianModel}}}

Spambase ClassifierModel{outputs x CascadeGenModel{9x
SigmoidModel} }

Segment Boosting{ 17x DecisionTree(maxdepth=24,conf=0.082,alt=0)}

Fourier NeuralNetClassifier(net=-
1x0,epsilon=0.00001,learn=0.3,momentum=0.2)

Spirals+3 KNN(k=3,vote=true,measure=EuclideanDistance)

Spread CascadeGenProb{5x CascadeGenProb{3x

KNN(k=9,vote=true,measure=CosineSimilarity) } }

sifierModel decomposing the classification problem into N regression problems of class
probability estimation. It is surprising that regression models are present so often in final
classification templates. One possible explanation is that our optimization algorithms for
predictive modeling are very efficient and fast. Therefore the evolution can explore many
more variants in given time than in case of KNN, Neural nets or other classification algo-
rithms that tend to be slower. It is apparent that ensembles and particularly their hierarchical
variants significantly outperform optimized base algorithms for several data sets.

7.4 Similarity and substitutability of templates

The aim of this experiment is to evaluate performance of evolved templates on other data
sets to see how universal each template is.

In our contribution (Kordik et al. 2012) we analyzed the similarity of templates in terms of
performance on individual data sets. We executed each template on all data sets and measured

@ Springer

194 Mach Learn (2018) 107:177-207

balance breast diabetes ecoli

fourier glass heart ionosphere

segment spirals spread texture1

Tfourier _Tecoli

Tdiab

Tbrea
P
Tiono
Twine
texture2 vehicle Tvehic

Ttext2

Tspread Ttext1

Fig.7 Performances of meta-learning templates on individual data sets visualized as a starplot matrix. Labels
of templates in the legend are derived from data sets used to evolve them. For Balance data, the template evolved
on Segment data (Tseg) performs worst whereas the template evolved on Balance data (Tbal) performs best—
expected behavior

the performance of generated classifiers. We split each data set randomly into two folds, one
is used for learning and the second for evaluating the classifier, then the folds are exchanged.
Due to the noise in results, we repeated this procedure 25 times so that each template was
evaluated using 25 x two fold cross-validation on all data sets.

The results summarized in Fig. 7 show that three data sets (Breast, Wine and Texturel)
are very easy to classify, no matter which template (algorithm) is used. The set of evolved
templates was slightly different than that listed in this paper (Fig. 4). Although we have
added some base algorithms and improved global heuristics of the evolution since the last
experiments published in Kordik et al. (2012), the winning templates are quite consistent.

There is a group of four data sets (Ecoli, Heart, lonosphere, Segment), that can be solved
by most of the templates except those based on Polynomial models. These models are trained
by the Least squares algorithm (Kordik et al. 2010). For certain data (noisy with binary inputs
and overlapping instances) the algorithm fails to deliver a solution due to a non-invertible
matrix, the parameters of polynomials are set randomly and the result is poor. There are also
two complex data sets (Spirals and Spread) that can be solved almost exclusively by their

@ Springer

Mach Learn (2018) 107:177-207 195

templates and one complex noisy data set (Texture2) where only ensemble (or hierarchical
ensemble) of algorithms can deliver satisfactory results. You have probably noticed that for
a number data sets a template derived from another data set performs better than the one
derived for this specific data set. The differences are not significant and they are caused by
noise in the process of selection of template and evaluation of template on the other data set.

Based on these experiments we can conclude that hierarchical templates evolved on par-
ticular complex problems (data sets) have often capacity to solve other complex problems
very well. This is often the case for complex general-purpose templates containing uni-
versal algorithms such as neural nets. On the other hand, some problems (Spirals, Spread)
require specific algorithms (KNN, Local polynomial regression). Note that in our previ-
ous work (Kordik et al. 2012) the template CascadeGenProb{9x ClassifierModel{outputsx
ExpModel}} was evolved for the Spread problem and it failed to produce good classifiers on
the Spiral data set.

When the performance of templates on individual data sets is averaged, we get the “uni-
versality” of templates. Templates based on polynomial models are least universal (with 60%
average performance). On the other hand, the most universal is the Texture2 template (double
stacking of neural nets). With an average performance over 80% on all data sets, the top three
templates (Ttexture2, Tspread, Tspirals) contain hierarchical ensembles.

7.5 Evaluation of metadatabase

The motivation of this experiment is to evaluate when the metadatabase should and should
not be used. The content and usage of metadatabase is described in Sect. 5.1.5. We run
experiments on selected data sets in two configurations (a) metadatabase disabled—initial
population generated from minimal form (Base classifiers) and (b) metadatabase enabled.

The positive influence of seeding the initial population with templates from a metadatabase
is demonstrated in Fig. 8. The best solution (template) found in the initial population is far
better when the metadatabase is used for all tested data sets. The improvement is bigger
for complex tasks, such as the Spiral problem, where hierarchical templates have to be
discovered and the evolution of such templates from randomly initialized population takes
many generations.

We have to note that the metadata and templates of the data sets tested were excluded form
the metadatabase with one exception. For Spirals, there was very similar data set (Spirals
+ 3 irrelevant attributes) contained and that is why the performance went up rapidly after
seeding templates from this data set. This observation motivated us to investigate, how much

Spirals Sonar Glass Heart Ecoli lonosphere
Accuracy
0.96 1 0.88 0.9 0.842 0.94 0.94

0.95 087 0.89 0.841 0.93

094 0.88 084 092
086 087

093 03839 051 093
0.85 0.36

092 0838 09

091 - 0.84 084 0.837 0.89

09 l —— 083 4 T T 2 083 4 T T 1 0.836 4 —) + T T 2 0.92 4 —
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
e==Meta-database used Without meta-database Time of template evolution [s]

Fig. 8 The improvement in the convergence of the evolution can be observed for all tested data sets when
the seeding from the meta database is used. There is a danger of overfitting because the same data sets were
already used to evolve very similar data. The bias however should not be high, because of low number of
parameters used in the template

@ Springer

196 Mach Learn (2018) 107:177-207

0.8 1

0.78 - —=— Validation fitness @ Test fitness

0.76 -

* 280, ., 0 ®

0.66 o Ve ooslafle 2® o9 Tl g
0% y,.‘““ e wp‘\‘w ,Q‘:Q« s w5, B AL
0.64 - ! | ® %0 4 "Q“v“‘"
0.62 A
0.6 T T T T T J
0 50 100 150 200 250 300

Fig. 9 Templates can overfit the data when the metadatabase is used and the same data set is presented to the
system over and over again. The data set here is Borelia (reproduced with permission from Motl (2013))

templates are prone to data overfitting. We stored templates evolved on single data set and
then reused it again with the same data. We performed 300 evolutions initialized from the
metadatabase (after each evolution the metadatabase was updated when better solution was
found).

Apparently, there is a danger of data overfitting when the metadatabase is used. By storing
the best template, the data set used to evolve or select the template should not be further used
for validation or testing. When the same data set is presented over and over again and each time
the best template from the metadatabase is inserted into the initial population of templates,
overfitting occurs after dozen of runs as shown in Fig. 9 despite a template does have just a
fraction of parameters of a model generated from it. We recommend using metadatabase just
in scenarios where we can guarantee enough data to prevent reusing data samples.

8 Benchmarking meta-learning templates on small data

In this section, we evaluate the performance of meta learning templates evolved using the
proposed algorithm and compare it to the standard algorithms and ensembles on small data
sets described in Sect. 6. We decided to perform experiments in our environment, because
we can easily control run-time of algorithms and compare them to RapidMiner classifiers.

The methodology was the following. The training set was used to evolve templates on
each data set by means of procedures described above. Then the final template selected for
each data set was evaluated on the corresponding test data set by fifty repetitions of ten-
fold crossvalidation. The performance of meta-learning templates was compared to the most
popular algorithms contained in the RapidMiner software. For each data set, we measured
performances of all algorithms with default settings on training data and evaluated the best
performing algorithm on the testing set (also 50x tenfold CV).

To improve results of RapidMiner algorithms with default settings, their parameters were
optimized on training set with the same evolutionary framework described above (ensembling
was disabled). Again, the most successful algorithm with optimized parameters was selected
on training data and was evaluated on the testing set.

@ Springer

Mach Learn (2018) 107:177-207 197

Table 5 The column Templates lists averaged test performances (classification accuracies in percents) of
individual templates, evolved on corresponding training data sets

Data set Templates Base-default Base-optimized Simple ensembles (LOOCV)
Balance 99.5 93.4 97.6 90.7
Breast 97.7 96.3 96.3 96.1
Diabetes 79.0 77.1 78.8 77.0
Ecoli 90.0 86.3 87.4 86.6
Glass 83.1 69.2 74.9 79.0
Heart 86.5 83.9 86.5 82.4
Texture 1 99.4 98.5 98.7 98.0
Texture 2 65.6 59.8 61.2 57.9
Ionosphere 95.8 92.6 95.8 93.4
Spirals 95.6 78.7 80.2 68.2
Pendigits 99.5 99.3 99.4 99.5
Vehicle 78.5 75.5 75.9 76.1
Wine 100 98.9 98.9 100
Spambase 93.4 92.0 92.1 95.3
Segment 97.6 96.9 97.3 98.5
Fourier 83.3 82.4 83.4 83.9
Average 89.7 85.5 87.0 85.5

The Base-default column lists performances of the best single classification algorithm with default parameters.
The Base-optimized column shows performances of the best single algorithms with parameters optimized (e.g.
K=3 for KNN). Templates significantly outperform base classifiers for several data sets (bold)

Results of experiments (Table 5) confirm that classifiers generated by meta-learning tem-
plates should be of the same or better quality than base classifiers trained by standard single
algorithms from RapidMiner. This is due to the fact that evolution of templates starts from
the minimal form and all base algorithms (including RapidMiner base models) are exam-
ined in the beginning and survive in the population unless significantly better solutions (e.g.
hierarchical ensembles) drive them out.

Although the evolution of the best template itself took about hundred times longer to
complete (the approx. time was in minutes, compared to learning process of base models,
which is measured in miliseconds), the additional computing time given to the base algorithms
will notincrease their capacity to generate more precise models. Computing time of optimized
base models in RapidMiner is comparable to the time spent for template evolution—especially
when grid search is used.

Additionally, we have computed the performance of base models in default settings and
selected ensembles using one-leave-out crossvalidation. Classification accuracies in Table 6
shows that most of the results were dominated by meta-learning templates despite the fact
that in the one-leave-out crossvalidation setup, models can benefit from bigger training sets
than in case of 10fold crossvalidation used to obtain results in the Table 5. On average (we
use the geometric average which is more robust to outliers), templates outperformed selected
simple ensembles in spite of smaller training sets (10 fold CV versus LOOCYV).

In our experiments we were not able to compare templates to all possible ensembles of base
algorithms. The number of such combinations is so high that heuristic search is needed—and
this feature is not available in the RapidMiner. Also we have many base models that are not

@ Springer

Mach Learn (2018) 107:177-207

198

'€ "199S UI PaqLIDSAP $72p0 J 421 15SD]) T S[OPOW Aseq JAYI0 ‘IourApIdey] woiy paydepe sem oa1) UOTSIOA(

899 TTL (4] 8L 9'8L €08 918 6'€8 €18 618 IoLnog
866 606 6C1 €yl 906 68 1'€6 7’86 816 $'86 Juowsag
716 968 [9'88 €76 8'88 976 €56 g6 L'v6 esequedg
L'T6 €86 6'86 6'86 8'L6 7’66 0001 8'L6 £'86 8'L6 QUIM
vIL 90L 9L SeL SeL L I'sL 1"SL ceL 1oL S[OIYRA
866 L'88 ¥'C6 G'98 £06 0'06 9'16 66 L'96 €66 SIBIpud]
1'S9 008 8y 691 6'LY 4 8y §29 06t 89 seadg
688 TL8 ¥'0S 6'S¢ 6'88 06 006 eo S'68 p'€6 reydsouoy
88y 6'S¢ oy V'LE €9 £'8¢ 8’61 6°LS 8'CS 0'9¢ 7RIMX3],
§96 896 8'86 L'96 1'96 096 L'L6 €'L6 086 6'L6 [oIMXa],
8¥L 08 (414 L'vy (4%] 8'C8 ¥'C8 L'18 S8 08 HeoH
899 G696 09 L'09 9'¢9 129 L'19 0°6L 09 9LL SSe[D
08L LT8 S¢Sl S8 0¢8 S'L8 S'L8 998 9'¢8 €98 1osq
069 T'LL 8'GL S'LL I'LL 9LL 0LL S'SL SIL TeL saleqeIq
I's6 1'S9 §'S9 §'S9 S9 §'s9 S19 996 y'es 1'96 Jsealgq
8'LL 998 76 S8 998 1'98 VL8 908 L06 oYL doueeqg
Qaipoeg dxg [erwoukjod Jeoury prowdiS ueissner) ([-prowdiS SuidSeg (G-o1[oe(SuidSeg ([-prowsi§ Sunsoog ()G-99199(Sunsoog rIRQ

39S BIEp SUDMBWYOUIQ UO SI[QUIASUD PUE S[OPOW 9Seq PAJII[AS JO d0ULWLIOJIdd UOTIEPI[EA INO-ABI[-AUQ 9 J[qE],

pringer

A

Mach Learn (2018) 107:177-207 199

available in other environments. Meta-learning templates are performing so well also due to
ability to build classifier from subtrees of regression models.

9 Templates at scale

The recent rise of big data modeling challenges scalability of predictive modeling algo-
rithms and tools. One obvious approach is to reduce dimensionality and numerosity of data
(Borovicka et al. 2012). This approach works in most of the cases because big data often
includes similar cases that are redundant. However for some data sets, the performance of
predictors increase significantly with growing number of instances used for training. For
such data, scalable algorithms (Basilico et al. 2011) and tools (Arora et al. 2015; Meng et al.
2016) have been developed.

Most of these approaches are based on a map-reduce technique (Chu et al. 2007).

In this section, we show, that meta-learning can be also used at scale. Our approach is
inspired by van Rijn et al. (2015), where classifier selected on sub-samples work reasonably
well on larger data sets. We evolve templates on a subset of 3000 randomly selected instances.
Then, evolved template can be executed on full data. When we do not have enough time for the
meta-learning template evolution, it is also possible to generate the subset just for computing
meta-features. Then we can use a best performing template for the data set with most similar
meta-features.

For the template execution we split large data into multiple disjoint subsets and then use
the map-reduce paradigm to train multiple instances of the template. Prediction is made by
reducing (majority voting) of models generated from templates.

This approach is very similar to bagging except that we do not use the bootstrap sampling.

9.1 Experiments

We have conducted experiments to get an insight into the scalability of several machine
learning algorithms from h2o0 as well as our parallel training of templates. Our motivation is
to show that proper algorithm selection is important especially for large data sets and can be
often done using a fraction of the data set.

We have chosen two public data sets—HIGGS (Baldi et al. 2014) and Airline Delays which
is available through H20 (H20O 2015). Those data sets are used for binomial classification
of selected output attributes.

‘We benchmark our paralelized templates to models available in H20.ai implemented using
the map reduce approach. Generalized Linear Model (Hussami et al. 2015) is using logistic
regression to deal with classification problems. Naive Bayes classifier assumes Independence
of input attributes and classifies based on conditional probabilities obtained from training data.
Deep learning (Arora et al. 2015) is a feedforward neural network with various activation
functions in neurons. Distributed Random Forest and Gradient Boosted Machine (Click
et al. 2016) are ensembles based on decision trees. H20 Ensemble is an ensemble classifier
called Super Learner by LeDell (2016).

The following experiments use 1,000,000 randomly selected rows from each data set.
Then 50% rows are randomly selected as a test set and the rest is then sampled to subsets
of growing size to examine scalability of algorithms. This sampled data is randomly split to
training set (80%) and validation set (20%).

At first, we examined scalability of algorithms on the Higgs data set. Figure 10 shows
learning time and performance of individual algorithms executed on subsets of growing

@ Springer

200 Mach Learn (2018) 107:177-207

0.75
0.70 g
0.65
3 z 4
Y
3
Q
Q
MR 7o/
0.60
0.55
0.50
-2 0 2 4 6 8 10
Training time [log(s)]
—@— Deep Learning Generalized Linear Model
Distributed Random Forest ~®— Gradient Boosting
—8— ENS - ClassifierBagging{5x DTForestClassifier(trees=10)} H20 Ensemble

ENS - ClassifierBoosting{20x ClassifierBoosting{30x DecisionTree}} —&— NaiveBayes
—@— ENS - Sigmoid Norm classifier

Fig. 10 Comparison of several machine learning algorithms in H20.ai trained on samples with various sizes
from Higgs (Baldi et al. 2014) data set

size. The best performance was achieved by Deep Learning which was also reasonably fast.
Gradient Boosting is faster, but it does not have capacity to improve with bigger data subsets.
Distributed Random Forest is also reasonably accurate and fast, but it is dominated by Deep
Learning on Higgs. Ensembles produced from templates are not very competitive on this data
set. Only complex hierarchical ensemble of decision trees is approaching the performance
of Distributed Random Forest, but it is much slower. Our implementation is not optimized
for H20.ai.

Looking at the Fig. 11, where arrival delay is predicted on the Airlines data set, results
are completely different. Our ensembles are both more accurate and faster. The difference is
so big, that we decided to analyze these results further.

We even simplified the prediction task by predicting the departure time without removing
the DepTime attribute.

The prediction problem then becomes quite trivial, because you can obtain the target (is
departure delayed?) by comparing DepTime and CRSDepTime attribute. It is quite surprising
that most of the classifiers are mislead by other attributes and fail to discover this simple
relationship.

Figure 12 shows that again our simple ensembles based on Sigmoidal model are able to
learn fast and solve the problem even on small subsets. H2O Ensemble and Deep Learning
discovered the relationship on 500 thousand instances and their learning time was significantly
higher.

@ Springer

Mach Learn (2018) 107:177-207 201

0.75

0.70

0.65

Accuracy
o
(2}
o

0.55
0.50
0.45
-2 -1 0 1 2 3 4 5 6 7
Training time [log(s)]
—@— Deep Learning —@— Generalized Linear Model
Distributed Random Forest Gradient Boosting
—@— ENS - CascadeGenProb{5x Boosting{5x ClassifierModel{<outputs>x SigmoidNorm}}} ~®— H20 Ensemble
ENS - Sigmoid Norm classifier NaiveBayes

Fig. 11 Predicting IsArrDelayed on Airline data set: comparison of algorithms in H20.ai trained on subsam-
ples of increasing size

0.0 02 04 06 08 10 0 200 400 600 800 1000 1200 1400
Subset Fraction Training time [s]
—— Deep Leaming —e— Generalized Linear Model
Distributed Random Forest Gradient Boosting
—e— ENS - Casc & ing Sx Classif i —e— H20 Ensemble
ENSS - Sigmoid Norm classifier NaiveBayes

Fig. 12 Predicting IsDepDelayed on Airline data set: comparison of algorithms in H20.ai trained on sub-
samples of increasing size. Left subfigure shows that the performance of our templates for small data samples
is significantly higher than that of other algorithms. Interesting observation is that deep learning needs almost
100k training instances to match the performance of simple template trained on 10k dataset. Also, when it
comes to training times, differences among algorithms are huge (right subfigure). It takes almost 20 min to
train H20 Ensemble on this task, whereas Sigmoid template is trained in few seconds

@ Springer

202 Mach Learn (2018) 107:177-207

1.0 ===
| | | | Default Settings
- : : : : mm SMAC
— | | | |
| | | | Random Search
08 I I I I I -
| | | | [|
I I I I I 1
o=y = | o o oam |- | 1
0.6 — I . I I I 3 ! T
> = | | | | | o
)
© | | | | |
3 I I I I I
5]
< - ! - ! ! ! - ! -
0.4 | | | | |
| | | | |
| | | | |
| | | | |
| | | | |
02 | | | | |
| | | | |
| | | | |
| | | | |
0.0 | | | | |
Deep Distributed ENS ENS Generalized Gradient
Learning Random - - Linear Boosting
Forest CascadeGenProb ClassifierBoosting Model
{Mx Boosting {Mx ClassifierBoosting

{Nx ClassifierModel {Nx DecisionTree}}
{<outputs>x SigmoidNorm}}}

Fig. 13 Hyperparameter search using neither Random Search nor SMAC is beneficial for H20 models. In
most of the cases, the performance is worse than for algorithms in default settings

To ensure that the problem is not caused by improper parameter settings, we run opti-
mization of parameters on a subset of 100 thousand instances. The list of parameters and
their ranges are available [Software: Algorithmic templates for h2o.ai (https://github.com/
kordikp)]. Figure 13 shows that most of the H20 algorithms are very sensitive to improper
parameter settings. Deep learning was able to converge in default parameter setting only, our
assumption is that parameters are controlled adaptively by default. Similarly, negative impact
was observed for Generalized Linear Model. For Gradient Boosting and Distributed Ran-
dom Forest, optimization discovered better performing configuration, however the difference
was not significant. We also optimized number of models in our hierarchical ensembles but
apparently it had almost no effect on performance. The Decision Tree based ensemble was
unable to solve the task in any configuration which is consistent with poor performance of
DT based ensembles from H2O. On the other hand the Sigmoid based ensemble was able
to discover the relationship even with minimal number of models in the ensemble which is
consistent with previous experiments. From boxplots and distribution of individual results
(red dots) the Bayesian Optimization (SMAC) method outperformed the Random search.

Plots of class probabilities and decision boundaries helped us to reveal the reason of poor
performance of decision tree based ensembles. Figure 14 shows that successful classifiers
(ensemble of sigmoid models, Deep Learning) were able to identify simple relation of two
input attributes to departure delay prediction. The relationship (decision boundary) is hard
for decision trees to model with their orthogonal decisions. It is also impossible to solve for
Naive Bayes classifier assuming independence of input attributes.

Apparently, we were able to discover very efficient template for this trivial problem.
We believe that our approach can contribute to evolve (discover) templates for diverse data
sets and predictive tasks. Building library of algorithmic templates can improve capacity of
predictive modeling systems to solve diverse tasks efficiently.

@ Springer

https://github.com/kordikp
https://github.com/kordikp

Mach Learn (2018) 107:177-207 203

ENS - SigmoidNorm, decision boundary GBM, decision boundary

2000 2000

o
E
£ 1500 1500
[=*
o
a
w
P 1000 1000
3]
500 500
0 0
[} 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
DRF, decision boundary Deep Learning, decision boundary
1 o
2000
o
E
= 1500
(=9
o
a
L7
£ 1000
]

500

0
0 500 1000 1500 2000 2500 500 1000 1500 2000 2500
DepTime DepTime

Fig. 14 Decision boundaries of algorithms on problem of predicting aircraft departure delay. Simple ensemble
of sigmoid classifiers was able to generalize the relationship well, whereas decision tree based ensembles
overfitted the data. Deep Learning discovered the relationship only on large data samples. Note that plots
are showing the behaviour of classifiers just in two dimensional plane of the multidimensional input space.
Attributes DepTime and CRSDepTime were however the most important dimensions

10 Conclusions

In this article, we propose to optimize topology and parameters of algorithmic ensembles by
an evolutionary algorithm. We show that useful algorithms can be discovered on small data
sub-samples and later applied to large data sets.

We use meta-learning templates to describe set of algorithmic ensembles and examine
their performance on several benchmarking problems.

The generalization accuracy of classifiers generated using these templates are capable of
outperforming classifiers produced by the most popular data mining algorithms.

We found out that templates are prone to data overfitting in spite of very low number
of their parameters. One needs to be aware of this issue especially when a metadatabase is
employed. Data samples that were used to select best template in previous runs cannot be
reused for unbiased estimate of the generalization performance. Metadatabase can be however
very useful in speeding up the convergence when enough data is available for independent
model validation.

We show how templates can be scaled up for large data sets modeling using the map-
reduce approach. Benchmarks revealed that our approach is able to produce algorithms
competitive with state of the art approaches for large scale predictive modeling. Ensembles
of simple regression models can outperform popular algorithms in both generalization ability
and scalability as demonstrated on the Airlines data set.

@ Springer

204 Mach Learn (2018) 107:177-207

Acknowledgements This research was partially supported by the Modern data-mining methods for advanced
extraction of information from data (SGS17/210/OHK3/3T /18) grant of the Czech Technical University
in Prague. Thanks to reviewers for their valuable time and comprehensive feedback.

References

Alpaydin, E., & Kaynak, C. (1998). Cascading classifiers. Kybernetika, 34, 369-374.

Analoui, M., Bidgoli, B. M., & Rezvani, M. H. (2007). Hierarchical classifier combination and its application
in networks intrusion detection. In International conference on data mining workshops, pp. 533-538.

Arora, A., Candel, A., Lanford, J., LeDell, E., & Parmar, V. (2015). Deep learning with h2o.

Baldi, P., Sadowski, P., & Whiteson, D. (2014). Searching for exotic particles in high-energy physics with
deep learning. Nature Communications 5. https://doi.org/10.1038/ncomms5308

Bao, X., Bergman, L., & Thompson, R. (2009). Stacking recommendation engines with additional meta-
features. In RecSys "09: Proceedings of the third ACM conference on recommender systems (pp. 109-116).
New York: ACM.

Basilico, J. D., Munson, M. A., Kolda, T. G., Dixon, K. R., & Kegelmeyer, W. P. (2011). Comet: A recipe
for learning and using large ensembles on massive data. In 2011 IEEE 11th international conference on
data mining (pp. 41-50).

Bennett, J., Lanning, S., & Netflix, N. (2007). The netflix prize. In In KDD cup and workshop in conjunction
with KDD.

Bensusan, H., & Kalousis, A. (2001). Estimating the predictive accuracy of a classifier. In Proceedings of the
12th European conference on machine learning. Springer.

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. In
Advances in neural information processing systems (NIPS) pp. 2546-2554.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine
Learning Research, 13, 281-305.

Bonissone, P. P. (2012). Lazy meta-learning: Creating customized model ensembles on demand. In IEEE world
congress on computational intelligence (pp. 1-23). Springer.

Borovicka, T., Jirina, M, Jr., Kordik, P., & Jirina, M. (2012). Selecting representative data sets. In Advances
in data mining knowledge discovery and applications. Intech.

Botia, J. A., Gomez-Skarmeta, A. F., Valdes, M., & Padilla, A.: METALA (2001). A meta-learning architecture.
In: Proceedings of the international conference, seventh fuzzy days on computational intelligence, theory
and applications.

Brazdil, P., Giraud-Carrier, C., Soares, C., & Vilalta, R. (2009). Metalearning: Applications to data mining.
Cognitive technologies. New York: Springer.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.

Browne, M. W. (2000). Cross-validation methods. Journal of Mathematical Psychology, 44(1), 108—132.

Brown, G., Wyatt, J., & Tino, P. (2006). Managing diversity in regression ensembles. Journal of Machine
Learning Research, 6, 1621-1650.

Buk, Z., Koutnik, J., Snorek, M. (2009). Neat in hyperneat substituted with genetic programming. In Interna-
tional conference on adaptive and natural computing algorithms (pp. 243-252). Springer.

Caruana, R., Niculescu-Mizil, A., Crew, G., & Ksikes, A. (2004). Ensemble selection from libraries of mod-
els. In Proceedings of the twenty-first international conference machine learning (ICML 2004), Banff,
Alberta.

Chan, P. K., & Stolfo, S. J. (1997). On the accuracy of meta-learning for scalable data mining. Journal of
Intelligent Information Systems, 8(1), 5-28.

Chu, C., Kim, S. K., Lin, Y. A, Yu, Y., Bradski, G., Ng, A. Y., et al. (2007). Map-reduce for machine learning
on multicore. Advances in Neural Information Processing Systems, 19, 281.

Click, C., Malohlava, M., Candel, A., Roark, H., & Parmar, V. (2016). Gradient boosting machine with h2o.

Coope, I. D., & Price, C.J. (2001). On the convergence of grid-based methods for unconstrained optimization.
SIAM Journal on Optimization, 11(4), 859-869.

Costa, E. P, Lorena, A. C., Carvalho, A. C., & Freitas, A. A. (2008). Top-down hierarchical ensembles
of classifiers for predicting g-protein-coupled-receptor functions. In Proceedings of the 3rd Brazilian
symposium on bioinformaticsBSB 08 (pp. 35-46). Springer: Berlin.

Dufty, N., & Helmbold, D. (1999). A geometric approach to leveraging weak learners. In European conference
on computational learning theory (pp. 18-33). Springer

Fake Game, data mining software. http://fakegame.sourceforge.net/.

@ Springer

https://doi.org/10.1038/ncomms5308
http://fakegame.sourceforge.net/

Mach Learn (2018) 107:177-207 205

Fernando, C., Banarse, D., Reynolds, M., Besse, F., Pfau, D., Jaderberg, M., Lanctot, M., & Wierstra, D.(2016).
Convolution by evolution: Differentiable pattern producing networks. In: Proceedings of the 2016 on
genetic and evolutionary computation conference (pp. 109-116). ACM

Ferri, C., Flach, P., & Herndndez-Orallo, J. (2004). Delegating classifiers. In ICML ’04: Proceedings of the
twenty-first international conference on Machine learning, Vol. 37. New York, NY: ACM

Frank, A., & Asuncion, A. (2010). UCI machine learning repository.

Friedman, J. H. (2000). Greedy function approximation: A gradient boosting machine. Annals of Statistics,
29, 1189-1232.

Gama, J., & Brazdil, P. (2000). Cascade generalization. Machine Learning, 41(3), 315-343.

Grabczewski, K., & Jankowski, N. (2007). Versatile and efficient meta-learning architecture: Knowledge
representation and management in computational intelligence. In IEEE symposium on computational
intelligence and data mining, 2007. CIDM 2007 (pp. 51-58).

Grefenstette, J. J., & Ramsey, C. L. (2014). An approach to anytime learning. In Proceedings of the ninth
international conference machine learning (pp. 189-195).

Grubb, A. (2014). Anytime prediction: Efficient ensemble methods for any computational budget. DTIC Doc-
ument: Technical report.

H20.ai: H20: Scalable Machine Learning. (2015).

Hengpraprohm, S., & Chongstitvatana, P. (2008). A genetic programming ensemble approach to cancer
microarray data classification. In The 3rd intetnational conference on innovative computing informa-
tion and control.

Hoch, T. (2015). An ensemble learning approach for the kaggle taxi travel time prediction challenge. ECML-
PKDD-DCs.

Holenia, M., Linke, D., & Steinfeldt, N. (2009). Boosted neural networks in evolutionary computation. In
Neural information processing. Lecture notes in computer science (Vol. 5864, pp. 131-140). Berlin:
Springer.

Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications
to biology, control, and artificial intelligence. Ann Arbor: Michigan Press.

Hussami, N., Kraljevic, T., Lanford, J., Nykodym, T., Rao, A., & Wang, A. (2015). Generalized linear modeling
with h2o.

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm
configuration. In Lecture notes in computer science pp. 507-523.

Jankowski, N. (2013). Meta-learning and new ways in model construction for classification problems. Journal
of Network and Information Security, 4(4), 275-284.

Juille, H., & Pollack, J. B. (1996). Co-evolving Intertwined Spirals (pp. 461-467). Cambridge: MIT Press.

Kaynak, C., & Alpaydin, E. (2000). Multistage cascading of multiple classifiers: One man’s noise is another
man’s data. In ICML ’00: Proceedings of the seventeenth international conference on machine learning
(pp. 455-462). San Francisco: Morgan Kaufmann Publishers Inc.

Kietz, J.U., Serban, F., Bernstein, A., & Fischer, S. (2012). Designing kdd-workflows via htn-planning. In
Proceedings of the 20th European conference on artificial intelligence (pp. 1011-1012). IOS Press.

Kordik, P. (2009). Game-hybrid self-organizing modeling system based on gmdh. In Hybrid self-organizing
modeling systems (pp. 233-280). Springer.

Kordik, P. (2006). Fully automated knowledge extraction using group of adaptive models evolution. PhD
thesis, Czech Technical University in Prague, FEE, Department of Computer Science and Computers,
FEE, CTU Prague, Czech Republic.

Kordik, P, & Cerny, J. (2011). Self-organization of supervised models. In N. Jankowski, W. Duch, & K.
Grabczewski (Eds.), Meta-learning in computational intelligence. Studies in computational intelligence
(Vol. 358, pp. 179-223). Berlin: Springer.

Kordik, P, & éerny, J. (2012). On performance of meta-learning templates on different datasets. In: IJCNN,
IEEE, pp. 1-7.

Kordik, P., & Cerny, J. (2014). Building predictive models in two stages with meta-learning templates optimized
by genetic programming. In [EEE symposium on computational intelligence in ensemble learning (CIEL),
pp. 1-8.

Kordik, P., Koutnik, J., Drchal, J., Kovifik, O., éepek, M., & Snorek, M. (2010). 2010 special issue: Meta-
learning approach to neural network optimization. Neural Networks, 23(4), 568-582.

Koza, J. R. (2000). Genetic programming. IEEE Intelligent Systems, 14(4), 135-84.

Kuncheva, L. (2004). Combining pattern classifiers: Methods and algorithms. New York: Wiley.

LeDell, E. (2016). Scalable super learning. Handbook of Big Data 339.

Leite, R., Brazdil, P., & Vanschoren, J. (2012). Selecting classification algorithms with active testing. In
International workshop on machine learning and data mining in pattern recognition (pp. 117-131).
Springer.

@ Springer

206 Mach Learn (2018) 107:177-207

Leite, R., & Brazdil, P. (2010). Active testing strategy to predict the best classification algorithm via sampling
and metalearning. ECA, I, 309-314.

Lemke, C., & Gabrys, B. (2010). Meta-learning for time series forecasting and forecast combination. Neuro-
computing, 73(10), 2006-2016.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A. (2016). Efficient hyperparameter opti-
mization and infinitely many armed bandits. arXiv preprint.

Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the
Society for Industrial and Applied Mathematics, 11(2), 431-441.

Meng, X., Bradley, J., Yuvaz, B., Sparks, E., Venkataraman, S., Liu, D., et al. (2016). Mllib: Machine learning
in apache spark. JMLR, 17(34), 1-7.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Navruzyan, A., Duffy,
N., & Hodjat, B. (2017). Evolving deep neural networks. arXiv preprint arXiv:1703.00548.

Moore, A. W., & Lee, M. S. (1994). Efficient algorithms for minimizing cross validation error. In /CML, pp.
190-198.

Motl, J. (2013). Supporting the diagnosis of borreliosis by machine learning methods. Master’s thesis, CTU
in Prague.

Mueller, J. A., Ivachnenko, A., & Lemke, F. (1998). Gmdh algorithms for complex systems modelling. Math-
ematical and Computer Modelling of Dynamical Systems, 4(4), 275-316.

Nguyen, P., Hilario, M., & Kalousis, A. (2014). Using meta-mining to support data mining workflow planning
and optimization. Journal of Artificial Intelligence Research, 51, 605-644.

Ortega, J., Koppel, M., & Argamon, S. (2001). Arbitrating among competing classifiers using learned referees.
Knowledge and Information Systems, 3(4), 470-490.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. [EEE Transactions on Knowledge and Data
Engineering, 22(10), 1345-1359.

Pfahringer, B., Bensusan, H., & Giraud-Carrier, C. (2000). Meta-learning by landmarking various learning
algorithms. In Proceedings of the 17th international conference on machine learning.

Puurula, A., Read, J., & Bifet, A. (2014). Kaggle Ishtc4 winning solution. arXiv preprint arXiv:1405.0546

RapidMiner, data mining software. https://rapid-i.com/.

Rawal, A., & Miikkulainen, R. (2016). Evolving deep Istm-based memory networks using an information
maximization objective. In Proceedings of the 2016 on genetic and evolutionary computation conference
(pp- 501-508). ACM

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q., & Kurakin, A. (2017). Large-scale evolution
of image classifiers. arXiv preprint arXiv:1703.01041.

Rosca, J. P. (1997). Analysis of complexity drift in genetic programming. Genetic Programming pp. 286—294.

Ruta, D., & Gabrys, B. (2002). A theoretical analysis of the limits of majority voting errors for multiple
classifier systems. Pattern Analysis and Applications, 5(4), 333-350.

Ruta, D., & Gabrys, B. (2005). Classifier selection for majority voting. Information Fusion, 6(1), 63-81.

Salvador, M. M., Budka, M., & Gabrys, B. (2016a). Adapting multicomponent predictive systems using
hybrid adaptation strategies with auto-weka in process industry. In International conference on machine
learning. AutoML workshop.

Salvador, M. M., Budka, M., & Gabrys, B. (2016b). Towards automatic composition of multicomponent
predictive systems. In International conference on hybrid artificial intelligence systems (pp. 27-39).
Springer.

Salvador, M. M., Budka, M., & Gabrys, B. (2016¢). Automatic composition and optimisation of multicompo-
nent predictive systems. arXiv preprint arXiv:1612.08789

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197-227.

Shanno, D. E. (1970). Conditioning of quasi-newton methods for function minimization. Mathematics of
Computation, 24(111), 647-656.

Smithson, S. C., Yang, G., Gross, W. J., & Meyer, B. H. (2016). Neural networks designing neural networks:
Multi-objective hyper-parameter optimization. arXiv preprint arXiv:1611.02120.

Software: Algorithmic templates for h20.ai (https://github.com/kordikp).

Software: Fake game, data mining software (https://fakegame.sourceforge.net/).

Software: Rapid miner, data mining (https://rapid-i.com/).

Sonnenburg, S., Franc, V., Yom-Tov, E., & Sebag, M. (2008). Pascal large scale learning challenge. In 25th
international conference on machine learning (ICML2008) workshop (Vol. 10, pp. 1937-1953). https://
largescale.first.fraunhofer.de.J.Mach.Learn.Res.

Stanley, K. O., & Miikkulainen, R. (2001). Evolving neural networks through augmenting topologies. Technical
report, University of Texas at Austin, Austin, TX, USA.

Stroud, J., Enverga, 1., Silverstein, T., Song, B., & Rogers, T. (2012). Ensemble learning and the heritage
health prize (iCAMP 2012). University of California, Irvine.

@ Springer

http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1405.0546
https://rapid-i.com/
http://arxiv.org/abs/1703.01041
http://arxiv.org/abs/1612.08789
http://arxiv.org/abs/1611.02120
https://github.com/kordikp
https://fakegame.sourceforge.net/
https://rapid-i.com/
https://largescale.first.fraunhofer.de.J.Mach.Learn.Res
https://largescale.first.fraunhofer.de.J.Mach.Learn.Res

Mach Learn (2018) 107:177-207 207

Sun, Q., Pfahringer, B., & Mayo, M. (2013). Towards a framework for designing full model selection and
optimization systems. In Proceedings of 11th international workshop multiple classifier systems, MCS
2013, Nanjing, China, pp. 259-270.

Sung, Y. H., kyun Kim, T., & Kee, S. C. (2009). Hierarchical combination of face/non-face classifiers based
on gabor wavelet and support vector machines.

Sun, Q., & Pfahringer, B. (2013). Pairwise meta-rules for better meta-learning-based algorithm ranking.
Machine Learning, 93(1), 141-161.

Sutherland, A., Henery, R., Molina, R., Taylor, C. C., & King, R. (1993). StatLog: Comparison of classification
algorithms on large real-world problems. Berlin: Springer.

Texture Segmentation Benchmark. In Proceedings of the 19th international conference on pattern recognition,
ICPR 2008, Los Alamitos, IEEE computer society (December 2008).

Thornton, C., Hutter, F., & Hoos, H. H. (2013). Auto-WEKA: Combined selection and hyperparameter opti-
mization of classification algorithms. In Proceedings of the 19th ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 847-855.

Toscher, A., & Jahrer, M. (2009). The bigchaos solution to the netflix grand prize. Technical report, commendo
research & consulting.

Tsakonas, A., & Gabrys, B. (2012). Gradient: Grammar-driven genetic programming framework for building
multi-component, hierarchical predictive systems. Expert Systems with Applications, 39(18), 13253—
13266.

Ulf Johansson, Tuve Lfstrm, R. K., & Niklasson, L. (2006). Building neural network ensembles using genetic
programming. In International joint conference on neural networks.

van Rijn, J. N., Abdulrahman, S. M., Brazdil, P., & Vanschoren, J. (2015). Fast algorithm selection using
learning curves. In International symposium on intelligent data analysis, (pp. 298-309). Springer.

Vanschoren, J. (2010). Understanding machine learning performance with experiment databases. Ph.D. thesis,
Katholieke Universiteit Leuven.

Vanschoren, J., Blockeel, H., Pfahringer, B., & Holmes, G. (2012). Experiment databases. Machine Learning,
87(2), 127-158.

Vilalta, R., & Drissi, Y. (2002). A perspective view and survey of meta-learning. Artificial Intelligence Review,
18(2), 7795.

Whigham, P. A., et al. (1995). Grammatically-based genetic programming. In Proceedings of the workshop
on genetic programming: From theory to real-world applications, Vol. 16, pp 33-41.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5, 241-259.

Woods, K., Kegelmeyer, W., & Bowyer, K. (1997). Combination of multiple classifiers using local accuracy
estimates. I[EEE Transactions on Pattern Analysis and Machine Intelligence, 19, 405-410.

Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

@ Springer

http://arxiv.org/abs/1611.01578

	Discovering predictive ensembles for transfer learning and meta-learning
	Abstract
	1 Introduction
	2 Related work
	2.1 Knowledge base meta-learning approaches and workflows
	2.2 Ensembling as meta-learning
	2.3 Growing ensembles and their optimization
	2.4 Scalable meta-learning

	3 Base algorithms and ensembling strategies
	3.1 Base algorithms
	3.2 Ensembling algorithms

	4 Meta-learning templates
	5 Discovering templates
	5.1 Evolving templates by genetic programming
	5.1.1 Encoding templates to chromosomes
	5.1.2 Adaptive control for anytime learning
	5.1.3 Initial population and subsequent evolutions
	5.1.4 Fitness evaluation
	5.1.5 Metadatabase

	5.2 Exploring models produced by templates

	6 Small data sets for evaluation
	7 Examining properties of templates
	7.1 Hierarchical ensemble
	7.2 Template overfitting
	7.3 Templates evolved for various data sets
	7.4 Similarity and substitutability of templates
	7.5 Evaluation of metadatabase

	8 Benchmarking meta-learning templates on small data
	9 Templates at scale
	9.1 Experiments

	10 Conclusions
	Acknowledgements
	References

