
Discovering process models by rule set induction

Laura Măruşter1, A.J.M.M. (Ton) Weijters1,
Antal van den Bosch2, and Walter Daelemans2

1 Eindhoven University of Technology,
PO Box 513, 5600 MB Eindhoven, The Netherlands

{l.maruster,a.j.m.m.weijters}@tm.tue.nl
2 Tilburg University, Tilburg 5000 LE, The Netherlands

{antal.vdnbosch,walter.daelemans}@uvt.nl

Abstract. Effective information systems require the existence of ex-
plicit process models; a completely specified process design needs to be
developed in order to enact a given business process. This development
is time consuming and the resulting models are often subjective and in-
complete. We propose a method that discovers the process model from
process logs where process events are recorded as they have been ex-
ecuted over time. We induce rules that predict causal, exclusive, and
parallel relations between process events. These relation information are
used by an already developed α-algorithm to construct a process model
in the Petri-net formalism. The rules are induced from simulated process
log data that are generated by varying process characteristics (e.g. noise,
log size). Tests reveal that the induced rules has a high performance on
new data.

1 Introduction

The managing of complex business processes calls for the development of pow-
erful information systems, able to control and support the underlying process.
In order to support a structured business process, an information system has to
offer generic modelling capabilities. However, many problems are encountered
when designing and employing information systems. One of the problems is that
these systems presuppose the existence of the process design, i.e. a designer
has to construct a detailed model accurately describing the whole process. The
drawback of such an approach is that the process model designing requires con-
siderable effort from the process designers, workers and management, is time
consuming and often subjective and incomplete.

As an alternative to hand-designing the process, we propose to collect the
sequence of events produced over time by that process, and discover the underly-
ing process model from these sequences. We assume that it is possible to record
events such that (i) each event refers to a task, (ii) each event refers to a case
(i.e. process instance) and (iii) events are totally ordered. We call a set of such
recorded sequences the process log. We call the method of distilling a structured
process description from a process log process discovery or process mining [1].

2 Laura Măruşter et al.

To illustrate the idea of process discovery, consider the process log from
Table 1. In this example, there are seven cases that have been processed; twelve
different tasks occur in these cases.

Table 1. A process log example

Case number Executed tasks

Case 1 a f g h i k l
Case 2 a b c e j l
Case 3 a f h g i k l
Case 4 a f g i h k l
Case 5 a b c e j l
Case 6 a b d j l
Case 7 a b c e j l

Using the information shown in Table 1, we try to discover the process model
shown in Figure 1. We represent the model using the Petri nets formalism [13].
After executing a, either task b or task f can be executed. If task f is executed,
tasks h and g can be executed in parallel. A parallel execution of tasks h and
g means that they can appear in any order. In this simple example, the con-
struction of the Petri net was straightforward. However, in the case of real-world
processes where much more tasks are involved and with a high level of paral-
lelism, the problem of discovering the underlying process becomes very complex.

a

f

b

d

c e

h

g i

k

j

l

0.8

1.5

Fig. 1. A process model for the process log shown in Table 1

The idea of discovering models from process logs was previously investigated
in contexts such as software engineering processes and workflow management
[3], [5], [9], etc. Cook and Wolf propose different methods for process discovery
in the case of sequential [5] and concurrent [6] software engineering processes.
Herbst and Karagiannis used a hidden Markov model in the context of workflow
management, in the case of sequential processes [7, 9] and concurrent processes
[8]. In [10], a technique for discovering the underlying process from hospital

Discovering process models by rule set induction 3

data is presented, under the assumption that the workflow log does not contain
any noisy data. A heuristic method that can handle noise is presented in [14];
however, in some situations, the used metric is not robust enough for discovering
the complete process. Theoretical results are presented in [1], being proven that
for certain subclasses it is possible to find the right process model. In [2] the
method used in [1] is extended to incorporate timing information. In [11], a
logistic regression model that uses a global threshold has been developed to
detect the direct successors from a process logs, in the presence of noise and
imbalance of task execution probabilities.

In this paper we try to define some useful log-based relations and to use
inductive learning techniques on them to induce rule sets that can be used for
finding the causal, parallel and exclusive relations between tasks. The problem
of process discovery from process logs is defined as a three-step method: (i) find
the causal relations (i.e., for each task, find its direct successor tasks), (ii) find
the parallel/exclusive relations (i.e. for tasks that share the same cause or the
same direct successor, detect if they can be executed in parallel or there is a
choice between them) and (iii) use the α algorithm (introduced in [1]) to build
the Petri net. We aim to use an experimental approach for inducing the rule sets
required in the three-step method.

In practical situations it seems realistic to assume that process logs contain
noise. Noise can have different causes, such as missing registration data or input
errors. Moreover, the log can be incomplete. In case of a complex process, the
process log will contain not enough information to detect all causal relations
between tasks. Another source of problems is the existence of imbalances between
the task execution frequency. If the frequency of some tasks is very low, there is
a higher chance that the log does not contain enough information about these
tasks. Given the fact that in practical situations the process logs are incomplete,
contain noise and can exist imbalances between the task execution priorities, the
discovery problem becomes more problematic.

The content of this paper is organized as follows: in Section 2 the types of
relations that can exist between two tasks are presented. The methodology of
generating experimental data that serves to induce the rule sets is presented in
Section 3. In Section 4 the metrics used to induce the rule set are introduced.
Section 5 contains the description of the three-step process discovery method.
In Section 6 we discuss the results obtained. We end with conclusions and issues
for further research.

2 The log-based relations

Our method of discovering the process model from a log file starts with finding
the relations that can exist between tasks. For example, if a task is always fol-
lowed by another task, it is likely that there is a causal relation between both
tasks. In order to find these relations, we use a so-called dependency/frequency
(D/F) table [14].

4 Laura Măruşter et al.

The dependency/frequency table. An excerpt from the D/F table for a
process log larger than the log presented in Table 1 is shown in Table 2 (this
process log contains traces for 1800 cases, not only for 7 cases). For each pair of
tasks x and y, the following information is abstracted out of the process log: (i)
the identifiers for tasks x and y, (ii) the overall frequency of task x (notation |X|
1), (iii) the overall frequency of task y |Y |, (iv) the frequency of task x directly
preceded by another task y |Y > X|, (v) the frequency of task x directly suc-
ceeded by another task y |X > Y |, (vi) the frequency of x directly or indirectly
preceded by another task y, but before the next appearance of x |Y >n X|, (vii)
the frequency of x directly or indirectly succeeded by another task y, but before
the next appearance of x |X >n Y |. The frequencies (ii)-(vii) are used to find
the log-based ordering relations, which are presented in Section 4. In order to
discover the log-based relations, we have to introduce their definitions.

Table 2. An excerpt from the D/F table

x y |X| |Y | |Y > X| |X > Y | |Y >n X| |X >n Y |
a f 1800 850 0 850 0 850
f g 850 850 0 438 0 850
c d 446 504 0 0 0 0
g h 850 850 412 226 412 438
b f 950 850 0 0 0 0
i h 850 850 226 212 638 212

Definition 1 (Succession relation) Let W be a process log over T , i.e. W ∈
P(T ∗). Let a, b ∈ T . Then between a and b there is a succession relation
(notation a > b), i.e. b succeeds a if and only if there is a trace δ = t1t2...tn and
i ∈ {1, ..., n− 1} such that δ ∈ W and ti = a and ti+1 = b.

The relation > describes which tasks appeared in sequence, one directly following
the other. In the log from Table 1, a > f , f > g, h > g, g > h, etc.

Definition 2 (Causal, exclusive and parallel relations) Let W be a pro-
cess log over T , i.e. W ∈ P(T ∗) and a, b ∈ T . If we assume that there is no
noise in W , then between x and y there is:

1. a causal relation (notation x → y), i.e. x causes y if and only if x > y and
y 6> x.

2. an exclusive relation (notation x#y) if and only if x 6> y and y 6> x;
3. a parallel relation (notation x ‖ y) if x > y and y > x.

1 We use a capital letter between | | when referring to the number of occurrences of
some task.

Discovering process models by rule set induction 5

We call task x the cause of task y and task y is the direct successor of task x.
We consider the inverse of the causal relation →−1, i.e. →−1= {(y, x) ∈ T × T |
x → y}. The relations →,→−1, # and ‖ are mutually exclusive and partition
T × T [1].

To illustrate the above definitions, let’s consider again the process log from
Table 1 corresponding to the Petri net from Figure 1. If there is no noise, there
are three possible situations in which a pair of events can be: (i) events c and
e are in sequence, then c > e, e 6> c, i.e., c → e, (ii) there is a choice between
events b and f , then b 6> f, f 6> b, i.e., b#f (and f#b) and (iii) events h and i
are in parallel, then h > i, i > h, i.e., h ‖ i (and i ‖ h).

However, in case of noise, the notions presented in Definition 2 can conduce
to wrong conclusions. If we want to investigate the relation between c and e,
we find that c > e. However, because of some noisy sequences, we may see also
that e > c. Applying Definition 2, we could conclude that events c and e are
parallel, which is wrong, because they are actually in a causal relation. Similarly,
looking at events b and f , it can happen that b > f and f > b, because of noise.
Investigating the relation between h and i, we can see that h > i and i > h, in
situations with and without noise.

Suppose now that we are aware of the existence of noise in a process log
(which is a realistic assumption) and for two generic tasks x and y we have
x > y and y > x. What is the relation between x and y: causal, exclusive or
parallel?

In the rest of our paper we plan to induce decision rules that are used to
detect the relations between events, from noisy process logs. Next, we can con-
struct the Petri net process model, using the α algorithm described in [1]. This
algorithm considers first all tasks that stand in a causal relation. Then for all
tasks that share locally the same input (or output) task, the exclusive/parallel
relations are included to build the Petri net. Based on the choice for the α al-
gorithm to build the Petri net, we plan to develop a method that adopts its
sequence of actions: first detects the causal relations, second, determines the ex-
clusive/parallel relations for all tasks that share the same local input (or output)
task and third, builds the Petri net.

In order to induce such decision rule sets, we use an artificial simulated
learning material, as described in the next section.

3 Experimental setting and data generation

The learning material that we use to induce the rule sets should resemble realistic
process logs. Of the possible elements that vary from process to process and
subsequently affect the process log, we identified four: (i) the total number of
events types, (ii) the amount of available information in the process log, (iii) the
amount of noise and (iv) the execution priorities in OR-splits and AND-splits.

We generate Petri nets with 12, 22, 32 and 42 event types. The amount of
information in the process log or log size is expressed by varying the number
of lines (one line or trace represents the processing of one case). We consider

6 Laura Măruşter et al.

logs with 200, 400, 600, 800 and 1000 lines. To vary the amount of noise, we
generate noise performing four different operations, (i) delete the head of a event
sequence, (ii) delete the tail of a sequence, (iii) delete a part of the body and (iv)
interchange two randomly chosen events. We select 5%, 10%, 20% and respec-
tively 50% of the original event sequences and we apply one of the four above
described noise generation operations. We assume that tasks can be executed
with imbalanced execution priorities between 0 and 2. In Figure 1, after exe-
cuting the event a (which is an OR-split), it is possible to exist an imbalance
between executing task b and task f . For example, task b can have an execution
priority of 0.8 and task f 1.5. This implies that after a, in 35 percent of the
cases task b is selected (because 0.8/(0.8 + 1.5) ∗ 100 ' 35), and in 65 percent
(1.5/2.3 ∗ 100 ' 65) of the cases, task f is executed. The execution imbalance is
produced at four levels, i.e., no imbalance, small, medium and high imbalance.

Varying the amount of information, the amount of noise and unbalancing the
Petri nets with 12, 22, 32 and 42 event types, we end up with 400 log files. For
each of this log file, a D/F table is built and finally all the 400 D/F tables are
combined into one big file used to induce the rule sets for detecting the relations
between tasks. In the next section we see how the information contained in the
D/F table is used to detect the log-based relations.

4 The relational metrics

Based on the information in the D/F table, we develop three derived measures
to predict the causal relations, i.e., the causality metric CM , the local metric
LM and the global metric GM and two measures to predict exclusive/parallel
relations, i.e., Y X and XY .

The causality metric CM. The causality metric CM was first introduced
in [14]. If for a given process log it is true that when task x occurs, shortly later
task y also occurs, it is possible that task x causes the occurrence of task y. The
CM metric is computed as follows: if task y occurs after task x and n is the
number of events between x and y, then CM is incremented with a factor (δ)n,
where δ is a causality factor, δ ∈ [0.0, 1.0]. We set δ = 0.8. The contribution to
CM is maximally 1, if task y appears right after task x and consequently n = 0.
Conversely, if task x occurs after task y and again the number of events between
x and y is n, CM is decreased with (δ)n. After processing the whole log, CM is
divided with the minimum of the overall frequency of x and y.

The local metric LM. Considering tasks x and y, the local metric LM
is expressing the tendency of the succession relation x > y by comparing the
magnitude of |X > Y | versus |Y > X|. The formula for the local metric LM

is LM = P − 1.96
√

P (1−P)
N+1 , where P = |X>Y |

N+1 and N = |X > Y | + |Y > X|.
The idea of this measure is borrowed from statistics and it is used to calculate
the confidence intervals for errors. For more details, see [12]. In our case, we
are interested to know with a probability of 95% the likelihood of causality
relation, by comparing the magnitude of |X > Y | versus |Y > X|. For example,
if |A > B| = 30, |B > A| = 1 and |A > C| = 60, |C > A| = 2, what is the most

Discovering process models by rule set induction 7

likely: a causes b or a causes c? Although both ratios |A>B|
|B>A| and |A>C|

|C>A| equal 30,
a is more likely to cause c than b. Our LM measure for tasks a and b gives a
value of LM = 0.85 and for tasks a and c gives a value of LM = 0.90, which is
in line with our intuition.

Let’s now consider again the Petri net from Figure 1. If we suppose that
the number of lines in the log corresponding to this Petri net is equal to 1000
(i.e. #L=1000), we can have the following three situations: (i) |C > E|=1000,
|E > C|=0, LM=0.997, (ii) |H > G|=600, |G > H|=400, LM=0.569, (iii)
|F > B|=0, |B > F |=0, LM=0. In the sequential case (situation (i)), because
e always succeeds c, LM ∼= 1. When h and g are in parallel, in situation (ii),
LM = 0.569, i.e. a value much smaller than 1. In the case of choice between
f and b, in situation (iii), LM = 0. In general, we can conclude that the LM
measure has a value close to 1 when there is a clear tendency of causality between
tasks x and y. When the LM measure is close to 0, there is no causality relation
between tasks x and y. When the LM measure has a value close to 0.5, then
x > y and y > x, but a clear tendency of causality cannot be identified.

The global metric GM. The previous measure LM was expressing the
succession tendency by comparing the magnitude of |X > Y | versus |Y > X| at
a local level. Let us now consider that the number of lines in our log is #L=1000
and the frequencies of tasks a, b and c are |A|=1000, |B|=1000 and |C|=1000. We
also know that |A > B| = 900, |B > A| = 0 and |A > C| = 50 and |C > A| = 0.
The question is: a is the most likely cause of b or c or both? For a causes b,
LM = 0.996 and for a causes c, LM = 0.942, so we can conclude that a causes
both b and c. However, one can argue that c succeeds a less frequently, thus a
should be considered the cause of b. Therefore, we build a second measure, the
global metric GM , defined as GM = ((A > B) − (B > A)) #L

(A)∗(B) . The value
for the GM in case of a causes b is GM = 0.90 and for a causes c, GM = 0.05.

In conclusion, for determining the likelihood of causality between two events
x and y, the GM metric is indeed a global metric because it takes into account
the overall frequencies of tasks x and y, while the LM metric is a local metric
because it only takes into account the magnitude of |X > Y | versus |Y > X|.

The Y X and XY metrics. |X > Y | and |Y > X| frequencies can be also
used to decide between exclusive and parallel relations. When between x and
y there is an exclusive relation, both |X > Y | and |Y > X| frequencies should
be zero or a small value, while for the parallel case both should be relatively
high. Because the rule set that will be induced using these metrics as predictors
must be general, we have to take into account also the frequencies of tasks x
and y. Therefore we divide |X > Y | and |Y > X| with the minimum of |X|
and |Y |. Thus, Y X and XY are defined as Y X = |Y > X|/min{|X|, |Y |} and
XY = |X > Y |/min{|X|, |Y |}. In Table 3 the values for the relational metrics
of some task pairs for a process log (with similar traces as the log presented in
Table 1, containing traces for 1800 cases) are presented.

8 Laura Măruşter et al.

5 The three-step process discovery method

We aim to develop a three-step method for discovering process models. This
method (i) determines the causal relations, then (ii) determines the parallel/ex-
clusive relations and (iii) use the α algorithm (introduced in [1]) to build the
Petri net.

Step1: Determining causal relations. In Section 2 we introduced five re-
lational metrics CM , GM , LM , Y X and XY to be used in determining the
causal and exclusive/parallel relations. The idea is to use the learning material
generated in Section 3 and to compute for each data set the relational metrics.

We are interested in a fast and efficient algorithm and we want to obtain a
model that can be easily understood. Ripper [4] is an algorithm that induces
rule sets and seems to meet our requirements.

For inducing a rule set, we have to provide a set of examples, each of which
has been labelled with a class. We are interested to induce rule sets for detecting
the log-based relations, therefore our examples are classified as “c” (if a → b),
“e” (if a#b) and “p” (if a ‖ b). As we mentioned before, we start with searching
for rules that detect the “c” relation.

An excerpt of the table with the class labelling is presented in Table 3. Note
the pairs (c,d) and (g,h) which are labelled in Step 1 with an “n” (in the first
step they are used as non-causal examples), while in Step 2 they are labelled “e”
and “p” respectively, being selected to induce rules that distinguish between the
exclusive and the parallel relation.

Table 3. Excerpt from the learning materials used to induce the rule set for detecting
in Step 1 the causal relations and in Step 2, the exclusive/parallel relations, from a log
with similar traces as the log presented in Table 1

Step x y CM GM LM Y X XY Rel

1 a f 1.000 1.000 0.998 0.000 1.000 c
1 a b 1.000 1.000 0.998 0.000 1.000 c
1 f g 0.903 1.091 0.996 0.000 0.515 c
1 f h 0.857 1.026 0.995 0.000 0.485 c
1 b a -1.000 -1.000 0.000 1.000 0.000 n
1 c d 0.000 0.000 0.000 0.000 0.000 n
1 g h -0.019 -0.436 0.317 0.485 0.266 n

2 b f 0.000 0.000 0.000 0.000 0.000 e
2 c d 0.000 0.000 0.000 0.000 0.000 e
2 g h -0.019 -0.436 0.317 0.485 0.266 p

To obtain the rule set for detecting the causal relations, we use only the in-
stances labelled with “c” or “n”. Using Ripper, we obtain 33 ordered rules for
class “c” (“n” is the default class); we refer this rule set as RIPPER CAUS. The

Discovering process models by rule set induction 9

training error rate for RIPPER CAUS is 0.08% (the training error rate repre-
sents the rate of incorrect predictions made by the model over the training data
set). Below is presented a selection of rules that have a coverage higher than 100
positive instances and less than 7 negative instances. We can remark that these
rules cover quite a lot of positive instances and have few negative counterexam-
ples.
Rule1: IF LM>=0.949 AND XY>=0.081 THEN class c [10797 pos, 0 neg]

Rule2: IF LM>=0.865 AND YX=0 AND GM>=0.224 THEN class c [1928 pos, 6 neg]

Rule3: IF LM>=0.844 AND CM>=0.214, CM<=0.438 THEN class c [525 pos, 1 neg]

Rule4: IF LM>=0.741 AND GM>=0.136 AND YX<=0.009 AND

CM>=0.267 AND CM<=0.59 THEN class c [337 pos, 0 neg]

Rule5: IF XY>=0.6 AND CM<=0.827 THEN class c [536 pos, 0 neg]

Rule6: IF LM>=0.702 AND YX<=0.009 AND GM>=0.36 THEN class c [273 pos, 0 neg]

Rule7: IF LM>=0.812 AND CM<=0.96 AND GM>=0.461 THEN class c [142 pos, 0 neg]

Let us interpret these rules. Rule1 has the highest coverage of positive exam-
ples, i.e. almost 70% of “c” instances match this rule. E.g., if the LM measure
has a very high value (i.e. there is a big difference in magnitude between |X > Y |
and |Y > X| frequencies) and the XY measure is exceeding a small value, there
is a high chance there to be a causal relation between x and y. The first condition
of Rule2 specifies LM to be high, while the second requires the global measure
GM to exceed 0.2 (i.e., the difference between |X > Y | and |Y > X| frequencies
accounted by the overall frequencies of x and y should be sufficiently high). The
third condition specify that the Y X measure must be 0, i.e. |Y > X| = 0. In
general, the rules require the LM measure to exceed a high value, Y X to be
a value close to zero, while XY should be bigger than 0. Also, CM and GM
measures should be sufficient large.

Step 2: Detecting exclusive/parallel relations. In order to induce the sec-
ond rule set for detecting the exclusive/parallel relations, from the whole material
generated in Section 3, we select only the pairs of tasks which share the same
cause or the same direct successor task. In Table 3, at Step 2, the pairs of tasks
in exclusive and parallel relations and the corresponding relational measures are
shown. We see that tasks g and h have as same common cause the task f and
tasks b and f have as same common cause the tasks a. The pairs in exclusive
relation are labelled with “e” (e.g. the pair of tasks (b, f)) and those in parallel
relations with “p” (e.g. the pair (g, h)). We induce the second rule set for de-
tecting exclusive and parallel relations. We obtain the RIPPER ANDOR rule
set with 15 unordered rules, 7 for class “e” and 8 for class “p”, with the train-
ing error rate 0.38%. Doe to space limitations, we do not show the rule set for
detecting exclusive/parallel relations.

Rule sets evaluation. To check how well our rule sets will generalize to new
data, we use the well-known k-fold cross validation technique (with k=10). In
order to compare the performance of the 10 obtained models, we compare three

10 Laura Măruşter et al.

averaged performance indicators: the error rate, precision and recall. In the case
of identifying the relations between tasks, we are interested to see an aggregate of
the cost of false positives and false negatives, expressed in terms of recall and pre-
cision. In case of causal relations, false positives are false causal relations found,
i.e. linking tasks which are not causally related. False negative are actual causal
relations that are omitted from the Petri net. Asserting that precision and re-
call are equally important, we use the combined F-measure, F = 2∗TP

2∗TP+FP+FN .
TP are class members classified as class members, FP are class non-members
classified as class members and FN are class members classified as class non-
members.

We check the performance of a model based on predicted data, i.e., we use
the first rule set, RIPPER CAUS, to predict the causal relations. From this
new learning material, we select the task pairs that share a common cause or a
common direct successor and we induce with Ripper a new rule set that detects
exclusive/parallel relations. The 10-fold averaged error rate of this new second
rule set is 0.36% and the averaged F-measure for “e” and “p” classes is 99.83
and 99.85, respectively.

Based on the 10-fold cross validations experiments, we can say that both rule
sets (i.e. the rule set that detects causal relations and the rule set that detects
exclusive/parallel relations) seem to have a high performance on new data.

Step 3: Building the Petri net. The basic idea of the α algorithm [1] is
to connect (i) all events a → b and to add a place between a and b and (ii) to
merge those places if a#b. For the second step, we use the relations a#b and
a ‖ b. To illustrate the α algorithm, we consider the log presented in Table 1.
Applying the rule set for detecting causal relations on the log information pre-
sented in Table 1, resulted the following causal relations: a → f , a → b, f → g,
f → h, b → d, b → c, g → i, h → k, i → k, c → e, e → j, d → j, k → l,
j → l. According to our algorithm, we add on each arc one place (represented
as a small circle), as shown in Figure 2. The next step is to apply the rule set
for detecting exclusive/parallel relations and merge those places whenever a#b.
Thus, we have to perform four merge tasks, i.e. to merge: the two places from
event a to f and from a to b, (b#f), the two places from event b to d and from b
to c, (c#d), the two places from event d to j and from e to j, (d#e) and the two
places from event k to l and from j to l, (k#j). In Figure 2, these places that
need to be merged are marked by bold dotted circles. After merging, we recover
the Petri net from Figure 1.

6 Discussion

Finding the causal, exclusive and parallel relations with our method does not
necessarily result in Petri nets equivalent with the original Petri nets used to
generate the learning material. It was already formally proven which class of
Petri nets it is possible to rediscover the original net, assuming log completeness
and no noise in the process log [1]. The method presented in this paper pro-

Discovering process models by rule set induction 11

a

f

b

d

c e

h

g i

k

j

l

Fig. 2. The directed graph that contains the events in relation a →W b, after adding
places.

vides a solution to construct the Petri net model from a process log when the
log is incomplete and noisy. However, the degree of incompleteness and noise is
affecting in a certain extent the quality of the discovered process model. Namely,
more noise, less balance and less cases, each have a negative effect on the qual-
ity of the results. Our experiments show that causal relations can be predicted
more accurately if there is less noise, more balance and more cases. There is no
clear evidence that the number of event types has an influence on the perfor-
mance of predicting causal relations. However, causal relations in a structurally
complex Petri net can be more difficult to detect. Because the detection of ex-
clusive/parallel relations depends on the detection of the causal relations, it is
difficult to formulate specific conclusions for the quality of exclusive/parallel re-
lations. It appears that noise is affecting exclusive and parallel relations in a
similar way as the causal relations, e.g., if the level of noise is increasing, the
accuracy of finding the excusive/parallel relations is decreasing.

When discovering real process data, the above conclusions can play the role
of useful recommendations. Usually it is difficult to know the level of noise and
imbalance beforehand. However, during the discovery process it is possible to
collect data about these metrics. This information can be used to motivate ad-
ditional efforts to collect more data.

7 Conclusions and future directions

Based on artificial experimental data, where the number of event types, noise,
execution imbalance and log size are varied, we developed a three-step method
that discovers the underlying process from a process log. In the first step, the
method employs a rule set to detect the causal relations; after the causal relations
are found, the second rule set detects the exclusive/parallel relations between
tasks that share the same cause or the same direct successor. In the third step,
knowing the causal and exclusive/parallel relations, the Petri net is built to
obtain the process model. Our three-step method has a very high performance
in classifying new data, being able to find almost all relations in the presence of
parallelism, imbalance and noise.

The causal relations can be predicted more accurately if there is less noise,
more balance and more cases. However, causal relations in a structurally com-
plex Petri net can be more difficult to detect. The current experimental setting
shows that noise, imbalance and log size are factors that affect the quality of the

12 Laura Măruşter et al.

discovered model. We plan as future work to perform real-world case studies and
to adapt our method by considering other possible factors that may influence
the characteristics of the process logs.

References

1. Aalst, W.M. P., Weijters, A.J.M. M., Maruster., L.: Workflow Mining: Which
Processes can be Rediscovered? BETA Working Paper Series, WP 74, Eindhoven
University of Technology, Eindhoven, 2002.

2. Aalst, W.M. P., Dongen, B. F.: Discovering Workflow Performance Models from
Timed Logs. In Y. Han, S. Tai, and D. Wikarski, editors, International Conf. on
Engineering and Deployment of Cooperative Information Systems (EDCIS 2002),
volume 2480 of Lecture Notes in Computer Science, pages 45-63, Springer-Verlag,
Berlin, 2002.

3. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process models from Workflow
Logs. In Sixth International Conference on Extended Database Technology. In Sixth
International Conf. on Extended Database Technology, pg. 469–483, 1998.

4. Cohen, W. W.: Fast Effective Rule Induction. Proc. of the Twelfth Int. Conf. of
Machine Learning ICML95, 1995.

5. Cook, J. E., Wolf, A. L.: Discovering Models of Software Processes from Event-Based
Data. ACM Transactions on Software Engineering and Methodology, 7(3):215-249,
1998.

6. Cook, J. E., Wolf, A. L.: Event-Based Detection of Concurrency. In Proc. of the
Sixth International Symposium on the Foundations of Software Engineering (FSE-
6), Orlando, FL, pp. 35-45, November, 1998.

7. Herbst, J.: A Machine Learning Approach to Workflow Management. In 11th
European Conf. on Machine Learning, volume 1810 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 183-194, 2000.

8. Herbst, J.: Dealing with Concurrency in Workflow Induction. In U. Baake, R. Zobel,
and M. Al-Akaidi, editors, European Concurrent Engineering Conf.. SCS Europe,
2000.

9. Herbst. J, Karagiannis, D.: Integrating Machine Learning and Workflow Manage-
ment to Support Acquisition and Adaptation of Workflow Models. Int. Journal of
Intelligent Systems in Accounting, Finance and Management, 9:67–92, 2000.

10. Maruster, L., Aalst, W.M. P, Weijters, A.J.M. M, Bosch, A., Daelemans, W.:
Automated Discovery of Workflow Models from Hospital Data. In B. Kröse, M.
de Rijke, G. Schreiber, and M. van Someren, editors, Proc. of the 13th Belgium-
Netherlands Conf. on Artificial Intelligence (BNAIC 2001), pages 183–190, 2001.

11. Maruster, L., Weijters, A.J.M. M, Aalst, W.M. P, Bosch, A.: Process Mining:
Discovering Direct Successors in Process Logs. In Proc. of the 5th International
Conf. on Discovery Science (Discovery Science 2002), Lecture Notes in Computer
Science 2534, S. Lange, K. Satoh, C. Smith (Eds.), pages 364-373, Springer-Verlag,
Berlin, 2002.

12. Mitchell, T.: Machine Learning. Mc-GrawHill, 1995.
13. Reisig, W., Rosenberg, G. (eds.): Lectures on Petri nets II. Basic models, Springer

1998.
14. Weijters, A.J.M.M., Aalst, W.M.P.: Process Mining: Discovering Workflow Models

from Event-Based Data. In B. Kröse et al. (eds.), Proc. of the 13th Belgium-
Netherlands Conf. on Artificial Intelligence (BNAIC 2001), pages 283–290, 2001.

