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Abstract

Motivation: Computational approaches for predicting drug-target interac-
tions (DTIs) can provide valuable insights into the drug mechanism of action.
DTI predictions can help to quickly identify new promising (on-target) or un-
intended (off-target) effects of drugs. However, existing models face several
challenges. Many can only process a limited number of drugs and/or have poor
proteome coverage. The current approaches also often suffer from high false
positive prediction rates.
Results: We propose a novel computational approach for predicting drug target
proteins. The approach is based on formulating the problem as a link prediction
in knowledge graphs (robust, machine-readable representations of networked
knowledge). We use biomedical knowledge bases to create a knowledge graph of
entities connected to both drugs and their potential targets. We propose a specific
knowledge graph embedding model, TriModel, to learn vector representations
(i.e. embeddings) for all drugs and targets in the created knowledge graph. These
representations are consequently used to infer candidate drug target interactions
based on their scores computed by the trained TriModel model. We have experi-
mentally evaluated our method using computer simulations and compared it to
five existing models. This has shown that our approach outperforms all previous
ones in terms of both area under ROC and precision-recall curves in standard
benchmark tests.
Availability: The data, predictions, and models are available at: drugtargets.
insight-centre.org
Contact: sameh.kamal@insight-centre.org

1 Introduction

The development of drugs has a long history [1]. Until quite recently, pharmacological
effects were often discovered using primitive trial and error procedures, such as
applying plant extracts on living systems and observing the outcomes. Later, the
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drug development process evolved to elucidating mechanisms of action of drug
substances and their effects on phenotype. The ability to isolate pharmacologically
active substances was a key step towards modern drug discovery [2, 3]. More recently,
advances in molecular biology and biochemistry allowed for more complex analyses
of drugs, their targets and their mechanisms of action. The study of drug targets
has become very popular with the objective of explaining mechanisms of actions of
current drugs and their possible unknown off-target activities. Knowing targets of
potential clinical significance also plays a crucial role in the process of rational drug
development. With such knowledge, one can design candidate compounds targeting
specific proteins to achieve intended therapeutic effects.

However, a drug rarely binds only to the intended targets, and off-target effects
are common [4]. This may lead to unwanted adverse effects [5], but also to successful
drug re-purposing, i.e. use of approved drugs for new diseases [6]. To illustrate
the impact off-target effects can have in new therapy development, let us consider
aspirin that is currently being considered for use as a chemopreventive agent [7].
However, such a therapy would be hampered by known adverse side-effects caused
by long-term use of the drug, such as bleeding of upper gastrointestinal tract [8]. After
identifying the exact protein targets of aspirin that cause these adverse effects, the
proteins can be targeted by newly developed and/or re-purposed drugs to avoid the
unwanted side-effects of the proposed treatment.

Large-scale and reliable prediction of drug-target interactions (DTIs) can substan-
tially facilitate development of such new treatments. Various DTI prediction methods
have been proposed to date. Examples include chemical genetic [2] and proteomic
methods [9] such as affinity chromatography and expression cloning approaches.
These, however, can only process a limited number of possible drugs and targets due
to the dependency on laboratory experiments and available physical resources. Com-
putational prediction approaches have therefore received a lot of attention lately as
they can lead to much faster assessments of possible drug-target interactions [10, 11].

The work of [10] was one of the first approaches to predict drug targets compu-
tationally. Their approach utilised a statistical model that infers drug targets based
on a bipartite graph of both chemical and genomic information. The BLM-NII [11]
model was developed to improve the previous approach by using neighbour-based
interaction-profile inference for both drugs and targets. More recently, [12, 13] pro-
posed a new way for predicting DTIs, where they have used a combination of drug
similarity, target similarity and network-based inference. The COSINE [14] and
NRLMF [15] models introduced the exclusive use of drug-drug and target-target simi-
larity measures to infer possible drug targets. This has an advantage of being able to
compute predictions even for drugs and targets with limited information about their
interaction data. However, these methods only utilised a single measure to model
components similarity. Other approaches such as the KronRLS-MKL [16] model used
a linear combinations of multiple similarity measures to model the overall similarity
between drugs and targets. Non-linear combinations were also explored in [11] and
shown to provide better predictions.

Recently, [17] proposed a model called DNILMF that uses matrix factorisation to
predict drug targets over drug information networks. This approach showed signifi-
cant improvements over other methods on standard benchmarking datasets [17, 10].
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All the previously discussed works were designed to operate on generic similarities of
drug structure and protein sequence, therefore they can provide efficient predictions
on new chemicals. More recently, approaches that incorporate prior knowledge about
drugs and targets were proposed to enhance predictive accuracy on well-studied
chemicals and targets. Such models may not be best suited to de novo drug discovery.
However, they may provide valuable new insights in the context of drug repurposing
and understanding the general mechanisms of drug action. The current state-of-the-
art work in this context is arguably the DDR model [18], which uses a a multi-phase
procedure to predict drug targets from relevant heterogeneous graphs. The gist of
the approach is to combine various similarity indices and random walk features
gained from the input graphs by means of non-linear fusion. Similarly, the NeoDTI
model [19] predicts DTIs using supporting information about drugs and targets and
a non-linear learning model over heterogeneous network data.

Despite continuous advances of similarity based approaches like DDR, these
models depended on time-consuming training and prediction procedures as they
need to compute the similarity features for each drug and target pair during both
training and prediction. Also, the models still have a high false positive rate, especially
when using large drug target interaction datasets like DrugBank_FDA [18].

Here, we propose a method utilising prior knowledge about drugs and targets, sim-
ilarly to the DDR and NeoDTI model. Our method overcomes the afore-mentioned
limitations by approaching the problem as link prediction in knowledge graphs.
Knowledge graphs are a data representation model that represents relational infor-
mation as a graph, where the graph nodes represent entities and edges represent
relations between them. Facts are modelled as (subject, predicate, object) (SPO)
triples, e.g. (Aspirin, Drug-Target, COX-1), where a subject entity (drug) is connected
to an object entity (target protein) through a predicate relation (Drug-Target). In
recent years, knowledge graphs have been successfully used for knowledge represen-
tation and discovery in many different domains, including life sciences [20, 21, 22].

Our work utilises the fact that the current drug target knowledge bases like Drug-
Bank [23] and KEGG [24] are largely structured as networks representing information
about drugs in relationship with target proteins (or their genes), action pathways,
and targeted diseases. Such data can naturally be interpreted as a knowledge graph.
The task of finding new associations between drugs and their targets can then be
formulated as a link prediction problem based on knowledge graph embeddings [25].

We have proposed a new knowledge graph embedding based approach, TriModel ,
for predicting drug target interactions in a multi-phase procedure. We first used the
currently available knowledge bases to generate a knowledge graph of biological
entities related to both drugs and targets. We then trained our model to learn efficient
vector representations (i.e. embeddings) of drugs and target in the knowledge graph.
These representations were then used to score possible drug target pairs using a
scalable procedure that has a linear time and space complexity. We compared our
method to other state-of-the-art models using experimental evaluation on standard
benchmarks. Our results show that the TriModel model outperforms all other ap-
proaches in areas under ROC and precision recall curve, metrics that are well suited
to assessing general predictive power of ranking models [26].

3



2 Materials

In this section we discuss the datasets that we used to train and evaluate our model.
We present the standard benchmarking datasets: Yamanishi_08 [10] and DrugBank_FDA [27],
and we present statistics for elements in both datasets. We also discuss some flaws in
the Yamanishi_08 dataset, and we present a new KEGG based drug targets dataset
that addresses these flaws.

2.1 Standard benchmarks

The Yamanishi_08 [10] and DrugBank_FDA [27] datasets represent the most fre-
quently used gold standard datasets in the previous state-of-the-art models for pre-
dicting drug targets [18]. The DrugBank_FDA [27] dataset consists of a collection
of DTIs of FDA approved drugs that are gathered from DrugBank Database 1. The
Yamanishi_08 dataset is a collection of known drug target interactions gathered from
different sources like KEGG BRITE [28], BRENDA [29], SuperTarget [30], and Drug-
Bank [27]. It consists of four groups of drug target interactions corresponding to four
different target protein classes: (1) enzymes (E), (2) ion-channels (IC) (3) G-protein-
coupled receptors (GPCR) and (4) nuclear receptors (NR). The data in these groups
vary in terms of size and positive to negative ratios as shown in table 1, ranging from
90 known DTIs with 1:15 as in the NR group to 2926 DTIs with 1:100 in the E group.
These properties of the datasets affect the effectiveness of both training and evaluat-
ing models that use them. For example, the NR DTIs group have the largest positive
to negative ratio among all the groups in the Yamanishi_08 dataset and therefore
they are the easiest for predictive models in terms of evaluation. Contrary to that, the
state-of-the-art models show the worst evaluation results on the NR group compared
to other groups. This happens due to the low number of available DTIs training
instances, which affects the models’ generalisation on the training data.

2.2 New KEGG based benchmarking dataset

The Yamanishi_8 benchmarking dataset was published in 2008, and it contained drug
target interactions from various sources including the KEGG BRITE, BRENDA, and
SuperTarget databases [10]. In recent years, these sources have witnessed multiple
developments (modifications, deletions, additions of many brand new records to
their data [31, 32]). These modification have directly affected the Yamanishi_08
dataset, where a subset of the identifiers of both its drugs and targets has been
modified through these developments. This affects the ability to link these drugs
and targets to their corresponding properties e.g. associated pathways, diseases, or
other biological entities in the recent versions of biological knowledge bases. These
modifications have also included various newly discovered drug target interactions
that are not included in the Yamanishi_08 dataset. For example, the KEGG database
alone contains 12112 drug target interactions, while the total number of drug target
interactions in the Yamanishi_08 dataset is only 5127.

1https://www.drugbank.ca
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Table 1: Statistics of elements in the benchmarking datasets used in this work. The
DTIs column represent the number of known drug target interactions, the Corrup-
tions column represent the number of all possible combinations of drugs and targets
that are not in the known drug target interactions which is used as negative in model
training and evaluation, and the P2N column represents the ratio of positive to
negative instances.

Dataset Group Drugs Proteins DTIs Corruptions P2N

Yamanishi_08

E 445 664 2926 ≈ 300K 1.00%
IC 210 204 1476 ≈ 41K 3.57%

GPCR 223 95 635 ≈ 21K 3.03%
NR 54 26 90 1314 6.67%
All 791 989 5127 ≈ 777K 0.66%

DrugBank_FDA – 1482 1408 9881 ≈ 2.1M 0.48%

KEGG_MED – 4284 945 12112 ≈ 4M 0.30%

To overcome these limitations, we propose a new drug target interaction bench-
marking dataset that depends on recent versions of biological knowledge bases and
includes a larger set of drug target interactions than the Yamanishi_08 dataset. We
propose KEGG_MED, a dataset which is collected by extracting all the drug target
interactions from the KEGG medicus database 2. The KEGG_MED dataset contains
4284 drugs and 945 targets which are connected with 12112 drug target interactions.
Table 1 shows a summary of statistics of the content on the dataset. Later in this paper,
we report our results on this new suggested benchmark (in addition to the compara-
tive validation on DrugBank_FDA) so that future approaches can be compared to our
model.

2.3 Supporting knowledge graphs

Link prediction with knowledge graph embedding models require data to be modelled
in a graph form, where the objective is to predict new links between graph entities. In
the case of drug target discovery, we use supporting data from biomedical knowledge
bases to generate informative graphs around drug target interactions. We generate a
knowledge graph for each dataset to provide descriptive features for both drugs and
targets. These knowledge graphs are extracted from different sources like KEGG [24],
DrugBank [23], InterPro [33] and UniProt [34]. In our study we use a customised set
of knowledge assertions about both drugs and targets. Appendix 1 and Table 1 in the
supplementary material contain more information about the relation types present in
each knowledge graph, and about their construction. For further information about
the construction of such knowledge bases we refer to the work of [35] that provides
a study of systematic integration of biological knowledge for learning drug-target
interactions.

2https://www.genome.jp/kegg/medicus.html
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Figure 1: A graph schema for a knowledge graph about drugs, their target genes,
pathways, diseases and gene networks extracted from KEGG and UniProt databases.

We generate a group-specific knowledge graph of information extracted from
KEGG and UniProt for each DTI groups in the Yamanishi_8 dataset, while we use the
DrugBank with UniProt knowledge bases to model information about DTIs of the
DrugBank_FDA dataset. The information extracted in both cases is modelled as a
graph of interconnected biological entities (schema shown in Fig. 1).

2.4 Methods

The knowledge graph embedding models we use follow a generative approach to
learn low-rank embedding vectors for knowledge entities and relations. For learning
the embeddings, multiple techniques can be used, such as tensor factorisation (c.f.
the DistMult model [36]) or latent distance similarity (c.f. the TransE model [37]).
The goal of all these techniques is to model possible interactions between graph
embeddings and to provide scores for possible graph links. In the following, we
provide details on the knowledge graph embedding procedure and the design of our
proposed model, TriModel .

2.5 Knowledge graph embedding

Knowledge graph embedding (KGE) models learn a low rank vector representation
of knowledge entities and relations that can be used to rank knowledge assertions
according to their factuality. They are trained in a multi-phase procedure. First, a
KGE model initialises all embedding vectors using random noise values. It then uses
these embeddings to score the set of true and false training facts using a model-
dependent scoring function. The output scores are then passed to the training
loss function to compute training error. These errors are used by optimisers like
AMSGrad [38] to generate gradients and update the initial embeddings, where the
updated embeddings give higher scores for true facts and lower scores for false facts.
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This procedure is performed iteratively for a set of iterations i.e. epochs in order to
reach a state where the learnt embeddings provide best possible scoring for both true
and false possible facts.

In the rest of this paper, we use E andR to denote the set all entities and relations in
a knowledge graph respectively, where Ne and Nr represent the number of instances
in E and R respectively. We also use ΘE and ΘR which denote the embeddings of
entities and relations respectively, where ΘE (i ) is the embedding of entity i , ΘR ( j )
is the embedding of relation j , and fm(s,r,o,Θ) denotes the score of the fact that
a subject entity s is connected to an object entity o with a relation r based on the
embedding values Θ of the model m.

2.6 Embeddings representation

TriModel is a knowledge graph embedding model based on tensor factorisation
that extends the DistMult [37] and ComplEx [39] models. It represents each entity
and relation using three embedding vectors such that the embedding of entity i is
ΘE (i ) = {e1

i
,e2

i
,e3

i
} where all embedding vectors have the same size K (a user-defined

embeddings size). Similarly, the embedding of relation j is ΘR ( j ) = {w1
j
, w2

j
, w3

j
}.

em and wm denote the m part of the embeddings of the entity or the relation, and
m ∈ {1,2,3} represents the three embeddings parts. The embeddings in the Tri-
Model model are initially with random values generated by the Glorot uniform ran-
dom generator [40]. The embedding vectors are then updated during the training
procedure to provide optimised scores for the knowledge graph facts.

2.7 Training procedure

The TriModel is a knowledge graph embedding model that follows the multi-phase
procedure discussed in section 2.5 to effectively learn a vector representation for
entities and relation of a knowledge graph. First, the model initialises its embeddings
with random noise. It then updates them by iterative learning on the training data. In
each training iteration i.e. epoch, the model splits the training data into mini-batches
and executes its learning pipeline over each batch. The learning pipeline of the model
learns the embeddings of entities and relations by minimising a negative softmax
log-loss that maximises the scores of true facts and minimises the scores of unknown
facts (assumed false during training). This loss is defined as follows:

L
TriModel
spo =−φspo + log(

∑
o′ exp(φspo′ ))

−φspo + log(
∑

s′
exp(φs′po))

+
λ

3

∑K

k=1

∑3
m=1(|em

s |
3
+|wm

p |
3
+|em

o |
3)

(1)

where x ′ represents an entity e : e 6= x,e ∈ E, em
i

is the embedding part m of the entity
embedding ΘE (i ),wm

i
is the embedding part m of the relation embedding ΘR (i ),

φspo denotes the score of the triple (s, p,o), m denotes the embedding part index,
λ denotes a configurable regularisation weight parameter and |x| is the absolute of
x. The term λ

3

∑K
k=1

∑3
m=1(|em

s |3 + |wm
p |3 + |em

o |3) is the nuclear 3-norm, which is a
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Figure 2: Bar chart for the values of the area under the roc curve (AUC-ROC) and
area under the precision recall curve (AUC-PR) for the TriModel compared to other
state-of-the-art models on standard benchmarking datasets. All values are rounded
to two digits and multiplied by 100 to represent a percentage (%). DB represents the
DrugBank_FDA dataset.

regularisation term [41] that enhances model generalisation over datasets with large
entity vocabularies.

The scores of the TriModel model are computed using an embeddings interaction
function (scoring function) that is defined as follows:

fTriModel(s,r,o,Θ) =
K∑

e1
s w1

r e3
o +e2

s w2
r e2

o +e3
s w3

r e1
o . (2)

It uses a set of three interactions: one symmetric interaction: (e2
s w2

p e2
o) and two

asymmetric interactions: (e1
s w1

p e3
o) and (e3

s w3
p e1

o) for a convenient graphical expla-
nation of the interaction, see Fig. 2 in the supplementary material. This approach
models both symmetry and asymmetry in simple form similar to the DistMult [37]
model where the DisMult model can be seen as a special case of the TriModel model
if the first and third embeddings parts are equivalent (e1 = e3). We include more
details about the training procedure in Appendix 2 in the supplementary material.

2.8 Results

In this section we describe the configuration of the data used in the experimentation,
the evaluation protocol, the setup of our experiments and the results and findings of
our experiments. We also compare the predictive accuracy of our model to selected
existing approaches, including the state-of-the-art one.

2.9 Evaluation protocol

In order to facilitate comparison with the state-of-the-art models, we use a 10-fold
cross validation (CV) to evaluate our model on the Yamanishi_08 and DrugBank_FDA
datasets. First, we split the drug target interaction data into 10 splits i.e. folds. We
then evaluate the model 10 times on each split, where the model is trained on the
other 9 splits. This procedure is repeated 5 times and average results across these
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runs are reported. This is to further minimise the impact of data variability on the
result stability.

In each training configuration we use the known drug target interactions as
positives, and all other possible combinations between the investigated dataset drugs
and protein targets as negatives. This yields different positive to negative ratios since
the datasets have different number of drugs, targets, and drug target interactions (see
Table 1 for exact statistics of the ratios for each dataset).

We use the area under the ROC and precision recall curves (AUC-ROC and AUC-
PR respectively) as an indication of the predictive accuracy of our model. We compute
both metrics on the testing data (DTIs), where we divide the testing data into three
groups: (1) Sp , containing testing drug target interactions where both the drug and
the target are involved in known drug target interactions in the training data, (2) Sd ,
containing testing drug target interactions which contain drugs that have no known
drug target interactions in the training data, (3) St , containing testing data of targets
that has not involved in any known drug target interactions in the training data. The
main reason for splitting the data this way was that one of the methods could not be
compared with the others on the St ,Sp data. The largest Sp group, however, generally
exhibits least fluctuations across particular cross-validation runs, and therefore it is
arguably most representative in terms of the comparative validation.

We also compute aggregated weighted AU-ROC, AU-PR scores for comparing the
different models regardless the data group. These scores are defined as follows:

M =
∑

g

ωg ·Mg , (3)

where g ∈ {Sp ,Sd ,St }, M represents the aggregated score (AUC-ROC or AUC-PR), Mg

is the specific score value for the group g , and ωg is the weight of the particular data
group computed by dividing the number of instances in g by the total number of
instances in Sp ∪Sd ∪St .

2.10 Experimental setup

We use the supporting knowledge graph to perform a grid search to learn the model’s
best hyperparameters. In all of our experiments we initialise our model embeddings
using the Glorot uniform random generator [40] and we optimise the training loss
using the AMSGrad optimiser [38], where the the learning rate (lr) ∈ {0.01,0.02,0.03},
embeddings size (K ) ∈ {50,100,150,200} and batch size (b) ∈ {128,256,512,1024,4000}.
The rest of the grid search hyper parameters are defined as follows: the regularisation
weight (λ) ∈ {0.1,0.3,0.35,0.01,0.03,0.035}, dropout (d) ∈ {0.0,0.1,0.2,0.01,0.02}. The
number of training epochs is fixed to 1000. The outcome best parameter for this grid
search is included in table 2 in the supplementary materials.

We use Tensorflow framework (GPU) along with Python 3.5 to perform our exper-
iments. All experiments were executed on a Linux machine with processor Intel(R)
Core(TM) i70.4790K CPU @ 4.00GHz, 32 GB RAM, and an nVidia Titan Xp GPU. We
include the training runtime of the TriModel model for each cross-validation iteration
for all the investigated benchmarks in Fig. 1 in the supplementary materials.
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2.11 Comparison with state-of-the-art models

We evaluate our model on the Yamanishi_08 and DrugBank_FDA datasets, and we
compare our results to the following state-of-the-art models: DDR [18], NRLMF [17],
NRLMF [15], KRONRLS-MKL [16], COSINE [42], and BLM-NII [11]. The comparison
is made using the metrics of area-under-the-ROC (AUC-ROC) and precision-recall
(AUC-PR) curves.

Fig. 2 presents overall results in terms of the AUC-ROC and AUC-PR scores for all
compared models. The overall scores are combined across all testing configurations
(Sp ,Sd ,St ) for each dataset, where each specific score is computed as described in
Eq. 3.

The results show that the TriModel model outperforms all other models in terms of
AUC-ROC and AUC-PR on every benchmarking dataset. The TriModel model achieves
a better AUC-PR score with a margin of 4%, 2%, 3%, 3%, 4% on E, IC, GPCR, NR, and
DrugBank_FDA datasets respectively. It should be noted that we did not include the
COSINE method in Fig. 2 as it is specifically designed to predict new drugs that do not
have DTIs in the training phase. As such, the description of the method only reports
accuracy on the new drug configuration (Sd ), while the presented combined scores
require values of all three evaluation configurations.

Table 2 shows a detailed comparison of the TriModel model and state-of-the-art
models on all the standard benchmarking datasets for the the different evaluation
settings Sp , Sd , and St . It also shows the relative number (in per cent) of drug-target
statements available for each of the three validation settings.

The results in Table 2 show that the TriModel model outperforms other state-of-
the-art models on 13 out of 15 different AUC-ROC experimentation configurations.
In case of AU-PR, our model is better 14 out of 15 configurations. The results also
show that the experimental configurations where our model is not the best represent
a small portion of the total number of DTIs, while the TriModel model provides
consistently better results for the largest Sp partition of the validation data.

Table 2 also show the results of the TriModel model on our proposed KEGG_MEDD
dataset, where the model’s AUC-PR scores are 0.18, 0.18, and 0.94 and its AUC-ROC
scores are 0.81, 0.58, and 0.99 on the configurations Sd , St , and Sp respectively.
No comparison with existing tools has been performed as their published versions
cannot be directly applied to this data set.

2.12 Limitations

Despite the very promising results achieved by the prior knowledge-based models
like DDR and TriModel , their predictive capabilities are best suited to finding new
associations between well-studied drugs and targets (useful for instance in the drug
repurposing context). If one needs predictions for de novo drug discovery, the models
that utilise drug structure and target sequence similarities (e.g. BLM-NII, COSINE,
KRONRLS-MKL, NRLMF or NRLMF) will likely deliver better results.
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2.13 Web application for exploring the TriModel predictions

To let users explore our results, we have designed a web application 3. The applica-
tion allows for searching the predictions of the TriModel model. One can look for
predictions using either drugs or targets as queries. Queries concerning multiple
entities are possible simply by appending new terms to the search query. The results
are presented as a table of the TriModel model scores of all the possible drug-target
associations of the searched term.

The predictions provided by the web application are learnt by training the Tri-
Model model on all the Yamanishi_08 dataset. The prediction scores are then com-
puted for all possible drug-target combinations induced by the dataset. The scores of
known drug interactions in the Yamanishi_08 dataset are set to 1, while the scores of
all other drug target interactions are the normalised outcome of the TriModel predic-
tions. The table of predictions in the application indicates the origin of each score,
where a unique label "Experimental Evidence" is given to known DTIs and another
label "Model Prediction" is assigned to the predicted scores.

2.14 Discussion

In the following we discuss possible reasons for the improved performance of our
approach when compared to existing methods. We also review the limitations of
the current DTI prediction benchmarks and discuss impact of data stratification
on the predictive power of the models. Last but not least, we present tentative
results in expert-based validation of predictions of our model that are not covered
by the benchmark datasets. These results show high promise in terms of actual new
discoveries predicted by our model.

2.15 Distinctive features of the presented approach

The relative success of the TriModel model can be attributed to two distinctive fea-
tures not present in the state-of-the-art models. Firstly, we model input for the
training as knowledge graphs. This allows for encoding multiple types of associations
within the same graph and thus utilising more complex patterns. Other models
that use graph-based data are limited in this respect as they only employ networks
with single relation type. Secondly, the TriModel model uses a generative approach
to learn efficient representations for both drugs and their targets. This approach
enables scalable predictions of large volumes of drug-target interactions as it uses
linear training time [25] and constant prediction time, which is not the case of the
existing works. Furthermore, the TriModel model is able to predict other biological
associations within the training data (e.g. drug and target pathways) with no extra
computational effort. This shows substantial promise for further development of this
technique.

3Hosted at: http://drugtargets.insight-centre.org.
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2.16 Impact of data stratification on the predictive power

The Yamanishi_08 dataset is divided into four groups of DTIs according to the func-
tionality of the target proteins. The groups are enzymes (E), ion-channels (IC) G-
protein-coupled receptors (GPCR), and nuclear receptors (NR). The objective of this
categorisation is to distinguish between models specifically tailored to predicting
targets associated with a particular drug class [10]. [18] confirmed that organising the
drug target interactions into groups according to the target’s biological functionality
enhances the predictive accuracy of models trained on such stratified data.

Based on our observations, we suggest a different explanation. The differences in
performance appear to correlate with the relative numbers of negative examples in
the grouped and full dataset configuration. Table 1 shows that the full Yamanishi_08
dataset configuration has a 0.66% positive to negative ratio, while the groups E, IC,
GCPR, and NR have 1%, 3.57%, 3.03%, and 6.67% respectively. These differences can
explain the variability of model performance quite well, since predicting positive
instances is generally harder with more negatives present in the data [43]. In addition,
dividing the DTI information gives rise to groups like the GPCR and NR groups. These
contain only a small number of true DTIs (635 and 90 DTIs respectively), which
further hampers the ability of models to generalise well (as we show in Section 2).

2.17 Validating the discovery potential of TriModel

Good performance of a model in benchmark tests is no doubt important. For various
reasons like overfitting or training data imbalances, however, good benchmark results
may not necessarily mean that the model can effectively support new discoveries.

Laboratory validation can ultimately confirm the model predictions as actual
discoveries, but this is costly and time-consuming to be done at large scale. One can,
however, perform alternative validations of the predictions using data that was not
used for training the model. Such complementary validation can provide stronger
foundations for claiming a model has high generalisation power.

We have performed a complementary validation of the TriModel ’s predictions
by manual analysis of top-10 drug-target associations per each of the examined
benchmarking datasets. To decide whether or not the associations are true positives,
we reviewed available literature. We only validated the predictions that were not part
of the training data. The validation outcome shows that the TriModel model achieves
7 out of 10, 7 out of 10, 8 out of 10, 7 out of 10 and 6 out of 10 true predictions on
the E, IC, GPCR, NR, DB datasets respectively. A detailed version of the validated
predictions is included in Table 3 in the supplementary materials.

One can easily see that our model puts actual drug-target introductions (some of
which were only recently discovered) high up in the result list. This is very promising
for further development of the model and its deployment in clinical application
scenarios.
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2.18 Conclusions and future work

In this work, we have approached the problem of predicting new drug targets as a
link prediction task in biomedical knowledge graphs. We have presented the Tri-
Model model, a knowledge graph embedding model that can efficiently predict new
drug target interactions. We have generated knowledge graphs of biological entities
related to drugs and targets using available biological knowledge bases like KEGG,
UniProt, and DrugBank. We have then used these knowledge graphs to train the
TriModel model to learn efficient vector representation for both drugs and targets.
In experiments using a standard benchmark data, we have demonstrated that the
TriModel model outperforms state-of-the-art models in terms of both the area under
ROC and precision recall curves.

Our study has also led to several secondary findings and contributions. We have
shown that dividing datasets of drug target interactions into groups based on target
properties does not positively affect the predictive accuracy of computation models.
It can result in groups with very few drug target interactions, which negatively affects
the accuracy of learnt models. Last but not least, we have developed a new KEGG
based drug target interactions dataset that tackles the issues in the Yamanishi_08
dataset, and provides a richer set of up-to-date drug target interactions.

In future, we intend to explore how incorporation of more context data relevant
to the target prediction problem can further improve the accuracy of our model.
Last but not least, we will validate selected predictions of our model in laboratory
experiments to demonstrate the clinical relevance of our results.
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