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Abstract

Biology is encoded in molecular sequences: deciphering this encoding remains a grand scientific challenge. Functional
regions of DNA, RNA, and protein sequences often exhibit characteristic but subtle motifs; thus, computational discovery of
motifs in sequences is a fundamental and much-studied problem. However, most current algorithms do not allow for
insertions or deletions (indels) within motifs, and the few that do have other limitations. We present a method, GLAM2

(Gapped Local Alignment of Motifs), for discovering motifs allowing indels in a fully general manner, and a companion
method GLAM2SCAN for searching sequence databases using such motifs. GLAM2 is a generalization of the gapless Gibbs
sampling algorithm. It re-discovers variable-width protein motifs from the PROSITE database significantly more accurately
than the alternative methods PRATT and SAM-T2K. Furthermore, it usefully refines protein motifs from the ELM database: in
some cases, the refined motifs make orders of magnitude fewer overpredictions than the original ELM regular expressions.
GLAM2 performs respectably on the BAliBASE multiple alignment benchmark, and may be superior to leading multiple
alignment methods for ‘‘motif-like’’ alignments with N- and C-terminal extensions. Finally, we demonstrate the use of GLAM2

to discover protein kinase substrate motifs and a gapped DNA motif for the LIM-only transcriptional regulatory complex:
using GLAM2SCAN, we identify promising targets for the latter. GLAM2 is especially promising for short protein motifs, and it
should improve our ability to identify the protein cleavage sites, interaction sites, post-translational modification
attachment sites, etc., that underlie much of biology. It may be equally useful for arbitrarily gapped motifs in DNA and RNA,
although fewer examples of such motifs are known at present. GLAM2 is public domain software, available for download at
http://bioinformatics.org.au/glam2.
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Introduction

Sequence motifs are important tools in molecular biology.

Sequence motifs can describe and identify features in DNA, RNA

and protein sequences such as transcription factor binding sites,

splice junctions and protein-protein interaction sites. Numerous

algorithms have been developed for discovering motifs, as well as

algorithms for scanning databases for matches to a given motif or

motifs. Some are specialized for discovery of DNA motifs. These

include A-GLAM [1], AlignACE [2], BioProspector [3], MDscan

[4], RSA Tools [5,6], Weeder [7] and YMF [8]. Others, such as

MEME [9] and Gibbs [10] can discover motifs in either protein or

DNA sequences. The importance of motifs is further underscored

by the numerous databases that have been compiled of known

motifs including DNA regulatory motifs in TRANSFAC, JAS-

PAR, SCPD, DBTBS, RegulonDB [11–14], and protein motifs in

ELM, PROSITE, BLOCKS and PRINTS [15–18].

It is worth noting that biological motifs fall into at least three

somewhat distinct classes. The first comprises short motifs often

found at functional sites of biopolymers, such as cleavage sites,

binding sites and attachment sites. These short motifs probably

arise through convergent evolution as often as not. The second

comprises longer protein motifs associated with globular structural

domains. These often, if not always, arise through divergent

evolution. Finally, recurring motifs can arise from evolutionarily

recent duplications, such as DNA transposons. It is not clear that

these categories are best tackled by a single motif discovery

method. GLAM2 is primarily aimed at short motifs for functional

sites, although it performs respectably for the other categories.

In an ideal world, simple motifs would directly encode biological

functions, as is the case with the triplet genetic code for amino

acids for example. In reality, protein phosphorylation sites and the

like may be encoded in a more complex and dispersed fashion, and

in the worst case we would have to understand the full biophysics

of the molecule in order to predict its function. Nevertheless, there

is often at least a correlation between motifs and functional sites,

which is useful. This is illustrated well by the ELM server, which

uses protein motifs as a first step in predicting functional sites, and

filters the predictions by criteria such as cell compartment and

globular domain clash [15]. Thus, refining known motifs and

discovering new motifs will be useful for identifying functional

sites.

Most motif discovery algorithms are limited to gapless motifs.

The main reason for this is that the motif discovery process
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becomes more difficult when gaps are allowed due to an explosion

in the number of possible variations. Gapped motifs are ubiquitous

in biology, however. Many of the motifs described in protein motif

databases such as ELM and PROSITE contain variable length

gaps. Transcription factor complexes can have DNA binding

motifs with variable width spacers, and some DNA motif discovery

algorithms are specialized to finding bipartite motifs – two motifs

separated by a single, variable-length spacer.

There are some existing methods for discovering gapped motifs,

but they do not appear to be widely used. PRATT discovers gapped

motifs, in the form of regular expressions, in protein sequences

[19]. Regular expressions may have trouble capturing subtle

motifs, because they specify exactly which residues and spacers are

allowed at each position, and do not allow a better match in one

part to compensate for a worse match in another part. Since they

make such detailed specifications, it may also be hard to discover

accurate regular expressions from small numbers of examples. In

any case, GLAM2 re-discovers PROSITE motifs more sensitively

than PRATT (see below).

So-called profile hidden Markov models (HMMs) have been

used to represent protein structural motifs with gaps, notably in the

SAM and HMMER packages, and HMM training algorithms can be

used to discover such motifs [20–22]. It is telling that, while SAM

and HMMER are extremely successful and widely used, they are

mainly used for motif scanning, and rarely for ab initio motif

discovery. Recent versions of HMMER do not even retain the

training algorithm. In fact, GLAM2 can be regarded as an HMM

training method similar to these. A key difference is that, while SAM

and HMMER optimise the HMM parameters (the transition and

emission probabilities), GLAM2 ‘‘integrates out’’ these parameters

(Materials and Methods, Text S1), and directly optimises the motif

alignment. One consequence is that GLAM2 can use a better-

characterised heuristic to search for the globally optimum solution:

simulated annealing, rather than expectation-maximization with

noise injection. (Expectation-maximization alone is well-charac-

terized, but it only finds local optima.) GLAM2 actually uses the

same stochastic traceback step as HMMER, but since HMMER

optimises the parameters rather than the alignment, this is not

true simulated annealing, as pointed out by its author [22]. The

YEBIS program also discovers gapped motifs, in DNA only, using an

ad hoc HMM training method [23].

A dynasty of Gibbs sampling algorithms has been developed,

which allow for gapped motifs with steadily increasing generality.

The original Gibbs sampler only found ungapped motifs [24]. The

second generation method allowed for discontiguous motifs, where

poorly conserved positions within a motif are not considered part

of the motif (‘‘turned-off ’’) [10]. This allows a limited form of

insertion, which must be the same size in all motif instances. A

successor program named PROBE is aimed at protein structural

motifs, and it models a motif as multiple separated blocks, where

each block may be discontiguous [25]. Most recently, Neuwald

and Liu extended PROBE to allow general insertions and deletions

within blocks, using an HMM very similar to the profile HMMs of

SAM and HMMER [26]. Since GLAM2 is also an extension of Gibbs

sampling to allow general indels, it is somewhat similar to this

method, but there are the following important differences:

N Neuwald and Liu use a more complex motif model, designed

for protein structural motifs, and much more sophisticated

alignment-editing operations and annealing schemes. Howev-

er, some of their alignment-editing operations are awkward

and violate the detailed balance condition of simulated

annealing.

N The central step of re-aligning one sequence is carried out

differently. GLAM2 uses the stochastic traceback algorithm to

directly sample one alignment according to its score. Neuwald

and Liu, in contrast, sample HMM transition and emission

probabilities, then obtain the optimal alignment, and finally

accept or reject this alignment in the standard Monte Carlo

fashion.

N Neuwald and Liu use a simple Dirichlet prior for amino acid

frequencies, which lacks information on their tendencies to

align with one another, whereas GLAM2 uses Dirichlet mixtures,

which can provide such information. Dirichlet mixtures will be

more powerful for small numbers of sequences, but the simpler

approach may be sufficient for large numbers of sequences.

(GLAM2 can use either approach.)

N GLAM2 uses position-specific insertion and deletion probabili-

ties, whereas Neuwald and Liu use universal insertion and

deletion probabilities (within blocks). This is important because

real motifs tend to concentrate insertions and deletions in a few

positions.

This publication aims to make gapped motif discovery as

powerful and ubiquitous as gapless motif discovery. We describe

the GLAM2 algorithm for discovering gapped motifs, and a

companion scanning algorithm, GLAM2SCAN. In the following, we

first give an overview of GLAM2 and GLAM2SCAN, followed by more

details on the methods. Full technical details are in Text S1. We

then assess their performance at three different kinds of task: re-

discovering PROSITE motifs, refining and then scanning ELM

motifs, and aligning BAliBASE sequences. Finally, we give two

examples of using these methods to discover kinase substrate

motifs and to identify DNA target sites of the LIM-only complex.

The results show that GLAM2 and GLAM2SCAN are very capable of

identifying gapped motifs, especially short linear motifs.

Materials and Methods

Overview of GLAM2 and GLAM2SCAN

GLAM2 examines a set of sequences provided by the user, and

returns an alignment of segments of these sequences. A typical

alignment is shown in Figure 1. Each sequence contributes at most

one segment to the alignment. Our approach assumes that a motif

is defined by residue preferences at certain positions, which we call

key positions. These are analogous to the ‘‘turned-on’’ columns of

the second-generation Gibbs sampler, or to the match states of a

Author Summary

In recent decades, scientists have extracted genetic
sequences—DNA, RNA, and protein sequences—from
numerous organisms. These sequences hold the informa-
tion for the construction and functioning of these
organisms, but as yet we are mostly unable to read them.
It has long been known that these sequences contain many
kinds of ‘‘motifs’’, i.e. re-occurring patterns, associated with
specific biological functions. Thus, much research has been
devoted to computer algorithms for automatically discov-
ering subtle, recurring motifs in sequences. However,
previous algorithms search for rigid motifs whose instances
vary only by substitutions, and not by insertions or
deletions. Real motifs are flexible, and do vary by insertions
and deletions. This study describes a new computer
algorithm for discovering motifs, which allows for arbitrary
insertions and deletions. This algorithm can discover real,
flexible motifs, and should be able to help us determine the
functions of many biological molecules.

Gapped Motif Discovery
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profile HMM. In a particular motif instance, some key positions

may be deleted, and residues may be inserted between key

positions (Figure 1).

GLAM2 defines a scoring scheme for alignments such as that in

Figure 1. It rewards alignment of identical or similar residues in

the same key position, and penalizes deletions and insertions.

However, deletions and insertions are penalized less strongly if

they repeatedly occur in the same locations. This is reasonable

because some locations in a motif may be more prone to deletions

or insertions than others. Having defined a scoring scheme for

alignments, it is straightforward to calculate the marginal score of

one aligned segment: the score of the alignment including this

segment minus the score of the alignment excluding this segment.

These marginal scores reflect how well each segment matches the

other segments.

Having defined a scoring scheme, GLAM2 attempts to find a

motif alignment with maximum score. Even in the gapless case,

the number of possible alignments is too huge to enumerate, and

there is no practical algorithm to guarantee finding the optimal

alignment. This problem is only exacerbated in the gapped case.

Thus GLAM2 uses a heuristic optimisation method – simulated

annealing – highly analogous to the optimisation methods of the

gapless Gibbs samplers [10,27].

Simulated annealing takes an initial, presumably non-optimal,

alignment and repeatedly makes changes to it. These changes have

an element of randomness: they generally increase the score, but

sometimes decrease it, which avoids getting stuck in local optima.

The process is analogous to crystallization in a cooling material.

Two types of change are performed by GLAM2, which we call site

sampling and column sampling, because they are analogous to

similarly-named procedures in the original Gibbs sampler [10,24].

Site sampling adjusts the alignment of one sequence to the motif,

using the clever stochastic traceback procedure from HMMER to

efficiently sample one from all possible such alignments [22]. In

column sampling, one key position is moved, added, or deleted.

These changes are carefully designed to satisfy the reversibility and

detailed balance conditions of simulated annealing (Text S1). Such

changes are applied until the score fails to improve for n (e.g.

10000) changes in succession. To check that a reproducible, high-

scoring motif has been found, the whole procedure is repeated r

(e.g. 10) times from different random starting alignments.

GLAM2’s behaviour can be controlled with numerous adjustable

parameters. The allowed alignments can be constrained by

specifying a minimum number of key positions (a), a maximum

number of key positions (b), and a minimum number of segments

in the alignment (z). This z parameter is a useful generalization of

the OOPS (one occurrence per sequence) and ZOOPS (zero or

one occurrence per sequence) modes of previous motif discovery

algorithms [28]. The annealing follows a simple geometric cooling

schedule with initial temperature t and cooling rate c per n

changes. GLAM2 can find the optimal number of key positions more

quickly if the initial number (w) is set to a near-optimal value. All

parameters have sensible default values.

GLAM2SCAN takes a motif found by GLAM2, and scans it against a

database of sequences. It performs short-in-long alignments of the

motif against the sequences, using position-specific residue scores,

deletion scores, and insertion scores, which are derived from the

GLAM2 alignment. The highest-scoring such alignments are

reported.

The GLAM2 Scoring Scheme
GLAM2’s formula for assigning scores to alignments is a

generalization of the formula used by previous Gibbs samplers

for alignments without indels [27,29]. Previous Gibbs samplers

have used a log likelihood ratio formula:

log
PW

k~1P ~cckð Þ
PW

k~1P
A
i~1pcki

i

� �

Here, W is the width of the alignment, A is the alphabet size, pi

is the abundance of the i th residue type, cki is the count of the i th

residue type in the kth column of the alignment, and P ~cckð Þ is the

probability of observing the count vector~cck in an aligned column.

P ~cckð Þ is given by the following formula (dropping the k):

P ~ccð Þ~
ð
P
A

i~1
hci

i prior ~hh
� �

d~hh

Here, ~hh is a vector of residue probabilities, and the integral is

over all possible values of this vector. Previous Gibbs samplers

have used a Dirichlet distribution for prior ~hh
� �

, whereas GLAM2

uses a Dirichlet mixture. Dirichlet mixtures are explained in, for

instance, [30].

GLAM2, in addition, allows deletions and insertions in the

alignment. The numerator in the log likelihood ratio formula now

becomes:

P
W

k~1
P ~cckð Þ P

W

k~1
P dkð Þ P

W{1

k~1
P rkð Þ

Here, dk is the number of deletions in the kth column (key

position) of the alignment, and rk is the number of inserted residues

(in all sequences) between columns (key positions) k and k+1. P(dk)

and P(rk) are given by these formulas (dropping the k):

P dð Þ~
ð1

0

wd 1{wð Þmprior wð Þdw

P rð Þ~
ð1

0

yr 1{yð Þsprior yð Þdy

Here, m is the number of non-deleted residues and s is the total

number of sequences, so that d+m = s. GLAM2 uses Beta

distributions, which are a type of Dirichlet distribution, for prior(w)

and prior(y). Thus, the scoring scheme for deletions and insertions

is entirely analogous to that for aligned residues. For full details,

see Text S1.

Figure 1. A typical motif alignment from GLAM2. The stars indicate
the key positions. The residues inserted between key positions are not
considered aligned to each other: their column placement is arbitrary.
The numbers on either side of the aligned segments indicate the
coordinates of each segment within the sequence. The decimal
numbers on the right are the marginal scores of each aligned segment.
doi:10.1371/journal.pcbi.1000071.g001
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Site Sampling
In site sampling, one of the input sequences is chosen at

random, removed from the alignment (if it is present in the

alignment), and then re-aligned to the motif. All possible

alignments of substrings of this sequence to the motif are

considered. One alignment is chosen at random, with probability

proportional to the resulting alignment’s likelihood ratio, as

defined above, raised to the power of 1/t (‘‘heated’’). This scheme

satisfies the criteria for simulated annealing.

The re-alignment is accomplished by dynamic programming

followed by a stochastic traceback ([22], Text S1). Briefly, the

dynamic programming step calculates a matrix of values M(i,j)

equal to the sum of the heated likelihood ratios of all alignments

ending at the ith key position in the motif and the jth residue in the

sequence. This is similar to standard dynamic programming

algorithms for finding optimal alignments, except that maximiza-

tion is replaced by summation. The stochastic traceback step is

also similar to the standard traceback used to find optimal

alignments, except that it chooses a random path through the

matrix, weighted by the M(i,j) values, rather than taking the

optimal path.

Column Sampling
The site sampling moves of the original gapless Gibbs sampler

were prone to getting stuck in shifted versions of the optimal motif

[24], and GLAM2 has an analogous problem. Column sampling

overcomes this problem, and in addition, allows the number of key

positions in the motif to be adjusted.

In column sampling, one key position is chosen at random, and

removed from the alignment. This means that the residues that

were in this key position now become regarded as insertions

between the preceding and following key positions. Then, a new

key position is added to the alignment. Several ways of adding a

key position are considered, and one of these is chosen at random,

with probability proportional to the resulting alignment’s likeli-

hood ratio, as defined above, raised to the power of 1/t.

So far, this is highly analogous to site sampling. However, the

number of ways of adding a key position to a gapped alignment is

generally astronomical, and we do not have a clever algorithm to

consider them all efficiently, so we must consider a subset.

Furthermore, this subset must include the possibility of returning

to the original alignment by adding back the key position that was

removed, in order to satisfy the reversibility requirement of

simulated annealing. Thus, we consider all ways of adding a key

position that preserve certain properties of the key position that

was removed (Text S1).

Finally, we allow the number of key positions to increase by

sometimes neglecting to remove the chosen key position, and we

allow the number of key positions to decrease by sometimes

neglecting to add a new key position. The probabilities of not

removing and not adding a key position are carefully chosen to

satisfy the detailed balance condition of simulated annealing: the

details are interesting but somewhat technical (Text S1).

The Initial Alignment for GLAM2
The simulated annealing procedure for finding high-scoring

alignments needs to start from some initial alignment. The initial

alignment for GLAM2 is constructed as follows. The number of key

positions (aligned columns) is set to a fixed value, w, chosen by the

user, by default 20. Starting with an empty ‘‘alignment’’

containing zero sequences, the input sequences are taken one-

by-one, in random order, and added to the alignment using a site

sampling move with temperature t = 1. Ideally, the initial

alignment should have no effect on the result, since simulated

annealing finds the globally optimal alignment. In practice, the w

parameter does influence the result, though this influence

decreases as the annealing is allowed to run for longer.

Optimising GLAM2 Parameters
The GLAM2 algorithm involves many adjustable parameters, and

we wish to find suitable parameter settings for effective motif

discovery. It is likely that different settings will be optimal for

different scenarios (e.g. protein versus DNA motifs, many short

input sequences versus few long input sequences), and we cannot

deal with all conceivable scenarios here.

The GLAM2 parameters fall into two categories: those that affect

the scoring scheme for motif alignments, and those that affect the

search algorithm to find high-scoring alignments. Of these, the

former are more fundamental, since we must be able to recognise

good alignments before we can contemplate searching for them.

The score parameters are further divisible into those that

determine scores for aligned residues, those that determine scores

for deletions, and those that determine scores for insertions.

Aligned residue scores are determined by a Dirichlet mixture,

which is non-trivial to optimise, and we use parameters derived in

previous work: for proteins we use recode3.20comp from SAM, and

for DNA we use a single Dirichlet component with all

pseudocounts = 0.4 [27,30]. Deletion and insertion scores are

each determined by a Beta distribution, which has only two

pseudocount parameters. It is straightforward to find pseudocount

values that best fit a given set of typical alignments (Text S1), but it

is not so obvious whence to obtain such alignments.

We reasoned that, if we use GLAM2 with sensible guesses for

these pseudocount parameters, we will obtain fairly good

alignments, and these alignments can then be used to fit the

pseudocounts. This procedure can be iterated until the fitted

values stop changing. We took this approach with 58 PROSITE

alignments and separately with 141 BAliBASE alignments (see

Results). The alignments are, in fact, fairly accurate (see Results),

and in both cases the following parameter settings are close to

optimal. Pseudocounts for deletions: D = 0.1, E = 2. Pseudocounts

for insertions: I = 0.02, and J = 1. All results reported here use

these settings. Since these settings were tuned on protein

alignments, they may not be ideal for DNA alignments.

The main parameters that affect the search algorithm are r, n, t,

c, and w. The initial width (w) is important but obviously problem-

specific: it helps to specify a good estimate of the true motif width.

The other parameters were selected based on experiments with

GLAM [27], and additional ad hoc experimentation. There is likely

scope for improved annealing procedures such as simulated

tempering [31]. None of the parameters were optimised based on

performance on the assessments described here.

GLAM2SCAN

GLAM2SCAN uses standard methods to search for motif instances

in a sequence database. Each sequence is scanned in turn, using

the Waterman-Eggert algorithm to find multiple motif hits per

sequence [32]. The top n hits in the whole database, where n is a

parameter chosen by the user, are collected using a heap, which is

a standard data structure. For full details, see Text S1.

Program Parameters for PROSITE
The programs were run with the following options. GLAM2: -z

10,000 (force all sequences to participate), -b 10000 (effectively no

upper limit on motif width), -n 100000 (slow and thorough). SAM-

T2K: -homologs -tuneup. Note that GLAM2 and SAM-T2K use the

same Dirichlet mixture prior (recode3.20comp). PRATT: default

options. Unlike GLAM2 and SAM-T2K, PRATT sometimes returns

Gapped Motif Discovery
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multiple motif hits per sequence (in 19 out of 58 cases): to deal with

this, PRATT alignments were constructed only from sequences with

one hit. This harms PRATT’s sensitivity, but the main conclusion is

not in jeopardy, because at most 19 cases are affected whereas

GLAM2 has higher sensitivity in 56 out of 58 cases (Table 1).

Program Parameters for ELM
The GLAM2 parameters used are: -z 10,000 (force each sequence

to contribute one site) and -n 100,000 (slow and thorough). A

minority of the ELM REs are anchored at the N-terminus (C-

terminus) of the protein: in these cases, we ignored GLAM2SCAN hits

outside of the first (last) 20 residues.

Program Parameters for BAliBASE
GLAM2 was run with the following options: -z 10,000 (force all

sequences to participate), -b 10,000 (effectively no upper limit on

motif width), and -n 100,000 (slow and thorough). In addition, the

initial motif width (-w) was set to the length of the shortest

sequence in the set being aligned. Finally, we used non-default

annealing options -t 1.5 and -c 2.25. The default annealing options

produce slightly worse results for the category ‘‘cases with

divergent subfamilies’’, and very similar results for all other

categories. We suspect that the sub-families in this category give

rise to strong local optima, and the higher initial temperature may

help to escape these.

Gene Names and Accession Numbers
The UniGene names and Refseq RNA accession numbers (in

parentheses) for the genes mentioned in this paper are: Lmo2

(NM_008505), Tal1 (NM_011527), Gata1 (NM_008089), E2a/

Tcfe2a (NM_011548), Ldb1 (NM_010697), Tgfb1 (NM_011577),

Klf13 (NM_021366), Gata5 (NM_008093), P4.2 (NM_013513),

Gypa (NM_010369) and Cdh5 (NM_009868).

Results

Rediscovering PROSITE Motifs
We wished to assess GLAM2’s efficacy by using it to re-discover

known motifs. For this purpose, we used the PROSITE database

(release 19.25 of 18-Apr-2006). PROSITE is a database of protein

motifs represented by either ‘‘patterns’’ (regular expressions) or

‘‘profiles’’ (hidden Markov models) [16]. To test GLAM2, we

extracted all variable-length patterns (since these entail indels), and

obtained the sequences annotated in PROSITE as true positive

hits to each pattern.

Since GLAM2 produces motif alignments, we desired a set of gold

standard alignments to compare them to. To construct gold

standard alignments, we used PS_SCAN to locate the motifs in the

sequences, and lined up equivalent residues in the PS_SCAN hits

[33]. Sequences not having exactly one PS_SCAN hit were

discarded. Finally, we removed highly similar sequences from

each set using BLASTCLUST -L 0 -S 0 (ftp://ftp.ncbi.nlm.nih.gov/

blast/). This step is important because, if highly similar sequences

are present, GLAM2 may, not unreasonably, detect this extended

similarity rather than the desired motif. Sets with fewer than three

remaining sequences were discarded. These steps resulted in 58

test sets with a total of 368 sequences (Dataset S1).

For this assessment, it is necessary to measure the similarity of a

predicted motif alignment to a gold standard motif alignment. Our

primary measure is sensitivity of aligned residue pairs: the number

of correctly aligned residue pairs as a percentage of the total

number of aligned residue pairs in the gold standard. We also

measured the positive predictive value (PPV): the number of

correctly aligned residue pairs as a percentage of the total number

of aligned residue pairs in the prediction.

In this study, sensitivity is more informative than PPV, for two

reasons. Firstly, unlike many other prediction assessments, there is no

trivial way to achieve 100% sensitivity, because it is not possible to

align all residue pairs at once. Thus, 100% sensitivity is significant

and potentially useful, regardless of the PPV. Secondly, the

PROSITE patterns probably err towards minimality, excluding

subtle similarities that are hard to represent with regular expressions.

Thus, excess aligned residues in the prediction are more likely to be

biologically correct than are missing aligned residues.

We wished to compare GLAM2 to other tools that could be used

to discover these motifs. Most motif discovery programs cannot

handle variable-length motifs at all, and thus are ruled out. The

first tool we compared against is SAM-T2K (from SAM version 3.5),

which can discover motifs by fitting hidden Markov models [21].

Since SAM-T2K was not designed to find short motifs, we might

expect it to return large alignments with low PPV – we include the

SAM-T2K comparison to highlight the paucity of methods that are

suited to this task. We also compared against PRATT (version 2.1),

which discovers motifs in the form of regular expressions [19].

Since the test cases are derived from regular expression motifs, this

assessment may be biased in favour of PRATT.

The sensitivity and PPV of GLAM2 on each of the 58 test cases,

compared to SAM-T2K and PRATT, is shown in Figure 2. GLAM2 is

generally the most sensitive method, often achieving 100%

sensitivity or close to it. Interestingly, GLAM2 and SAM-T2K often

find considerably more extended alignments than the gold

standard motifs, with low PPV. This suggests that either many

of the motifs have large, subtle extensions not recorded in

PROSITE, or many datasets have evolutionary or structural

relations subtle enough to survive BLASTCLUST. In the latter case, it

is not clear whether the smaller motif exists independently of the

more extended similarity. PRATT often achieves much higher PPV

than the other methods, no doubt because it uses the same regular

expression model as PROSITE, which does not capture the more

subtle similarities. The increase in sensitivity of GLAM2 over the

Table 1. Comparison of GLAM2 with SAM-T2K and PRATT on 58 PROSITE motifs.

Comparison Sensitivity PPV

Method GLAM2 Better GLAM2 Worse P GLAM2 Better GLAM2 Worse P

SAM-T2K 42 4 5.1e-09 51 6 5.7e-10

PRATT 56 0 2.8e-17 30 27 0.79

The GLAM2 Better columns indicate the number of cases, out of 58, where GLAM2 has a higher value (of sensitivity or PPV) than SAM-T2K or PRATT. The GLAM2 Worse columns
indicate the number of cases where GLAM2 has a lower value. The P columns indicate the probability of this difference or greater arising by chance (two-sided binomial
test).
doi:10.1371/journal.pcbi.1000071.t001
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other two methods is statistically significant, as is its PPV

compared to SAM-T2K’s (Table 1).

Refining ELM Motifs
The Eukaryotic Linear Motif (ELM) resource [15] is a database

containing 115 linear motif regular expressions (REs) correspond-

ing to protein functional signals such as binding, interaction and

protease cleavage sites. Many of the ELM motifs are annotated

with lists of known sites in sequences in the Swiss-Prot [34]

database. ELM motifs tend to be fairly short and non-specific;

some contain as few as two specified amino acids. For example, the

motif for the site for attachment of a mannosyl residue to a

tryptophan is ‘‘W..W’’ (ELM entry ‘‘MOD_CMANNOS’’). As a

result, searches using ELM regular expression motifs are subject to

making large numbers of false positive predictions. This problem is

illustrated in Figure 3, which plots the number of matches to the

ELM regular expression in Swiss-Prot against the number of

annotated sites for the 41 ELM motifs used in this study. It shows

clearly that many ELM motifs are extremely non-specific,

matching orders of magnitude more positions in Swiss-Prot

sequences than are annotated as known sites.

It would be useful to be able to use GLAM2 to produce more

specific models of linear motifs than the regular expressions (REs)

available in the ELM database. We do not consider SAM-T2K here,

since it is not designed to find short motifs, and in practice GLAM2

finds short motifs more accurately (see above). The idea is to use

the known sites for an ELM motif, with some flanking sequence, as

input to GLAM2, to discover a GLAM2 motif. Then, we use

GLAM2SCAN to search novel protein sequences for matches to the

motif. In order to evaluate the benefits of this approach, we need a

way to estimate the accuracy of ELM and GLAM2 motifs. As our

figure of merit, we chose to use ‘‘FP_N’’, the number of false

positive predictions at a sensitivity of N%. To estimate the FP_N of

an ELM regular expression motif, we use N% of the difference

between the number of matches (H) to the RE in the Swiss-Prot

database and the number of known sites (K) for the motif. This is

reasonable since we expect there to be (H2K)N/100 false positives

in any randomly chosen N% of the matches to the RE.

To measure the accuracy of GLAM2 motifs derived from sites

annotated in the ELM database, we first create sequence sets

containing the full-length proteins annotated as containing known

sites for each ELM RE. In order to avoid biasing the motifs
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Figure 2. Sensitivity and positive predictive value of GLAM2 compared to SAM-T2K and PRATT on 58 PROSITE motifs.
doi:10.1371/journal.pcbi.1000071.g002
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discovered by GLAM2, we purge the sequence set using the PURGE [10]

program so that no two sequences have BLOSUM-62 score greater

than 150. Sets with fewer than three sequences after purging are

discarded. We then extract the sites along with ten flanking residues

on each side to create 41 sets of extended sites (Dataset S2). These

are input to GLAM2, producing 41 motifs (Dataset S3). Each motif

discovered by GLAM2 is used to search the Swiss-Prot sequence

database via GLAM2SCAN. For each known site, we count the number

of false positive sites (FP) with better GLAM2SCAN scores. Our estimate

of FP_N for GLAM2 motifs is the Nth percentile of these FP values. For

example, if there are 100 known sites for a motif, the FP_N value

would be the Nth smallest observed FP value.

In a separate, more stringent measure of the accuracy of GLAM2

motifs, we perform leave-one-out cross-validation (CV) on the set

of known sites, and count the number of false positives (FP) with

better GLAM2SCAN scores than the left-out site in a scan of Swiss-

Prot. Our CV estimate of FP_N for GLAM2 motifs is the Nth

percentile of the FP values observed during CV. Note that we did

not perform any cross-validation on the ELM REs since this is

impossible because they were manually generated by the curators

of ELM. This puts GLAM2 at a disadvantage in a comparison such

as ours, since the curators of ELM could optimize their REs on all

the known sites, whereas GLAM2 is always tested on sites that it has

not seen. This disadvantage is likely to be especially pronounced

when measuring FP_100, because the ELM REs are fitted to all

the unusual edge cases, which are hardest in cross-validation tests.

GLAM2 motifs provide a good way to improve the specificity of

ELM REs, as is evident in Figure 4A. For example, at sensitivities

up to 50%, the GLAM2 motif learned from all the ELM sites is more

specific than the corresponding ELM RE in 98% (40 out of 41)

cases. Even at a sensitivity level of 100%, the GLAM2 motif is more

specific in 88% (36 out of 41) of the cases tested. In the cross-

validated test, which severely penalizes GLAM2, GLAM2 motifs are

more specific than ELM REs at sensitivity levels below 75%. The

improved specificity of the GLAM2 motifs is made more apparent in

Figure 4B. At a sensitivity level of 50%, GLAM2 motifs learned from

all of the known sites tend to be orders of magnitude more specific.

In about half the cases, the ELM RE has more than 100 times

more false positives than the GLAM2 motif (triangles above the

upper diagonal line in Figure 4B). In only one case is the GLAM2

motif less specific than the corresponding ELM motif. The cross-

validated GLAM2 motifs are, on average about as specific as the

ELM REs (squares in Figure 4B). The five outliers (square points

along the right border of the plot) are motifs with only three or

four sites (after purging). This means that GLAM2 was only given

two or three sites from which to learn the motif during each cross-

validation run, an extremely difficult task. For motifs with more

than four sites, the cross-validation study shows that GLAM2 motifs

generalize about as well as the ELM REs.

Some of the ELM REs have more than an order of magnitude

more false positives than the corresponding cross-validated GLAM2
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Figure 3. Non-specificity of ELM motif regular expressions. Each
point represents one of the 41 ELM motifs used in this study. The x-
value of the point is the number of known sites, and y gives the number
of predicted sites in Swiss-Prot sequences.
doi:10.1371/journal.pcbi.1000071.g003

Figure 4. Sensitivity versus specificity trade-off of GLAM2 motifs. (A) shows how often the GLAM2 motif has better specificity than the
corresponding ELM RE as a function of the sensitivity level. (B) shows the specificity (FP_50) of the ELM RE and the GLAM2 motif for each of the 41 ELM
entries studied here. Each point represents one ELM motif, with x and y giving the the FP_50 of the GLAM2 motif and of the ELM RE, respectively.
Triangles are motifs learned from all sites; squares show cross-validated results.
doi:10.1371/journal.pcbi.1000071.g004
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motif (Table 2). In one case, the ELM RE predicts nearly 8000

false positives (FP_50 = 7964), whereas the GLAM2 motif predicts

only 187. In five out of 41 cases, the GLAM2 motif has an FP rate

more than ten times smaller than the ELM RE.

Aligning BAliBASE Sequences
Since GLAM2 discovers and aligns motifs allowing arbitrary

indels, it is effectively a multiple sequence alignment tool, bridging

the traditionally separate domains of motif discovery and multiple

alignment. Thus, we wished to assess GLAM2’s efficacy in typical

multiple alignment scenarios. For this purpose, we used the

BAliBASE multiple alignment benchmark [35]. We used the older

BAliBASE 2.01 rather than the newer BAliBASE 3, simply

because more multiple alignment tools have been tested on

BAliBASE 2.01, facilitating comparisons.

BAliBASE includes 141 protein alignments in five categories: (1)

equidistant sequences, (2) cases with one highly divergent

sequence, (3) cases with divergent sub-families, (4) alignments

with N- and C-terminal extensions, and (5) alignments with large

internal insertions. The alignments are based on three-dimensional

structural superpositions, so they can be regarded as structural

motifs, rather than the shorter functional site motifs that GLAM2 is

primarily designed for. Each alignment is annotated with ‘‘core

blocks’’, indicating the columns that are thought to be reliably

aligned. All categories except (4) use partial sequences trimmed to

the alignable region, which is unrealistically favourable to global

alignment algorithms, as has been noted by others [36,37].

Conversely, category (4) is the most motif-like, and so we might

expect GLAM2 to excel on this one.

The accuracy of GLAM2’s alignments was measured using the

BALI_SCORE program included with BAliBASE, which reports two

statistics for each alignment: SP and TC. SP is the number of

correctly aligned residue pairs as a percentage of the total number

of aligned residue pairs in the BAliBASE alignment. (It is the same

as the sensitivity measure used in the PROSITE assessment

above.) Only residues in BAliBASE core blocks were counted. TC

is the number of correctly aligned columns as a percentage of the

total number of columns in BAliBASE core blocks.

The average SP and TC scores for each BAliBASE category are

shown in Table 3. These results are directly comparable to those in

Table 1 of [37], Table 1 of [38], and Tables 2 and 3 of [39], which

collectively give results for these alignment tools: Align-m,

ClustalW, Dialign, Kalign, MAFFT, MUSCLE, ProbCons, and

T-Coffee. For the motif-like category (4), GLAM2 achieves slightly

better results than all other tools. Since there are only twelve

alignments in this category, this result is promising but not

conclusive. For the other categories, GLAM2 achieves comparable

results to the other tools, but it is not the best method.

Discovering Motifs in Protein Kinase Substrates
Enzymes of the eukaryotic protein kinase superfamily are

ubiquitous in nature and are involved with the regulation of

essentially every cellular process [40]. These protein kinases

phosphorylate substrate proteins at either serine/threonine or

tyrosine residues. To ensure signaling fidelity, a protein kinase acts

on a discrete set of substrates. Two major factors determine how

protein kinases recognise their substrates [41]. The first, termed

peptide specificity, describes the interaction between a binding

pocket in the protein kinase catalytic domain and the substrate

residues either side of the phosphorylated residue. The second

factor, termed substrate recruitment, describes any additional

process that facilitates formation of the protein kinase-substrate

complex. Substrate recruitment is often mediated through docking

interactions between a binding site on the protein kinase and a

short peptide motif on the substrate [42]. Elucidation of these

motifs may provide us with a code for cellular signaling.

Protein kinase substrate sequences were obtained from the

phospho.ELM database [43], and grouped by kinase family.

Redundant sequences were removed from each group using PURGE

(BLOSUM-62 score cutoff = 150). Groups with 3 or more

Table 2. ELM families where GLAM2 motifs are massively more specific.

ELM Family Specificity (FP_50) Improvement (fold) ELM RE

GLAM2 ELM RE

LIG_CtBP 611 18120 29.7 [PG][LVIPME][DENS]L[VASTRGE]

LIG_CYCLIN_1 26344 275157 10.4 [RK].L.{0,1}[FYLIVMP]

MOD_CMANNOS 187 7964 42.6 W..W

MOD_TYR_ITAM 68 975 14.3 [DE]..(Y)..[LI].{6,12}(Y)..[LI]

MOD_TYR_ITIM 1554 55415 35.7 [ILV].(Y)..[ILV]

Improvement in specificity is defined as (ELM FP_50)/(GLAM2 FP_50).
doi:10.1371/journal.pcbi.1000071.t002

Table 3. Average GLAM2 performance on each BAliBASE category.

Category 1 2 3 4 5

Alignments 82 23 12 12 12

Average SP 83.3 (76.6–90.1) 92.1 (88.4–94.4) 72.0 (68.4–84.3) 94.4 (79.3–93.8) 91.6 (85.9–98.1)

Average TC 77.5 (70.9–82.6) 55.7 (35.9–61.3) 45.0 (34.4–61.3) 81.1 (45.1–81.0) 77.3 (63.8–92.2)

The first row indicates the number of alignments in each category. The numbers in parentheses are the lowest and highest values observed in previous tests involving
eight methods [37–39]. Note that no single method produces all of the highest values.
doi:10.1371/journal.pcbi.1000071.t003
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remaining sequences (Dataset S4) were submitted to GLAM2, with

parameters -a 3 (minimum width), -b 7 (maximum width), -w 5

(initial width), and -n 100000 (slow and thorough). These width

parameters are based on the sizes of known phosphorylation and

docking motifs in substrates [42]. Results were compared to known

motifs using PhosphoMotif Finder and ELM [15,44].

GLAM2 identified a number of interesting motifs in substrates of

both tyrosine and serine-threonine protein kinases (Table 4). The

motifs include both putative phosphorylation sites (e.g. a GSK3

kinase site in substrates of Akt kinase) and domain binding sites.

GLAM2 was particularly effective at identifying proline-rich regions,

finding putative motifs for SH3 domain-binding, WW domain-

binding and proline-directed kinase phosphorylation. Strikingly, all

of the sequences in each group participated in the motif alignments,

even though we did not force this to happen (with GLAM2’s z

parameter), suggesting that GLAM2 is finding real, shared motifs.

In some cases the GLAM2 alignment matched a known motif in

some, but not all substrate sequences. This is the case for CaMK-

III (calmodulin-dependent kinase) substrates (4 sequences), where

two sequences contained a consensus PDZ domain-binding motif

X[DE]X[ILV] and the other two sequences differed by having Ala

at the [ILV] position. This suggests that (i) the results from GLAM2

are meaningful for some, but not all sequences in a group of

substrates, (ii) the motif defined by GLAM2 is a genuine novel motif

but resembles a known motif or (iii) the existing consensus for some

known motifs could be redefined on the basis of the GLAM2 motif.

Examples of complex formation involving PDZ domains and other

calmodulin-dependent kinases have been reported [45].

GLAM2 also identified high-scoring motifs in several groups of

substrate sequences to which function could not be assigned. Of

particular note is the presence of short sequences with a high

proportion of aspartate and glutamate residues in substrates of

CDK-type and Polo kinases (Table 4). Evidence of a biological

function for these motifs was not found in existing motif databases

or a literature survey. However, their conservation in substrates of

related kinase families strongly implies a role in kinase-substrate

interaction.

Exploring Transcriptional Regulation with GLAM2 and
GLAM2SCAN

In this section we investigated the utility of GLAM2 and

GLAM2SCAN for studying transcriptional regulation. Because GLAM2

motifs can model transcription factor binding sites containing

variable length spacers, we focused on a regulatory binding

complex known to have sites of variable length. In particular, we

used GLAM2 to discover a model of a bipartite DNA-binding motif

associated with an erythroid protein complex centered on Lmo2

[46], and then used GLAM2SCAN to identify possible binding sites

(and target genes) of this complex in the mouse genome. We then

compared the predicted targets with the list of genes shown to be

up-regulated by Gata-1 (one putative member of the Lmo2 protein

complex) in a ChIP-chip study by [47].

The Lmo2 complex consists of transcription factors E2a, Tal1

and Gata-1 bound to Lmo2 and Ldb1. A bipartite binding motif

consisting of an E-box (CANNTG) and a GATA, separated by a

spacer of length 8 to 10 basepairs, was previously determined using

CAST-ing [46]. When given as input the 31 random DNA

oligomers that bound this complex in the CAST-ing experiment,

GLAM2 discovers this motif. The average length of the oligomers is

about 31 bp, and GLAM2 is run with its default parameters. The

alignment determined by GLAM2 is shown in Figure 5. GLAM2

exactly identifies the boundary of the E-box on the left and extends

the GATA motif on right by three columns. GLAM2 correctly

determines the need for up to two insertions to account for the

variable (8–10 bp) spacer between the DNA regions bound by

Tal1/E2a and Gata-1.

Using the GLAM2 alignment, GLAM2SCAN detects significantly

high-scoring matches adjacent to the promoters of several

important genes involved in erythropoeisis. Among these genes

are the four known targets of the Lmo2 complex studied here,VE-

cadherin (Cdh5) [48], P4.2 (Epb4.2) [49], glycophorin A (Gypa)

[50] and complex member Gata-1 [51]. The high-scoring matches

to the binding motif of the Lmo2 complex also include several that

have not been previously reported to the best of our knowledge. In

the 1 kb upstream regions of all mouse genes (downloaded from

Table 4. GLAM2 motifs in protein kinase substrates.

Kinase (# substrates) GLAM2 consensus motif Known motif Known annotation

Tyrosine kinases

Abl (10) PPPPPPA X{3}[PV]X{2}P SH3 domain-binding

Src (14) ELPPLPP X{3}[PV]X{2}P SH3 domain-binding

Serine-threonine kinases

Akt/Rac (3) SRLRSCT X{3}([ST])X{3}[ST] GSK3 kinase substrate

CaMK-III (4) EEEARE X[DE]X[ILV] PDZ domain-binding

CDC15 (4) PSNPPPS X{3}[PV]X{2}P SH3 domain-binding

CDK (55) DEE.....EEEE - -

CDK2 (7) EEDD - -

CDK5 (7) EEEEEDD - -

ERK-II (8) PSSPRQE X{3}([ST])PX WW domain, Pro-directed kinase

X{3}[PV]X{2}P SH3 domain-binding

ERK/MAPK (28) PSPPPG X{3}([ST])PX WW domain, Pro-directed kinase

X{3}[PV]X{2}P SH3 domain-binding

GSK3-II (7) DDDEDEE - -

Polo (9) EEEGEE - -

doi:10.1371/journal.pcbi.1000071.t004
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the UCSC genome browser http://hgdownload.cse.ucsc.edu/

goldenPath/mm8/bigZips/), GLAM2SCAN detects a very strong

match to transforming growth factor beta 1 (Tgfb1). The score of

this match ranks 2 out of 17254 upstream regions. Tgfb1 is known

to be involved in IL-3-dependent early erythropoiesis [52]. Strong

matches are also seen for Klf1 (rank 42/17254), a very important

transcriptional regulator of erythropoeisis, and for Gata-5 (rank

73/17254), which, like Gata-1, binds GATA DNA sites. These

genes were not reported as having binding sites adjacent to their

promoters by [46]. GLAM2SCAN finds moderate to weak matches in

the 1 kb upstream regions of some the members of the Lmo2

complex–Lmo2 (rank 2327/17254), E2a (Tcfe2a, rank 1031/

17254), Gata-1 (rank 1716/17254) and Ldb1 (rank 2812/17254).

The known binding site upstream of Gata-1 is outside of the

1 kb region, but the known site ranks 761/17254 when we scan

the 2 kb regions of all mouse genes (2 kb regions downloaded from

same source as 1 kb regions). The known site for P4.2 likewise has

rank 287/17254 in the scan of the 2 kb upstream regions. The

other two known sites are within 1 kb of the start of transcription

of the glycophorin A and VE-cadherin genes, and GLAM2SCAN

detects them with rank 386 and 429 out of 17254, respectively.

The probability of getting the right promoter within the top 386 by

chance alone is 0.0224.

We examined the fifty top-scoring genes using GOStat [53],

looking for groups of genes that share common GO terms [54].

The most statistically significant GO terms shared by subsets of

these fifty genes included hemopoeisis, shared by four genes (p-

value 0.00156, false discovery rate 0.0902): Nkx2-3, Klf1, Tgfb1

and Il7, and cell differentiation, shared by twelve genes (p-value

0.000452, false discovery rate 0.0902): Nkx2-3, Kcnip3, Klf1,

Stk4, Dazap1, Prop1, Gprin1, Nanos2, Cidea, Barhl2, Tgfb1 and

Il7. Although a false discovery rate of 0.0902 is not highly

significant, it is very encouraging that four of the fifty top-scoring

genes detected by GLAM2SCAN are implicated in hemopoeisis, a

process for which Lmo2 is now known to be essential [55].

Since the Lmo2-complex contains Gata-1, we looked at the

response of Lmo2 transcription to the presence of nuclear Gata-1

reported in a previous study [47]. Lmo2 shows approximately 1.4-

fold up-regulation (rank 1775 out of 5053 genes) at 3 hours after

introduction of Gata-1 to the nucleus in an experimental system

based on erythrocytes. (Expression data was downloaded from

http://stokes.chop.edu/web/weiss/G1Eindex.html.) In this same

study, the most highly up-regulated gene after 3 hours was Csf2rb1

(19.2-fold), and there is a high-scoring match to the GLAM2

alignment in the 2 kb upstream region of Csf2rb1. Its rank is 148

out of 17254 regions.

Computational Requirements
GLAM2 is quite time-consuming in general, although it can be

fast in favourable cases. For a small dataset (e.g. ten sequences of

100 residues each) with a strong motif, it can find a probably

optimal alignment in seconds or tens of seconds on a standard

computer. For slightly larger datasets and weaker motifs, it

typically takes minutes or tens of minutes. To process many

datasets, it becomes desirable to run them in parallel on a multi-

CPU cluster. Proteins of typical length are processed several times

more slowly than same-length nucleotide sequences, because

GLAM2 uses a more complex Dirichlet mixture for proteins by

default, and the Dirichlet calculations become the bottleneck. The

time scales linearly with sequence length (assuming the motif width

is bounded), making it difficult to analyse sequences longer than a

few thousand residues, and impractical to analyse sequences much

above ten thousand. Fortunately, just about all known proteins are

under this limit. On the other hand, GLAM2 has modest memory

requirements, and runs robustly without crashing.

GLAM2’s behaviour with large numbers of sequences is more

complex. The speed is not directly affected, and it can happily

process ten thousand or more sequences, but the result will

probably be far from optimal unless the annealing is slowed down

by increasing the n parameter. Furthermore, column sampling

becomes ineffective with large numbers of sequences, especially if

they are short. This is because it becomes unlikely that there will

be any reversible way of moving, adding, or deleting a key

position. Thus, it becomes more important to specify the number

of key positions in advance with the w parameter.

GLAM2SCAN is fast: it can scan a typical motif against the whole

Swiss-Prot database in seconds. Its memory requirement scales

linearly with the length of the longest individual sequence. Huge

sequences such as whole mammalian chromosomes would require

massive amounts of memory.

Discussion

This study demonstrates that a powerful motif discovery

method, Gibbs sampling, can be adapted to discover motifs with

arbitrary insertions and deletions. Thus, we hope that researchers

will not limit themselves to searching for gapless motifs in future. A

remarkable point is that GLAM2 is not substantially slower than the

original gapless Gibbs sampler to which it is highly analogous: the

Figure 5. GLAM2 output on 31 clones that bind the Lmo2
complex. GLAM2 was run using default parameters on the clones
identified in Figure 1A of [46]. The GLAM2 alignment is shown on the top,
and the information content ‘‘LOGO’’ corresponding to the alignment is
shown on the bottom. The GLAM2 alignment was pretty-printed using
PFAAT [60]. The LOGO is corrected for small-sample size [61].
doi:10.1371/journal.pcbi.1000071.g005
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big-O complexity of the central step, realigning one sequence to

the motif, does not change when arbitrary gaps are allowed.

GLAM2 is most obviously useful for discovering and refining short

protein motifs associated with functional sites, such as glycosyla-

tion sites, interaction sites, and cleavage sites. These motifs,

together with contextual filters such as those used by ELM, should

help us to elucidate many of the protein activities that contribute

to biological systems. The application of GLAM2 to protein kinase

substrates was somewhat hampered by (i) low availability of non-

redundant substrate sequences for each class of kinase and (ii)

limited information in current databases and the literature

concerning motifs involved with kinase-substrate interaction.

However, GLAM2 was clearly capable of identifying interesting

short peptide motifs in sets of sequences related only by their role

as substrates of a protein kinase family. This initial study suggests

that in combination with other resources, GLAM2 is a useful tool for

analysis of motifs involved in protein-protein interaction.

An exciting but more speculative application of GLAM2 is

discovery of complex gapped motifs in DNA and RNA. Currently

known DNA motifs tend to be gapless or bipartite, but it is

plausible that multi-factor complexes bind to more complex

motifs. Known transcription factor binding motifs are far too non-

specific for accurate predictions [56], and complex composite

motifs might just supply the needed specificity. RNA molecules

frequently contain functional sites with motifs that mediate, for

example, subcellular localization and degradation. Myriad func-

tions are emerging for non-coding RNA [57]. While secondary

and tertiary structure may be important for many RNA functions,

it is likely that sequence motifs will often be present too, just as for

the protein motifs in ELM and PROSITE.

While GLAM2 performs respectably on the BAliBASE multiple

alignment benchmark, it is not the best tool for this kind of

alignment, except perhaps for motif-like cases with N- and C-

terminal extensions. GLAM2 is not really designed for extensive

alignments such as these. Specifically, the following issues probably

prevent it from performing better in this assessment:

N GLAM2’s simple motif model is not ideal for protein structural

domains, because it does not favour multiple deletions in a row,

and perhaps also because it does not distinguish insertion-

opening and insertion-extension probabilities. These two

properties could be added to our model, making it identical to

a profile HMM [58]. We believe that the mathematical

development of GLAM2’s scoring scheme and optimisation

algorithm (Materials and Methods, Text S1) could be adapted

to this more complex model without fundamental difficulties.

Better still, perhaps, would be a reticulate (branching) model

accommodating partial order alignments (i.e. different subsets of

sequences can be aligned to each other in different parts of the

alignment) [59].

N GLAM2’s scoring scheme for a column of aligned residues

assumes the sequences are equally and distantly related to one

another, which is violated by construction in BAliBASE

categories (2) and (3). One crude way to address this issue

would be a weighting scheme that down-weights highly similar

sequences.

N Since GLAM2 can only adjust the number of key positions by

one at a time, it can have difficulty optimising the alignment

width, especially if it needs to extend over large insertions. We

have no idea how to solve this problem (other than increasing

n), but we are surprised how well GLAM2 does on BAliBASE

category (5) with large insertions.

N GLAM2’s scoring scheme is based on a Dirichlet mixture,

whereas other alignment tools typically use a residue similarity

matrix such as BLOSUM-62. Dirichlet mixture priors are

more general and potentially more powerful than similarity

matrices, but much harder to derive. Thus, we suspect there is

more room for improvement in Dirichlet mixtures than in

similarity matrices.

In all, we are pleasantly surprised that GLAM2 is as competitive

on this assessment as it is.

It is sometimes desirable to search for multiple motifs, not just

the strongest one. This can be accomplished by first obtaining the

optimal GLAM2 motif, then masking the aligned instances of this

motif using the companion GLAM2MASK utility, and then re-

running GLAM2.

Since GLAM2 always reports a motif, even for random sequences,

it is often desirable to know whether a motif is statistically

significant. Unfortunately this is not easy, but two approaches used

with the original Gibbs sampler can be used here too [29]. The

first is to run GLAM2 on multiple shuffled versions of the original

sequences, and observe how rarely the motif score for shuffled

sequences exceeds the motif score for the original sequences. The

second is to concatenate each original sequence with a shuffled

version of itself, run GLAM2 on these hybrid sequences, and check

whether the aligned segments occur in the original sequences more

often than, or with higher marginal scores than, in the shuffled

sequences. The statistical significance can be quantified using a

Wilcoxon signed rank test [29]. The second approach is faster, but

lacks statistical power when there are few sequences. The tests

described here assume that ‘‘statistically significant’’ means ‘‘with

higher score than likely for randomly shuffled sequences’’, which

may or may not be appropriate.

We have presented an algorithm to detect similarities across

multiple sequences, which bridges the gap between traditional

motif discovery methods and multiple alignment techniques. It has

a simple and general framework, which seems best suited to subtle,

linear motifs with multiple insertions and deletions.

Supporting Information

Text S1 GLAM2 Methods

Found at: doi:10.1371/journal.pcbi.1000071.s001 (0.14 MB PDF)

Dataset S1 Sets of Sequences Containing PROSITE Motifs

Found at: doi:10.1371/journal.pcbi.1000071.s002 (0.10 MB ZIP)

Dataset S2 Sets of ELM Sites with Flanking Residues

Found at: doi:10.1371/journal.pcbi.1000071.s003 (0.02 MB ZIP)

Dataset S3 GLAM2 Motifs Made from ELM Sites

Found at: doi:10.1371/journal.pcbi.1000071.s004 (0.05 MB ZIP)

Dataset S4 Groups of Protein Kinase Substrate Sequences

Found at: doi:10.1371/journal.pcbi.1000071.s005 (0.11 MB ZIP)
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