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Abstract

Background: Experimental techniques such as DNA microarray, serial analysis of gene expression

(SAGE) and mass spectrometry proteomics, among others, are generating large amounts of data

related to genes and proteins at different levels. As in any other experimental approach, it is

necessary to analyze these data in the context of previously known information about the biological

entities under study. The literature is a particularly valuable source of information for experiment

validation and interpretation. Therefore, the development of automated text mining tools to assist

in such interpretation is one of the main challenges in current bioinformatics research.

Results: We present a method to create literature profiles for large sets of genes or proteins

based on common semantic features extracted from a corpus of relevant documents. These

profiles can be used to establish pair-wise similarities among genes, utilized in gene/protein

classification or can be even combined with experimental measurements. Semantic features can be

used by researchers to facilitate the understanding of the commonalities indicated by experimental

results. Our approach is based on non-negative matrix factorization (NMF), a machine-learning

algorithm for data analysis, capable of identifying local patterns that characterize a subset of the

data. The literature is thus used to establish putative relationships among subsets of genes or

proteins and to provide coherent justification for this clustering into subsets. We demonstrate the

utility of the method by applying it to two independent and vastly different sets of genes.

Conclusion: The presented method can create literature profiles from documents relevant to

sets of genes. The representation of genes as additive linear combinations of semantic features

allows for the exploration of functional associations as well as for clustering, suggesting a valuable

methodology for the validation and interpretation of high-throughput experimental data.

Background
Experimental techniques such as DNA microarray, serial
analysis of gene expression (SAGE) and mass spectrome-

try proteomics, among others, have opened new ways to
study biological systems from a global perspective. These
new methodologies are generating large amounts of data
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related to genes and proteins at different levels. As in any
other experimental approach, it is necessary to analyze
these data in the context of the previously known infor-
mation about the biological entities under study. How-
ever, obtaining and interpreting biological knowledge
from these large sets of data is not a trivial task. Conse-
quently, the development of automatic methods to assist
in functional interpretation is one of the main challenges
in bioinformatics research.

The advent of on-line access to biomedical literature in
the last few years has generated a broad interest in text
analysis tools for automatic extraction of latent informa-
tion and knowledge about almost any topic in science.
Since biomedical literature covers all aspects of biology,
chemistry, and medicine, there is almost no limit to the
types of information that may be recovered through care-
ful and exhaustive mining [1]. Therefore, the literature is
a valuable source of information to be automatically ana-
lyzed for experiment validation and interpretation.

Furthermore, database curators make extensively use of
the biomedical literature in order to find evidence sup-
porting functional information of genes and proteins.
This information is ultimately available as annotations
using controlled vocabularies, ontologies, free-text and
reference to relevant publications. Although text analysis
can support database curation and experimental interpre-
tation, these two applications are distinct areas, as they
address different requirements and different problems.
On one hand, methods and tools for supporting experts
in database annotation work with very large document
collections (in the extreme case a whole bibliographic
database such as MEDLINE, or typically, an organism-spe-
cific subset of MEDLINE [2]). In addition, such applica-
tions have stringent search criteria which enable the
definition of a relevance metric (e.g., the search for articles
describing proteins associated with biological processes).
Due to these characteristics, such methods are typically
part of the broad category of information retrieval although
in some cases they also require an information extraction
component to find explicit entities and facts within the
unstructured text. On the other hand, methods developed
to assist researchers in the interpretation of genome-wide
experiments can be applied to much smaller literature col-
lections (in some cases, only the known relevant articles
associated with the gene/protein), and the precise infor-
mation to be extracted is generally not well-defined.
Therefore, these methods can be generally described as
text mining [3]. Undoubtedly, the latter can benefit from
bibliographic annotations available in curated databases.
Likewise, literature annotations will not be used to their
full extent by bench scientists if they cannot rely on auto-
matic tools for their analysis.

One of the necessary steps in supporting high-throughput
genomic and proteomic experiments is the attribution of
functional meaning to the results (e.g. the set of genes dif-
ferentially expressed obtained in a DNA microarray exper-
iment or a list of protein identifications obtained by mass
spectrometry). During the last few years, several literature
analysis methods have been proposed to support such
functional analysis of genes and proteins. Co-occurrence
based methods associate genes and proteins if their names
co-occur within some scope of the literature (abstract,
document, paragraph or sentence). Such methods use
gene nomenclature [4], thesaurus concepts [5], or general-
ized objects (namely gene names, diseases, phenotypes
and chemical compounds) [6]. These methods usually
need large literature collections as well as powerful meth-
ods for entity/name detection. Therefore, co-occurrence
methods typically rely heavily on information extraction
techniques. Other methods identify functional relations
among pre-clustered genes by inferring terms that are sig-
nificantly associated with gene expression clusters [7], or
alternatively, by using clusters that exhibit similarity in
both expression and related literature [8], or by calculat-
ing a score that indicates text-based functional coherence
[9]. While these methods are useful in some experimental
environments, they are of limited use when the experi-
mental techniques do not readily produce gene/protein
subsets (e.g. protein identifications obtained by mass
spectrometry).

Finally, a number of text mining methods rely on docu-
ment similarity measurements (originally developed in
the context of information retrieval) to establish relation-
ships among genes based on their associated literature.
Shatkay et al. [10] used a probabilistic model [11] to sug-
gest gene relationships and provide a keyword list associ-
ated with each gene. Chaussabel and Sher [12] performed
a two-way hierarchical clustering of documents repre-
sented by term-frequency vectors [13,14] to find gene rela-
tionships as well as local patterns of terms associated with
gene subsets. Glenisson et al. [15] investigated value of the
vector space model for gene clustering, based on a divisive
clustering algorithm. (Several other groups have used the
vector space model to represent and cluster documents in
a variety of biomedical applications [16-18]). More
recently, Homayouni et al. [19] used the latent semantic
space obtained by means of Singular Value Decomposi-
tion (SVD) [20] to group genes, applying hierarchical
clustering. The benefit of these methods is that they pro-
vide a literature profile (by means of different document
representations) for each gene/protein of interest. These
profiles are then used to perform further analysis like pair-
wise comparisons, clustering or are even combined with
experimental measurements [21]. Clearly, there is still
much room for improvement on all these methods, and
biomedical text mining is a widely open research area.
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In this paper we propose a novel application of a different
data analysis method, non-negative matrix factorization
(NMF), to create literature profiles and establish relation-
ships within large sets of genes/proteins from a corpus of
documents known to be relevant to each gene/protein.
NMF was introduced a few years ago [22] in another com-
putational context, (originally applied to image as well as
to text analysis), and more recently it has been used to
analyze gene expression [23,24], sequence data [25], and
gene functional annotations [26].

The document representation obtained by NMF provides
advantages over previous representations as it combines
the best properties found in other models [27-29]. First,
like other factorization methods, it reduces the dimen-
sionality of the initial space originally formed by terms
and documents. Second, the new basis vectors, produced
by the factorization, provide a succinct list of positively
weighted terms that can be interpreted as "executive sum-
maries", while providing a new representation of docu-
ments, as additive combinations of the basis vectors. In
contrast, the classical singular value decomposition
(SVD), which combines positive and negative mixtures,
produces features which lack intuitive meaning [22].

Briefly, key steps in the proposed methodology are as fol-
lows. First, for each gene in the data set we create a broad
document (which we call the gene-document). It is pro-
duced by concatenating all the relevant abstracts and titles
associated with the gene in the corpus. Second, each gene-
document is converted into its vector space representa-

tion. Third, by applying NMF to the vector representation,
we transform each gene into a literature profile that cap-
tures its relative relevance in a new set of basis vectors. Lee
and Seung [22] used the term semantic features to refer to
the basis vectors discovered by NMF, since these vectors
consist of a weighted list of terms that are semantically
related. In this work we have examined the semantic fea-
tures obtained by NMF to assess their potential value as
functional descriptors. Finally, semantic profiles are fur-
ther used to analyze relationships among genes, as well as
to classify genes into coherent functional groups.

In this way, the literature is used to first, discover the main
semantic features associated with a large list of genes, and
second, to establish putative relationships among subsets
of genes while providing a sound justification for this clas-
sification. The information obtained by our method can
be further used to interpret and validate high-throughput
experimental results. For simplicity and clarity of the
exposition we only refer to genes, although the methodol-
ogy is applicable to genes, proteins, and potentially other
types of entities discussed in the biomedical literature. It
is important to mention that the proposed method
requires a collection of literature references that are rele-
vant to each gene (here referred to as the literature corpus).

In summary, our method is able to:

• Discover semantic features from a literature corpus gener-
ated for a set of genes, providing a semantic profile for
each gene.

Method overviewFigure 1
Method overview. Schematic overview of the method and corresponding gene representation.
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• Suggest functional associations among genes based on
their similarity in the discovered semantic space.

To evaluate our method, we used two gene datasets. The
first, created for this purpose, contains 575 Saccharomyces
cerevisiae genes associated with eight broad biological
processes. The second contains 50 genes related to cancer
biology, Alzheimer's disease and development (referred
to as the Reelin dataset). This set was proposed and ana-
lyzed by Homayouni et al. (2005) [19] to identify concep-
tual gene relationships. To build the corresponding
literature corpora, we used two databases containing bib-
liographic references annotated by experts. In the case of
the yeast set, literature references were obtained from the
Saccharomyces Genome Database (SGD) [30] while in the
case of the Reelin dataset, references were obtained from
Entrez Gene [31,32]. We provide both datasets and corre-
sponding literature corpora as supplementary data in the
project web page to support future comparative studies
[33]. The selection of curated bibliographic references
ensures that the texts to be mined are relevant to the genes
in each set.

Results
General schema of the method

Briefly, our method proceeds as follows (see Figure 1): a
broad gene-document is constructed for each gene by con-
catenating its relevant bibliographic references (abstracts
and titles). A vector space representation, namely, a
weighted term-frequency vector, is built for each gene-
document. This term-based space (V) is mapped by means
of Non-negative Matrix Factorization (NMF), to a lower-
dimensional representation based on semantics features
(W), obtaining a new semantic-based space, where genes
are represented through semantic profiles (H). Gene rela-

tionships are established by cluster analysis of the gene
semantic profiles. A detailed description of the methodol-
ogy is provided in the Methods section.

S. cerevisiae dataset

To assess the performance of our methodology we used a
set of Saccharomyces cerevisiae genes for which functional
annotations are well-established, providing a basis for
assessing the value of our results. To construct this set we
selected eight biological process categories from the SGD
Gene Ontology Slim Mapper [34]. As GO Slim Mapper
provides expert annotation of SGD genes to a set of high
level GO categories, we can use these annotations as a
gold standard to compare our results against. The chosen
categories are: 'cell cycle', 'cell wall organization and bio-
genesis', 'DNA metabolism', 'lipid metabolism', 'protein
biosynthesis', 'response to stress', 'signal transduction'
and 'transport' (see table 1).

Genes annotated with any of these eight categories were
obtained from the SGD database [30]. The gene set was
further filtered so as to retain those genes having a similar
number of annotated references. Thus, the chosen genes
all had between 10 and 100 bibliographic references
under the "Function/Process" annotation category. This
selection resulted in the final set of 575 genes (referred to
hereafter as the SGD8 dataset), with a literature corpus
comprising a total of 7,080 distinct articles. Therefore, this
dataset contains a heterogeneous set of genes related to
different expert-annotated biological processes, which are
expected to be covered in the associated literature. This
data is a valuable test set to assess our method, as well as
for assessing the value of the semantic features for func-
tional interpretation, since we examine here whether the
gene relationships and the semantic features – automati-

Table 1: Biological processes in test data set (according to GO Slim annotations in "Biological Process Category")

GO Code GO Name Number of genes Common genes

GO:0007049 cell cycle 77 5 DNA metabolism

2 response to stress

GO:0007047 cell wall organization and biogenesis 32 3 signal transduction

GO:0006259 DNA metabolism 146 5 cell cycle

1 transport

GO:0006629 lipid metabolism 34 1 response to stress

GO:0042158 protein biosynthesis 49 -

GO:0006950 response to stress 63 2 cell cycle

1 signal transduction

4 transport

1 lipid metabolism

GO:0007165 signal transduction 39 3 cell wall organization and biogenesis

1 response to stress

GO:0006810 transport 152 1 DNA metabolism

4 response to stress
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cally extracted by NMF – agree with the relationships that
can be established by curated annotations.

We then constructed a term-frequency vector representa-
tion from the literature associated with each gene. Terms
were filtered out if they did not appear in at least 4% of the
genes, or alternatively, if they appeared in more than 80%
of the genes. These cutoff values were chosen as they have
proven good in practice, to remove very frequent terms
which are not good discriminators among genes and, at
the same time, to remove very rare terms which are only
relevant to a few genes in the set and are therefore not
good characteristics for relationships among them [14].
The resulting gene-term matrix after this process contains
575 vectors (genes) and 2,365 variables (terms). In prac-
tice, cutoff values should be established within reasonable
limits to obtain robust results. Our experiments with the
SGD8 dataset suggest that terms can be filtered if found in
less than 28 genes (as uncommon terms will be filtered in
any case in the factorization step) and the cutoff filter for
common terms should not be less that 60% (to ensure
that semantic features contain general biological termi-
nology that support easy interpretation).

The selection of the number of factors k (or semantic fea-
tures) for this data set was done using the model selection
method proposed by Brunet at al. (2004) [24]. Briefly, the
cophenetic correlation coefficient is used as a measure of
the robustness of the method in producing stable groups
of genes from different random initializations for a given
number of factors (k). Based on this estimation, a value of
k = 8 was selected from a set of 100 independent runs,
(with k's value ranging from 2 to 16, see Additional file 1).
Usually the value of k is selected at the point where the
magnitude of the cophenetic correlation coefficient shows
a significant expression in the form of a peak. However, it
is possible that several peaks appear for different values of

k, which indicates that there are multiple possible stable
solutions. In general, higher values of k will reveal more
localized and specific semantic features in the literature.
In our case we selected the value k = 8 because it repre-
sented the minimum number of recognized stable fea-
tures, although more detailed features could also be
found if a higher k value was chosen.

Analysis of semantic features

The rational behind our approach lies in the ability of
NMF to transform the representation of gene-documents
from a high-dimensional vector of term counts into a
lower-dimensional, additive linear combination of
semantic features. Both the features and the linear combi-
nation are simultaneously inferred during an iterative
learning process. Unlike other matrix decomposition
methods, e.g. latent semantics indexing via SVD, NMF
enforces a linear combination using only nonnegative
coefficients, and therefore, unlike SVD, NMF tends to pro-
duce a decomposition of the data under analysis into
readily-understood components [22]. In the context of
text analysis, this decomposition produces features, which
are essentially sets of terms as found in a subset of the orig-
inal data. Note that the widely-used SVD does not pro-
duce such terms, but rather abstract weight combinations
that are not easily interpreted. The set of terms produced
by NMF were referred to as semantic features by Lee and
Seung (1999) as they are usually topically related.

We have examined the semantic features obtained by
NMF to assess whether the relatedness of the terms within
semantic features supports their use as biological descrip-
tors. Each semantic feature consists of an ordered list of
terms, sorted by their respective weight in the W coeffi-
cient matrix, where only a few of the terms that were orig-
inally extracted from the corpus have non-zero value. This
way, the semantic features could help researchers in inter-

Table 2: Example semantic features (SGD8 dataset). Top 10 terms in the k = 8 semantic features obtained for a NMF experiment 

(ordered by decreasing importance). Labels show topical interpretations provided by experts (including more concrete topics in 

parenthesis)

F1 DNA 
metabolism 
(DNA 
replication)

F2 DNA 
metabolism 
(DNA repair)

F3 
Metabolism/
Stress/
Degradation

F4 
Transciption 
(chromatin)

F5 Cell 
Division 
(mitosis)

F6 
Miochondria

F7 Transport 
(vesicular 
trafficking)

F8 Protein 
synthesis

replic repair glucos actin spindl mitochondri transport translat

pcna telomer fatti swi cyclin preprotein vesicl mrna

dna dsb heat nucleosom kinetochor mitochondria vacuolar trna

ner recombin stress snf hsp90 inner vacuol alpha

damag mismatch endoplasm histon chaperon transloc membran gcn4

checkpoint dna reticulum chromatin scf outer nitrogen beta

rfc rad52 proteasom elong anaphas membran secretori gtp

pol excis phosphatas mate mitosi matrix autophagi phosphoryl

polymeras rad51 atpas silenc centromer oxid cytoplasm exchang

rad6 endonucleas sphingolipid polar mitot translocas sort kinas
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preting the obtained literature profiles by highlighting the
most significant terms of each feature. Genes, which are in
turn viewed as additive combinations of semantic features
– called semantic profiles – can be characterized using the
terms occurring within their respective features.

Although the terms included in each semantic feature
appeared topically related to the authors we performed an
additional unbiased assessment. To guarantee the inde-
pendence and objectivity of the evaluation, four molecu-
lar biologists (including only one specialist in
microbiology among them), were independently asked to
interpret the top 10 terms in each semantic feature, pro-
viding a free text label that summarizes the biological top-

ics that each term set suggested. To avoid bias in the
interpretation, GO Slim categories were not provided to
the experts. The experts were able to identify a coherent
biological context for each feature represented by the top
terms in the list. For seven of the eight features the four
experts were in complete agreement, although labels vary
slightly, as features were interpreted at several levels of
abstraction (e.g. mitosis vs. cell division, vesicular traffick-
ing vs. transport, DNA repair vs. DNA metabolism). Only
one of the eight features (feature 3) was subject to three
different interpretations, revealing a possible mixture of
base topics (metabolism, stress response, protein degrada-
tion). Table 2 shows the semantic features (k = 8), discov-
ered in a factorization experiment for the SGD8 dataset as

Example semantic profilesFigure 2
Example semantic profiles. Genes are represented as semantic profiles (linear combination of semantic features). Profiles 
of some of the genes in the SGD8 dataset are shown, using semantic features (F1 to F8) in table 2.
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SGD8 dataset gene clusteringFigure 3
SGD8 dataset gene clustering. Two-way hierarchical clustering of both gene-documents and semantic features of the 
SGD8 set allows determination of gene clusters and corresponding significant factors.
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an ordered list of top 10 terms, and the corresponding
labels provided by experts.

To summarize this stage, NMF provides a new representa-
tion scheme, mapping the initial high-dimensional gene-
term representation, to an additive linear combination of
features (gene semantic profile) in a lower-dimensional
space. The semantic profile provides information about
the relative weights of semantic features in the corpus rel-
evant to a given gene (Figure 2). The latter representation
is a good fit for the case of functional information as it
takes into account the significant number of gene prod-
ucts that perform multiple functions in the cell. Also, sev-
eral aspects of the functional characterization of a gene are
described in the literature. In this way, some genes are
associated mainly with one semantic feature. For instance,
RAD59, involved in the repair of double-strand breaks in
the DNA, has a profile that shows a clear component of
feature 2 (labeled as DNA repair by the experts); SNF2,
encodes the catalytic subunit of the SWI/SNF chromatin
remodeling complex, has a high value at feature 4 (labeled
as chromatin); TOM22, a constituent of the mitochondrial
outer membrane translocase complex involved in protein
import into mitochondria, is strongly associated with fea-
ture 6 (labeled as mithochondria); and ATG9, encodes a
transmembrane protein involved in formation of Cvt and
autophagic vesicles, is clearly associated with feature 7
(labeled as transport).

Other genes have multi-feature profiles, showing rela-
tively high values for more than one feature. E.g. RAD2
(features 1 and 2, labeled as DNA replication and DNA
repair respectively) is a single-stranded DNA endonuclease
that cleaves single-stranded DNA during nucleotide exci-
sion repair to excise damaged DNA; and PET54, which
encodes a protein required for splicing the COX1 intron
AI5 beta, also specifically required together with Pet122p
and Pet494p, for translation of the COX3 mRNA, is
located in the mitochondrial inner membrane (in this
case the highest weights are given to features 6 and 8,
labeled as mitochondria and protein synthesis respectively).

To further verify that the interpretability of the semantic
representation originates in the data, and is not an artifact
of the proposed methodology we performed the same
analysis using a random dataset. The initial data, i.e. gene-
term frequency matrix corresponding to the SGD8 set, was
randomly perturbed by iterative shuffling of elements in
each row and column. Low cophenetic correlation coeffi-
cients (in the range of 0.4–0.5 for random data compared
to ~0.95 values in SGD8 set) revealed the impossibility of
finding stable groups along different factor values (see
Additional file 1). In addition, the four experts could not
find any common biological topic to the set of terms com-
prising each of the obtained features.

Inferring functional relationships from semantic profiles

Our assumption, which is further justified by our results,
is that semantic features discovered by NMF analysis of
gene literature provide an interpretable, reduced dimen-
sionality space in which functional relationships among
genes can be established. That is, genes represented by
similar semantic profiles are indeed functionally related.

In order to verify the value of the semantic profiles to
establish similarities among genes we performed a cluster-
ing experiment to find functionally coherent groups. To
provide a robust clustering, we exploit the non-determin-
istic nature of the NMF algorithm, which results in simi-
lar, but still different semantic profiles when starting from
different random initializations. Using the same rank (k =
8 for the SGD8 set), we ran the NMF procedure 10 times,
creating a set of 10 distinct factorizations. This gives rise to
a new matrix of 575 genes and 80 semantic features (cor-
responding to 8 factors of 10 independent NMF experi-
ments). We note that this vector representation is about
30 times smaller than the initial term-based vector space
representation (from an initial basis of 2,365 terms to 80
semantic features). It is important to note that the seman-
tic features obtained by independent factorizations might
be redundant, which implies the retention of the most sta-
ble sub-topics found within the literature corpus.

The combined use of semantic profiles obtained by 10
NMF experiments improves the reproducibility of results.
This is shown by the increase of the correlation coefficient
of the pair-wise gene distances built in two independent
analyses. Using the combination of profiles obtained with
10 factorizations the correlation coefficient is 0.87, in
contrast to correlations in the range of 0.40 for the dis-
tances obtained from single NMF factorizations.

Clustering of both genes and features in the semantic pro-
files allows us to analyze the set of semantic features that
are relevant for each gene subset, as well as to evaluate
their usefulness for the functional interpretation of the
clusters. Cluster analysis can be done using any available
clustering method. In this work we chose to use agglom-
erative hierarchical clustering (using Ward's algorithm
and half square Euclidean distance) due to its simplicity
and interpretability. Semantic profiles are first normalized
by z-score to make independent NMF factorizations com-
parable. Results of hierarchical two-way clustering of
SGD8 semantic profiles are provided in Figure 3, showing
a threshold cutoff of 11 gene clusters (see also Additional
file 2). The use of combined semantic profiles obtained
from several independent NMF runs allowed for a more
robust clustering, as independent factorizations provide
insight into diverse biological themes.
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Table 4: SGD8 gene clusters. Clusters obtained from the SGD8 dataset.

Cluster (num. genes) Majority Slim annotation Comments

A. DNA repair and replication (108 genes) 'DNA metabolism' (103 genes) The rest of the genes in the cluster (5) are also related to 
DNA repair and replication processes taking into account 
their functional annotations in SGD.

B. Lipid metabolism (38 genes) 'lipid metabolism' (32 genes) Genes annotated with other Slim categories (6), also contain 
functional annotations in SGD revealing their implication in 
lipid metabolism.

C. Response to stress (46 genes) 'response to stress' (23 genes) Among genes with other Slim categories there are genes 
involved in the ubiquitin-dependent protein catabolism (GRR1, 
SKP1, CDC4, MET30, CDC34, CDC53, HRT1, UFD1, CDC48, 
RPN4, DOA1); chaperones (SIS1, SSB1, YDJ1, SSA1) and RAS 
protein signal transduction (RAS1, IRA2, CDC25).

D. Transport I (47 genes) 'transport' (37 genes) Most genes in the cluster (40) are annotated with membrane 
related localizations in GO cell component category: 'plasma 
membrane' (35 genes), 'periplasmic space' (4 genes) and 
'membrane fraction' (1 gene).

E. Transport II (25 genes) 'transport' (20 genes) 13 genes correspond to hydrogen-transporting V-type 
ATPases (namely STV1, VMA2, VPH1, VMA13, VMA8, VMA7, 
VMA5, TFP3, VMA6, VMA10, VMA4, TFP1, PPA1). It also other 
'transport' category proteins: four members of the P-type 
ATPase superfamily (PMC1, PMR1, ENA1, PMA2), and three 
ion channels (CCH1, MID1 and FPS1).

F. Transport III (51 genes) 'transport' (42 genes) Non-transport genes are related to vacuole organization and 
inheritance (FAB1, TRX1, TRX2) or glycosylation (MNN4, 
KRE2, WBP1).

G. Mitochondria (30 genes) 'transport' (24 genes) Contains mitochondria located genes. Transport genes: 
members of the mitochondrial protein translocase family 
(TIM22, MRS11, TIM13, TIM8, TIM9, TIM17, MAS6, TOM40, 
TIM44, MGE1, TOM70, TOM20, TOM5, TOM22, TOM6, TOM7 
and MRS5); mitochondrial outer membrane porin (POR1), 
translocase of the mitochondrial inner membrane (OXA1). 
Non-transport genes are located in the 'mithocondrial matrix' 
(SSQ1, HSP78, PIM1, PET54), 'mitochondrial inner membrane' 
(PET111) and 'mitochondrion' (MTF2).

H. Gene expression (chromatin) (33 genes) 'DNA metabolism' (28 genes) All genes contain chromatin related GO annotations in SGD. 
Contains 5 genes with other Slim categories related to 
chromatin.

I. Cell cycle (37 genes) 'cell cycle' (33 genes) Contains also 'transport' and two "signal transduction" Slim 
genes. Transport genes are: MAD1 (annotated as mitotic 
spindle checkpoint) and PDS1 (essential for cell cycle arrest in 
mitosis in the presence of DNA damage or aberrant mitotic 
spindles).

J. mRNA and protein biosynthesis (93 
genes)

'protein biosynthesis' (40 genes) Other genes in the cluster include translation elongation and 
translation initiation factors as well as those involved in 
mRNA processing like mRNA catabolism, mRNA-nucleus 
export or the RNA polymerase II transcription machinery 
(e.g. regulators like CDC36, CDC39).

K. Cell morphology response (67 genes) 'cell wall organization and biogenesis' 
(25 genes)

Among them a significant number is related to cell shape and 
structure (cell wall and cytoskeleton), as well as events and 
processes related to morphological changes in the cellular 
envelope (cell budding, sporulation, conjugation with cellular 
fusion, endocytosis).

Correspondence among the eleven gene clusters and the
80 semantic features for the SGD8 dataset is also indicated
in Figure 3 (as shown for cluster B using the dotted lines
in the figure). Characteristic semantic features for each
cluster were constructed by averaging the individual mem-
ber features. These average features reveal the most impor-
tant terms for each coherent group. Subsequently, we
asked the four experts to associate each of the average fea-

tures (10 top terms) with the eight GO Slim categories, as
well as to provide a free-text label (see table 4).

In the next two sections we evaluate the ability of our
method to identify functionally coherent gene subsets, by
detailed analysis of the eleven clusters obtained for the
SGD8 set, as well as by comparing our results with the
classification based on GO Slim categories.
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Detailed analysis of classes

We assess the performance of our method for the creation
of functionally coherent gene subsets, as well as its capa-
bility to provide a justification of such categorization. Any
expert-based categorization of genes is expected to yield
somewhat different results, depending on the criteria used
for the classification, as well as on the judgment and evi-
dence used to assign a gene to a category. We note that our
method is not driven by an a priori classification criterion,
but relies on the automatic discovery and creation of sim-
ilarity-based groups of genes constructed from a literature
corpus analysis.

The analysis of the 575 genes in the SGD8 set resulted in
eleven gene subsets (see table 5). Clusters A, B and C con-
tain genes highly associated with 'DNA repair and replica-
tion', 'lipid metabolism' and 'response to stress', respectively.

Clusters D, E and F constitute three separate groups of
genes associated with 'transport'. Although the terms com-
prising each average semantic feature do not provide a
clear topical distinction between these three clusters, their
existence reveals different aspects of transport within each
of them. These aspects have been assessed by the analysis
of functional annotations and descriptions of the genes in
each cluster. Cluster D (Transport I) appears to group
together genes associated with plasma membrane-related
transport mechanisms, as most genes in the cluster are
assigned GO annotations that indicate membrane related
localizations by the SGD. Cluster E (Transport II) contains,
among others, a significant number of V-type and P-type
ATPases. Finally, genes in cluster F (Transport III) are
related to autophagy (ATG4, ATG5, ATG7, ATG8, ATG9
and ATG12), ER to Golgi transport (vesicle-mediated
transport), protein-vacuolar targeting and protein translo-
cation (SEC61, SEC63 complexes and signal recognition
particle (SRP)).

Cluster G (mitochondria) contains genes with mitochon-
drial localizations (including a significant number of
mitochondrial transport genes). Cluster H (gene expres-
sion- chromatin) groups together genes with chromatin
related GO annotations. Cluster I contains cell-cycle
genes. Cluster J (mRNA and protein biosynthesis), includes
translation elongation and translation initiation factors,
as well as genes involved in mRNA processing.

Finally, cluster K (cell morphology response) contains a sig-
nificant number of genes related to cell shape and struc-
ture, as well as those related to events and processes
typically associated with morphological changes in the
cellular envelope (cell budding, sporulation, conjugation
with cellular fusion, endocytosis). A closer look at these
genes allows us to observe the existence of a significant
number related to the MAP kinase signaling pathway. The
MAPK cascade is related to various cellular processes: the
pheromone response pathway, filamentous invasive
growth, hyperosmotic response and cell wall remodeling.
We have found genes in this cluster related to all of these
networks: STE5, STE4, STE8, STE3, GPA1, FAR1 (pherom-
one pathway); WSC2, MID2, RHO1, FKS1, PKC1, MKK1,
MKK2, SLT2, RLM1, FKS2 (cell wall remodeling); YPD1,
SSK1, MSN2, MSN4, PTC2, STE50 (hyperosmotic
response); KSS1, PFY1, VRP1 (filamentous growth). Fig-
ure 4 shows those genes mapped to the S. cerevisiae MAPK
signaling pathway as provided by the KEGG PATHWAY
database [35-37].

What happened to the original GO Slim categories?

As demonstrated by the above analysis, the gene relation-
ships built by our proposed methodology correspond
well to biologically relevant information. Nevertheless,
the SGD8 set was originally constructed from only eight
broad process categories annotated by experts, while our
method produced eleven clusters. At this point, we assess
the relationships between the eight Slim categories and

Table 5: Semantic features (Reelin dataset clusters). Top 10 terms of semantic features representing the four clusters obtained for the 

Reelin dataset. An average semantic feature has been calculated from the characteristic features in each cluster obtained by two-way 

hierarchical clustering.

A. Cancer B. Development C. Alzheimer D. Reelin

p53 notch app tgf-beta

egfr sonic abeta reelin

c-myc notch1 amyloid tau

breast presenilin gamma-secretas fyn

tumor tgf-beta alzheim egfr

cancer limb presenilin phosphoryl

neu bud apo apo

tgf-beta ventral beta-amyloid src

p21 mesenchym amyloid-beta neuron

vegf patch plaqu apolipoprotein
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the eleven functional clusters obtained by our methodol-
ogy.

The GO Slim category 'lipid metabolism' maps clearly to
cluster B (lipid metabolism), as 94.1% of genes annotated
with the category 'lipid metabolism' are grouped together
in this cluster, constituting 84% of the genes in the cluster.
Our method has also discovered the relationship of six
additional genes, annotated by other Slim categories, to
lipid metabolism, based on their associated literature.

Two Slim categories ('DNA metabolism' and 'transport') are
subdivided by our method into more specific sub-catego-
ries. Nearly 90% of 'DNA metabolism' Slim genes are
found in two clusters (A and H). Among these genes,
those assigned to Cluster A (DNA repair and replication)
account for 95.4% of the cluster while those in cluster H
(gene expression-chromatin) account for 84.8% of the genes
in the cluster. In both cases, the method has been able to
provide a justification of these specializations through the
semantic features that link the two clusters to more spe-
cific 'DNA repair and replication' and 'gene expression-chro-
matin' subtopics within the 'DNA metabolism' broader
category.

Similarly, most of the Slim 'transport' genes (80.9%) are
placed by our method in four clusters: cluster D (transport
I) (78.7%), cluster E (transport II) (80%), cluster F (trans-
port III) (82.3%) and cluster G (mitochondria) (80%). This
division of the initial 'transport' category into more spe-
cific, coherent subgroups is specifically exemplified by
cluster D, which contains transport proteins located in the
plasma membrane and periplasmic space. Additionally,
cluster G demonstrates an organelle-based criterion for
categorization, as it groups genes encoding mitochondrial
located proteins.

Four Slim categories ('cell cycle', 'response to stress', 'protein
biosynthesis' and 'cell wall organization and biogenesis') have
been somewhat redefined. In the case of the 'cell cycle' and
'response to stress' categories, the genes that are kept clus-
tered together account for less than half of their new clus-
ters (42.8% in cluster I and 36.5% in cluster C
respectively). However, while 'cell cycle' genes are repre-
sentative of cluster I (89%), 'response to stress' genes form
just 50% of cluster C. This means that 'cell cycle' category
has been reduced by specification (only retaining the
most specific genes).

MAPK signaling pathway mappingFigure 4
MAPK signaling pathway mapping. Subset of genes in cluster K (colored in pink) mapped onto the MAPK signaling path-
way diagram for S. cerevisiae (04010sce pathway), as provided in the KEGG PATHWAY database [37].
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In contrast, 63.5% of the 'response to stress' genes have
been reassigned to different clusters, although they are not
representative of any of them. A possible explanation for
this reassignment is that it may be difficult to keep a
homogeneous and generic 'response to stress' group based
on the biomedical literature corpus analyzed. Since the
cellular response to stress triggers a multitude of cellular
processes and biochemical mechanisms, any classification
could potentially relate 'response to stress' genes to any of
these processes. This is the case of the SGD8 dataset,
where our method identified salient features related to
protein degradation in a subset of the data which are the
basis for cluster C. The rest of genes annotated with Slim
'response to stress' have been grouped in several clusters
according to different criteria. E.g. TEL1, SML1, LCD1
involved in the response to DNA damage have been
assigned to cluster A (DNA repair and replication); DPL1
implicated in sphingolipid metabolism to cluster B (lipid
metabolism); protein kinase CK2 complex proteins (CKA1,
CKA2, CKB1, CKB2) related to a corresponding modified
ribosome P2 protein (Rpp2Ap) are placed in cluster J
(mRNA and protein biosynthesis).

In the case of 'protein biosynthesis' and 'cell wall organization
and biogenesis' most genes (81.6% and 78%) remain
together in the same group although they represent less
than half of the genes in their respective clusters (43% in
cluster J and 47,7% in cluster K). The reason for these
changes is the functional characteristics that are assigned
by our method to the new clusters. In our results, cluster J
includes not only genes related to protein biosynthesis,
but also mRNA biosynthesis and degradation. Along the
same lines, cluster K includes cell wall genes as well as

other genes related to processes requiring changes in cell
morphology. Note that these characteristics of the clusters
are indicated by the terms associated with their semantic
features as shown in Table 3.

Finally, genes that were Slim annotated with 'signal trans-
duction' have been assigned to several clusters, causing the
dilution of this process category among other biological
topics in the set. As in the case of 'response to stress', signal
transduction is a broad category that covers several physi-
ological processes and biological pathways. Our analysis
has not found semantic features common to all 'signal
transduction' genes in the SGD8 set that allow them to
cluster together. However, the semantic features discov-
ered can relate some signaling genes to still relevant proc-
esses. For example, MAPK cascade genes in cluster K (cell
morphology response), or DPP1 and LCB3 in cluster B (lipid
metabolism).

Robustness of the method

In the experiments reported above we used curated, rele-
vant documents. To demonstrate that our method can
perform well even when the literature corpus contains a
certain degree of irrelevant documents, we performed an
additional experiment. We added 10% of noisy docu-
ments to the list of references for each gene. These noisy
documents where picked at random from among the
MEDLINE documents published in English between the
years 2000 and 2004, whose MESH annotation include
the three terms: 'genes', 'proteins' and 'Saccharomyces cer-
evisiae'. This selection of documents ensures that while
the documents may not all be relevant to the gene set, they

Table 3: Semantic features (SGD8 dataset clusters). Top 10 terms of semantic features representing the eleven clusters obtained for 

the SGD8 dataset. An average semantic feature has been calculated from the characteristic features in each cluster obtained by two-

way hierarchical clustering.

A. DNA repair and replication repair, dna, replic, telomere, checkpoint, pcna, damag, dsb, recombin, 
mismatch

B. Lipid metabolism sterol, fatti, lipid, ergosterol, synthetas, synthas, biosynthesi, actin, heat, 
sphingolipid

C. Response to stress mitochondri, hsp70, ubiquitin, dna, oxid, chaperon, shock, rad52, heat, 
camp

D. Transport I transport, membran, vesicle, golgi, outer, receptor, copii, export, snare, 
vacuolar

E. Transport II vacuolar, v-atpas, membran, vacuol, vesicl, transport, golgi, glucose, 
transloc, cytosol

F. Transport III transport, uptake, vesicle, vacuolar, vacuole, membran, permeas, 
nitrogen, ubiquitin, glucos

G. Mitochondria mitochondria, mitochondri, mitochondrion, inner, ino1, matur, translat, 
transles, membrane-associ, membran

H. Gene expression (chromatin) nucleosom, histon, swi, snf, chromatin, remodel, arrai, transcript, silenc, 
acetyl

I. Cell cycle spindl, cyclin, kinetochor, checkpoint, anaphase, mitosi, mitot, sister, 
chromosom, replic

J. mRNA and protein biosynthesis translat, mrna, ribosom, rna, poli, swi, snf, elong, transcript, atpas

K. Cell morphology response actin, kinas, wall, phosphoryl, pheromone, mate, phosphates, 
cytoskeleton, glucose, polar
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Reelin dataset gene clusteringFigure 5
Reelin dataset gene clustering. A) Two-way hierarchical clustering of the Reelin set corresponding to 10 NMF factoriza-
tions with k = 7. Four cluster selection. B) Detailed view, where the semantic feature common to Notch signaling genes and 
Alzheimer cluster is highlighted.
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still contain similar terms similar to those in the original
corpus.

Distance values among genes (one minus cosine of the
angle between gene-documents) calculated from the
noisy corpus were compared to those obtained using the
original corpus with a correlation coefficient of 0.83,
demonstrating that the method is able to find similarities
among genes even in the presence of 10% irrelevant refer-
ences per gene. The differences are obviously associated
with the unrelated information provided by the irrelevant
references; however, the high correlation coefficient dem-
onstrates that our approach is able to extract the main
structure of the data, even in the presence of noise.

Reelin dataset

In addition to the 575 genes in the SGD8 dataset, we have
tested our method on a data set that was recently used by
Homayouni et al. (2005). They used latent semantic
indexing of article abstracts (based on singular value
decomposition, SVD) to analyze a set of 50 genes. The 50-
gene set is based on the manual selection of genes related
to cancer biology, Alzheimer's disease and development,
and includes 5 genes that are involved in the Reelin path-
way. As the exact set of documents used by Homayouni et
al. is not readily available, we have analyzed the 50 gene
set provided by them, using the literature relevant to the
human and mouse genes as obtained from Entrez Gene
[32], following the procedure described by Homayouni et
al. (2005).

Our method was applied as described for the SGD8 set.
From a literature corpus of 4,378 distinct articles, a matrix
of 50 genes and 1,865 terms was obtained (terms were
included if found in at least 10 and no more than 40
genes). Factorization rank k = 7 was selected, as before,
using the cophenetic coefficient (see Additional file 1).
The result from clustering the gene semantic profiles is
shown in Figure 5 (using a 4 cluster threshold in the den-
drogram). Complete information about the results can be
found in Additional file 2.

Four clusters were established labeled as cancer, develop-
ment, Alzheimer and Reelin respectively. Corresponding
semantic features are provided in table 5. Cluster A (can-
cer) contains all the genes annotated as such by Homay-
ouni et al., together with TGFB1 and WNT2 (development
and cancer). Cluster B (development) contains all the devel-
opment and cancer genes with the exception of TGFB1
(which is in cluster A), together with ATOH1 (annotated
as 'development'). As expected, most genes in this cluster
also have high values for semantic features associated with
cluster A (cancer), since all the genes except ATOH1 were
also annotated with the 'Cancer' category by the original
authors. Among the genes in cluster B (development), it is

interesting to note a subgroup related to Notch signaling
(NOTCH1, JAG1 and DLL1) with a clear differentiated
semantic profile. Cluster C (Alzheimer) contains some of
the Alzheimer genes (namely APLP1, APLP2, APBA1,
APBB2, APP, PSEN1 and PSEN2). Finally, Cluster D (Ree-
lin) contains the five Reelin pathway genes in the set, as
well as development & Alzheimer genes (CDK5, CDK5R,
CDK5R2), along with a subset of Alzheimer genes
(namely MAPT, A2M, APOE and LRP1).

The results of our analysis clearly show that, although the
Reelin pathway genes are clustered together with some
known Alzheimer's disease genes, they are not the only
ones that share semantic features with Alzheimer's-dis-
ease-associated genes. Careful examination of the seman-
tic features shows putative connections between the
Alzheimer-implicated genes and other development
genes. This is the case of the Notch signaling genes in the
set (namely NOTCH1, JAG1 and DLL1), grouped in clus-
ter B, that also have strong signatures of semantic features
which are high in some of the genes in cluster C (Alzhe-
imer). Hints of these connections are provided by shared
features of Notch signaling genes with cluster C, as shown
in Figure 5b (apo, notch, tau, app, abeta, presenilin, apolipo-
protein, gamma-secretas, alzheim, amyloid).

It is important to note that in contrast to SVD, the non-
negative constraints imposed in NMF, make the represen-
tation of genes as an additive combination of semantic
features directly interpretable, as combinations of sets of
terms. Therefore, in addition to the categorization of
genes, our method also provides valuable clues about the
semantics of the relations underlying the resulting clus-
ters. These clues are given by the terms characterization
associated with each cluster. For a further comparison of
Reelin dataset clustering using profiles obtained by SVD
and NMF see Additional file 4.

Discussion
The ultimate goal of text mining is to discover and derive
new information from textual data, finding patterns
across datasets, and separating signal from noise [3]. In
this work we propose a text mining method that is able to
find semantic features from the literature corpus relevant
to a set of biological entities (specifically, genes or pro-
teins). These semantic features form a basis by which
genes and proteins are represented in the form of seman-
tic profiles. Both the features and the profiles are simulta-
neously inferred during the learning process. Therefore,
the profile created for a particular gene will be suited to
the context of the particular gene set analyzed. The
method relies on the use of non-negative matrix factoriza-
tion (NMF), which is a machine-learning algorithm that
has been previously applied to document clustering [27-
29]. This new semantic space representation allows relat-
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ing genes or proteins using profile similarity measures,
while directly providing means for interpreting large sets
of experimental data. In addition, the reduced dimension-
ality of the semantic space makes this representation ame-
nable to integration with experimental measurements
(e.g. gene expression data).

Semantic profiles obtained by our method provide several
advantages over literature profiles obtained using previ-
ous approaches [12,15,19], as they combine the best
properties found in several models:

• Low-dimensionality, similar to SVD, but contrasted with
the classical vector space model, NMF aims to represent
the high dimensional text data in a much lower dimen-
sional space. The basic idea is to approximate the original
data matrix by the product of two, or more, matrices of
lower rank. There are known advantages to reduced
dimensionality, as noted in the context of the well-studied
vector space model (terms-documents frequency matrix),
in which representations are typically both very large and
quite sparse. High-dimensional vectors make for highly
inefficient data analysis, and the quality of the results is
easily affected by noisy and sparse data.

• Latent semantics. NMF, again like SVD, is an approach for
performing latent semantic analysis (LSA) [27]. LSA tech-
niques have been widely applied within information
retrieval [38,39]. As in other LSA techniques, the relation
established by NMF between terms is not the relative fre-
quency with which they tend to co-occur, but the extent to
which they have the same effect in the construction of
total passage meanings [40]. In addition, NMF can allevi-
ate polysemy, disambiguating meanings in the corpus of
documents [22].

• Non-orthogonality. In contrast to the widely-used SVD,
NMF does not enforce the production of orthogonal fea-
tures. The requirement of orthogonal features imposed by
SVD leads to features which do not naturally correspond
to each of the original term sets [27]. Usually topics
described in a literature corpus are not completely inde-
pendent of each other, and there can be some overlap
among them. In such a case, the axes of the semantic space
that capture each of the topics are not necessarily orthog-
onal. The orthogonal features produced by SVD, whose
linear combination can reproduce the documents, thus
lose the intuitive meaning of sets of terms (see the point
about interpretability below). In this sense, NMF is partic-
ularly well-suited for capturing relationships that underlie
highly connected biological processes.

• Interpretability. The most significant drawback of LSA via
singular value decomposition (SVD) is the lack of the
interpretability of the low-dimensional features. The SVD-

resulting features are no longer term associations but
numbers in some low-dimensional space. Contrary to
SVD, NMF imposes non-negativity constraints on both
the basis and encoding vectors. These constraints lead to a
part-based representation of data as they allow only addi-
tive, not subtractive combinations [22]. As a result, both
the features and their contribution to gene profiles can be
readily interpreted as a combination of their most signifi-
cant terms. Additionally, the features obtained by NMF
tend to be sparse in the sense that the most important fea-
tures are reinforced while less important ones are dimin-
ished, giving rise to local features that correspond to
"parts" in the data. These local features can be directly
interpreted since they contain the most significant terms
appearing together in the corpus and thus semantically
related.

Our approach requires a collection of literature references
relevant to each gene in the set; it does not require
precompiled thesaurus, vocabularies or experimental-
based hypothesis. In this respect it is similar to earlier
work by [12,15,19]. The availability of gene-relevant doc-
uments is currently a limitation of these text mining meth-
ods. Nevertheless, there are two strong areas of work that
support their realistic use in the present and near future.
On one hand, ongoing efforts in database annotation are
providing an increasing number of bibliographic refer-
ences. On the other, the development of automatic meth-
ods to perform gene document retrieval is a very active
area of research, from which we can expect improvements
in precision ratios. These methodologies rely on the
premise that similarity among genes can be established by
the similarities found in texts describing their biological
roles (i.e. their associated documents). As these methods
use bag-of-words models, the nonlinear intra-sentence
syntactic and grammatical effects on meaning, such as
predication, attachment, negation, and propositional
implication are lost [40]. However, the use of several
abstracts to represent each gene via the construction of a
composite gene-document reduces this effect. Multiple
abstracts representing each gene help expose the strong
relationships among concepts which are expressed in dif-
ferent ways throughout the abstracts, while arbitrary con-
nections are weakened by averaging.

Literature relevant to a given gene might discuss several
functional roles of the gene in the cell. The method pre-
sented in this work directly allows for genes to be associ-
ated with multiple topics. As genes are represented as
additive linear combinations of a reduced number of
semantic features, researchers can also explore similarities
in literature profiles interactively (an example of a gene
represented as term-vector, cluster-vector and semantic
profile is provided in Additional file 3).
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In this study, we have tested the performance of our
method on two different gene collections, for which a
minimum number of relevant bibliographic references
were available. In both cases we were able to provide gene
literature profiles as combinations of the common seman-
tic features discovered from the literature corpus. We have
also verified the value of semantic features as cues for bio-
logical interpretation of gene profiles. Finally, we have
analyzed the semantic profiles to establish coherent
groups of genes. The results obtained by gene profile clus-
tering are consistent with commonalities in expert-based
annotations, and additionally have revealed relationships
that could not have been recognized by the analysis of the
functional annotations alone. In addition, our results
shown that the method is robust in the presence of 10%
additional irrelevant documents per gene. Nevertheless,
further work is needed to test the method in an experi-
mental setup where curated references are not available,
and current state-of-the-art document retrieval applica-
tions are therefore used to create the literature corpus.

Our test sets are of the same order of magnitude previ-
ously used in quite a few studies using related text mining
approaches in biomedical informatics, and are of valid
size for practical applications. We note though that show-
ing the applicability to larger sets of genes is an important
extension. In this sense, we note that the computational
complexity of the classical NMF algorithm [22] is O(kpn)
per iteration, where k is the number of features, p is the
number of terms and n is the number of documents [28].
In addition, several implementations to support speedup
have been proposed [41], as well as variations to exploit
different characteristics of the new representation space
(e.g. the sparsity level [42]). Moreover, while further opti-
mization is beyond the scope of this paper, NMF uses a
well-defined functional whose optimization can be
improved in several ways. We are currently experimenting
with sets of genes that are an order of magnitude larger
(thousands of genes), and working on scaling up the algo-
rithms themselves to support fast, large-scale computa-
tions.

Conclusion
We have presented a method that is able to discover
semantic features from the analysis of literature relevant
to sets of genes. The representation of genes as additive
linear combinations of basis semantic features allows for
the exploration of functional associations as well as clus-
tering. We anticipate the potential use of our method for
the validation and interpretation of high-throughput
experimental data, as well as for the analysis of any
genome-wide information.

Methods
Constructing gene-documents

A document is constructed for each gene by concatenating
the titles and the abstracts of all its relevant bibliographic
references. Specifically, each gene-document is repre-
sented by a weighted term vector, as in the classical vector
space model used in information retrieval (IR) systems
[13,14]. Under this model a document (i) is represented
as a vector of term-weights of the form Di ∈ �p, where p
represents the total number of terms in the vocabulary of
the text corpus, and each element Dij in the vector is a
weight representing the relative importance of the jth term
in the document i. The definition of a term is not inherent
in the model, but terms are often chosen to be single
words.

Typically, the weight is directly proportional to the term
frequency within the document, and invertly propor-
tional to other factors which may reduce its importance,
(e.g. the total length of the document, the abundance of
the term throughout the corpus, etc.). Various weighting
methods have been developed in the information
retrieval arena [43]. The scheme most often used is known
broadly as TF*IDF, where TF stands for term frequency, and
IDF stands for inverse document frequency [44]. This weight-
ing scheme discounts the importance of terms that appear
in many documents and are thus not strongly indicative
of a document's content. Formally, the IDF for the jth term
is calculated as:

where T is the total number of documents in the set (total
number of gene-documents in this case), and tj is the
number of gene-documents that contain the term j.

Thus the weight assigned to term j in document i under
the TF*IDF scheme is:

Dij = tfij·idfj  Eq. 2

In text analysis, common words (also known as stop
words) are typically eliminated from texts prior to the cal-
culation of term frequencies. Additionally, word morpho-
logical variants are reduced to their root form using the
Porter stemming algorithm [45].

To summarize, a set of n gene-documents, over a vocabu-
lary of p terms, is represented as a set of n vectors in p-
dimensional space, where p is typically very high. There-
fore, every term in the corpus vocabulary becomes an
independent dimension in a very high dimensional space.
Since each document contains only a limited set of terms
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(compared to the whole corpus term collection), most of
the vectors are very sparse.

Dimensionality reduction: extracting semantic features

Once the gene-document collection is represented in a
vector space model, as an p × n sparse matrix, the next step
is to find relevant common sub-sets of terms that corre-
spond to latent concepts in the literature corpus. This is
accomplished through the application of non-negative
matrix factorization [22].

Formally, the non-negative matrix factorization (NMF) is
described as follows:

V ≈ WH  Eq. 3

where V ∈ �p × n is a positive data matrix with p variables
and n vectors, W ∈ �p × k are the reduced k basis vectors or
factors, and H ∈ �k × n contains the coefficients of the lin-
ear combinations of the basis vectors needed to recon-
struct the original data (also known as encoding vectors).
Additionally we have the following conditions: k ≤ p, all
matrices V, W, H are non-negative, and the columns of W
(the basis vectors) are normalized (sum to 1).

The main difference between NMF and other classical fac-
torization models (e.g. SVD) lies in the nonnegativity con-
straints imposed on both the basis (W) and encoding
vectors (H). In this way, only additive combinations are
possible:

The objective function, based on the Poisson distribution,
can be defined using the following divergence function,
which the factorization process needs to minimize:

To solve the optimization problem posed by equation 5,
the following iterative algorithm is used:

1. Initialize W and H with positive random numbers.

2. For each basis vector Wa ∈ �p × 1, update the correspond-
ing encoding vector Ha ∈ �1 × n; followed by updating and
normalizing the basis vector Wa. Repeat this process until
convergence.

The above iterative process converges to a local minimum
of the objective function given in equation 5. The detailed
algorithm follows:

Repeat until convergence:

For a = 1...k do begin

For b = 1...n do

For c = 1...p do begin

End

End

For the application described here, a corpus of documents
is summarized by a matrix V, which is obtained by trans-
posing the matrix D defined in equation 2. Because of the
sparsely distributed representation of NMF, each factor
(column) in the matrix W is represented by a small subset
of the terms, which constitutes a semantic feature in
which NMF groups together topically related terms. Due
to the positive nature of the model, these factors can be
directly interpreted based on the most important terms
they contain (highest values). Additionally, the analysis of
the encoding vectors H (called the semantic profiles) pro-
vides information about the combination of topics or
semantic features that describe each gene or protein.

An important consideration in the application of NMF to
extract semantic features is the selection of the lower
dimension, namely the factorization rank (k), to better
represent the original data. Intuitively, the more factors
we use, the more detailed information we get. However,
since one of the main motivations for this application is
the automatic summarization of the latent information in
the scientific literature, it is important to obtain a reduced
set of factors that are sufficient to represent the semantics,
without obscuring this information with too many
details. Finding an appropriate value of k depends on the
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application and on the nature of the dataset itself. This
value is generally chosen such that (n + p) k <np and thus
the product WH can be regarded as a compressed form of
the data in V. [22].

The selection of the factorization rank is a complex prob-
lem and different criteria can be used depending on the
application. In this work, we followed the approach pro-
posed by Brunet et al. (2004), and used the cophenetic
correlation coefficient to choose a factorization rank that
would best retain the stability of the results with respect to
the different random initial conditions for W and H.

Gene-document clustering

Once the dimensionality-reduction step is executed, gene-
documents are represented as linear additive combina-
tions of semantic features, which are called semantic pro-
files.

As described above, the NMF algorithm may not necessar-
ily converge to the same solution on each run. The specific
solution depends on the random initial conditions. We
note though that having multiple solutions does not
imply that any of them must be erroneous. This situation
only indicates that the solution is not unique and can
actually be exploited to our own advantage. In this appli-
cation, a set of different solutions obtained from different
random initial conditions typically produces semantic
profiles that have many terms in common while slightly
differ in others. These similar solutions represent seman-
tic variations of gene-documents that are worth taking
into account, as they may represent several functional
aspects of the same gene. Therefore, to provide both a
more comprehensive representation of the genes, and a
more robust clustering, we constructed semantic profiles
of gene-documents by combining the results from 10
independent runs of the NMF algorithm, using the same
number of factors at each run. Thus, when using k factors,
each gene is ultimately represented as a 10k dimensional
vector over the semantic features. Cluster analysis is then
performed on the total number of factors in order to dis-
cover gene relationship based on the semantic features
representing them.

Clustering was carried out by means of agglomerative
hierarchical clustering, using Ward's algorithm and half
square Euclidean distance as a similarity measurement
[46]. Two-way clustering of both genes and semantic fea-
tures was performed in order to identify characteristic fea-
tures for each gene cluster.
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