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Abstract. This paper describes work aimed at the unsupervised learning of shape-classes from shock trees. We
commence by considering how to compute the edit distance between weighted trees. We show how to transform the
tree edit distance problem into a series of maximum weight clique problems, and show how to use relaxation labeling
to find an approximate solution. This allows us to compute a set of pairwise distances between graph-structures. We
show how the edit distances can be used to compute a matrix of pairwise affinities using χ2 statistics. We present
a maximum likelihood method for clustering the graphs by iteratively updating the elements of the affinity matrix.
This involves interleaved steps for updating the affinity matrix using an eigendecomposition method and updating
the cluster membership indicators. We illustrate the new tree clustering framework on shock-graphs extracted from
the silhouettes of 2D shapes.
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1. Introduction

The analysis of skeletal abstractions of 2D shapes has
been a topic of sustained activity for over 30 years in the
computer vision literature. Some of the earliest work
in the area drew its inspiration from biometrics where
it has lead to the study of the so-called Blum skele-
ton (Blum, 1973). Recently, there has been a renewed
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research interest in the topic which as been aimed at de-
riving a richer description of the differential structure
of the object boundary. This literature has focused on
the so-called shock-structure of the reaction-diffusion
equation for object boundaries.

The idea of characterizing boundary shape using the
differential singularities of the reaction equation was
first introduced into the computer vision literature by
Kimia et al. (1995). The idea is to evolve the bound-
ary of an object to a canonical skeletal form using the
reaction-diffusion equation. The skeleton represents
the singularities in the curve evolution, where inward
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moving boundaries collide. The reaction component
of the boundary motion corresponds to morphological
erosion of the boundary, while the diffusion component
introduces curvature dependent boundary smoothing.
In practice, the skeleton can be computed in a number
of ways (Arcelli and di Baja, 1992; Ogniewicz, 1994).
Recently, Siddiqi et al. have shown how the eikonal
equation which underpins the reaction-diffusion anal-
ysis can be solved using the Hamilton-Jacobi formal-
ism of classical mechanics (Bouix and Siddiqi, 2000;
Siddiqi et al., 1999a).

With the skeleton to hand, then the next step is to
devise ways of using it to characterize the shape of
the original object boundary. Most of the approaches
reported in the literature opt to use a structural char-
acterization. For instance, Zucker, Siddiqi and others
have labeled points on the skeleton using so-called
shock-labels (Siddiqi et al., 1999b). According to this
taxonomy of local differential structure, there are dif-
ferent classes associated with the behavior of the ra-
dius of the bitangent circle from the skeleton to the
nearest pair of boundary points. The so-called shocks
distinguish between the cases where the local bitangent
circle has maximum radius, minimum radius, constant
radius or a radius which is strictly increasing or decreas-
ing. Kimia and Giblin opt for a simpler representation
which is based just on the junctions and terminations
of the skeleton (Giblin and Kimia, 1999).

Once the skeletal representation is to hand then
shapes may be matched by comparing their skeletons.
Most of the work reported in the literature adopts a
structural approach to the matching problem. For in-
stance, Pelillo, Siddiqi et al. (1999) use a sub-tree
matching method. Tirthapura, Kimia and Klein have a
potentially more robust method which matches by min-
imizing graph-edit distance (Klein et al., 1999; Tirtha-
pura et al., 1998). However, this approach requires the
order of the branches to be the same for all the ob-
served shapes. This makes the method robust against
random deformation, but not against shape articulation
or variations of 3D viewpoint.

Stability with respect to change in viewpoint
can be achieved using aspect-graph based ap-
proaches (Bowyer and Dyer, 1990; Dickinson et al.,
1992). For instance, Cyr and Kimia (2004) compute
edit-distance to a set of prototypical views of the ob-
ject to be recognized. With the aspect-graph represen-
tation the matching problem becomes one of view se-
lection. Denton et al. (2004a, b) select canonical views
by merging similar features in a set of images of the

same object. To achieve stability against articulation
requires the that calculation of edit-distance allows for
a potential change in branch order.

The observation underpinning this paper is that al-
though considerable effort has gone into the extraction
and matching of shock trees, the topic of how to use
shock trees to learn shape-classes has not received sig-
nificant attention. The aim in this paper is therefore
to develop a framework for learning shape classes by
clustering shock trees. We pose the problem as one of
graph-clustering. We make two contributions. First, we
show how to compute approximate distances between
weighted trees using relaxation labeling. Second, we
develop a pairwise clustering algorithm algorithm that
can be applied to the set of distances between trees.

1.1. Graph Clustering

Graph clustering is an important, yet relatively
under-researched topic in machine learning (Rizzi,
1998; Segen, 1988). The importance of the topic stems
from the fact that it can be used as a tool for learning the
class-structure of data abstracted in terms of relational
graphs. Problems of this sort are posed by a multitude of
unsupervised learning tasks in knowledge engineering,
pattern recognition and computer vision. The process
can be used to structure large data-bases of relational
models (Sengupta and Boyer, 1988) or to learn equiv-
alence classes. One of the reasons for limited progress
in this area has been the lack of algorithms suitable
for clustering relational structures. Broadly speaking,
there are two approaches to the problem.

The first of these is to use central clustering meth-
ods. Here a class prototype is maintained, and the
aim is to find clusters of graphs that are close to
the prototype. This prototype may be either an ex-
plicit representation of full graph-structure or a proxy
representation based on features that succinctly ex-
press the graph characteristics. The learning of ex-
plicit cluster prototypes is a difficult task. For in-
stance, in related work we have developed a greedy
algorithm that minimizes a description length criterion
(Torsello and Hancock, 2006). Lozano and Escolano
(2003) use the EM algorithm to learn the prototype.
However, these algorithms are computationally inten-
sive and have hence only been demonstrated on rather
small graphs. Moreover, one of the difficulties is that
of defining what is meant by the mean or represen-
tative graph for each cluster. However, Munger et al.
(1999) have recently taken some important steps in
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this direction by developing a genetic algorithm for
searching for median graphs. This problem may also
be overcome by using a proxy representation of the
prototype. For instance, Luo et al. (2003) have used
vectors of graph-spectral features, including the vector
of leading eigenvectors of the adjacency matrix, for this
purpose.

The second approach to the problem is to pose it
as one of pairwise clustering. This avoids the need
for a class prototype, and requires only that a set of
pairwise distances between graphs be supplied. The
clusters are located by identifying sets of graphs that
have strong mutual pairwise affinities. There is there-
fore no need to explicitly identify an representative
(mean, mode or median) graph for each cluster. Unfor-
tunately, the literature on pairwise clustering is much
less developed than that on central clustering. How-
ever, one of the most powerful pairwise clustering
algorithm is that of Hofmann and Buhmann (1997)
which use mean field theory to iteratively perform
pairwise clustering. Shi and Malik (2000) have de-
veloped a graph spectral method that uses the Fiedler
vector to find clusters that minimize a normalized cut
measure. Pavan and Pelillo have recently introduced a
new graph-based measure of pairwise cluster affinity
based on dominant sets (Pavan and Pelillo, 2003a) and
have developed a hierarchical clustering method that
uses the measure to cluster graphs (Pavan and Pelillo,
2003b).

When posed in a pairwise setting, the
graph-clustering problem requires two computa-
tional ingredients. The first of these is a distance
measure between relational structures. We address
this issue in more detail in the next subsection. The
second ingredient is a means of performing pairwise
clustering on the distance measure. There are several
possible routes available. The simplest is to transform
the problem into a central clustering problem. For
instance, it is possible to embed the set of pairwise
distances in a Euclidean space using a technique such
as multi-dimensional scaling and to apply central
clustering to the resulting embedding. The second
approach is to use a graph-based method (Sengupta
and Boyer, 1988) to induce a classification tree on the
data. Finally, there are mean-field methods which can
be used to iteratively compute cluster-membership
weights (Hofmann and Buhmann, 1997). These
methods require that the number of pairwise clusters
be known a priori.

1.2. Tree Edit Distance

To apply the graph clustering to shock-trees, we require
a means of comparing their pairwise similarity. The
problem of how to measure the similarity of pictorial
information which has been abstracted using graph-
structures has been the focus of sustained research ac-
tivity for over twenty years in the computer vision lit-
erature. Early work on the topic included Barrow and
Burstall’s idea (1976) of locating matches by searching
for maximum common subgraphs using the association
graph, and the extension of the concept of string edit
distance to graph-matching by Fu and et al. (Eshera and
Fu, 1986). The idea behind edit distance (Tsai and Fu,
1979) is that it is possible to identify a set of basic edit
operations on nodes and edges of a structure, and to as-
sociate with these operations a cost. The edit-distance
is found by searching for the sequence of edit opera-
tions that will make the two graphs isomorphic with
one-another and which has minimum cost. By mak-
ing the evaluation of structural modification explicit,
edit distance provides a very effective way of mea-
suring the similarity of relational structures. Moreover,
the method has considerable potential for error tolerant
object recognition and indexing problems.

Unfortunately, the task of calculating edit distance
is a computationally hard problem and most early ef-
forts can be regarded as being goal-directed. How-
ever, in an important series of recent papers, Bunke
has demonstrated the intimate relationship between the
size of the maximum common subgraph and the edit
distance (Bunke and Kandel, 2000). In particular, he
showed that, under certain assumptions concerning the
edit-costs, computing the maximum common subgraph
(MCS) and the graph edit distance are equivalent. The
restriction imposed on the edit-costs is that the dele-
tions and re-insertions of nodes and edges are no more
expensive than the corresponding node or edge relabel-
ing operations. In other words, there is no incentive to
use relabeling operations, and as a result the edit opera-
tions can be reduced to those of insertion and deletion.

While trees are a special case of graphs, because of
the connectivity and partial order constraints which ap-
ply to them, the methods used to compare and match
them require significant specific adaptation. Conse-
quently, Bunke’s result (2000) linking the computa-
tion of edit distance to the size of the maximum com-
mon subgraph does not translate in a simple way to
trees.
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1.3. Contribution and Paper Outline

To develop a framework for tree-clustering, we make
two contributions in this paper.

The first of these is to develop an energy minimiza-
tion method for efficiently computing the weighted tree
edit distance. We use the graph-theoretic notion of tree
closure to show how the problem of locating the max-
imum edited common subtree can be transformed into
that of searching for maximal cliques of an association
graph. We follow Bomze et al. (2000) and use a variant
of the Motzkin Straus theorem to convert the maximum
weighted clique problem into a quadratic programming
problem which can be solved by relaxation labeling. By
re-casting the search for the maximum common sub-
graph as a max-clique problem (Barrow and Burstall,
1976), then we can extend Bunke’s work (2000) from
graphs, and efficiently compute tree edit distance.

The second contribution is to develop a maximum
likelihood framework for graph clustering. The prob-
lem is posed as one of pairwise clustering which is pa-
rameterized using two sets of indicator variables. The
first of these are cluster membership variables which
indicate to which cluster a graph belongs. The sec-
ond set of variables are affinity weights which convey
the strength of the similarity relations between pairs
of graphs belonging to the same cluster. Our cluster-
ing algorithm is an iterative one in which both sets of
indicator variables are updated so as to maximize a
likelihood criterion.

The outline of this paper is as follows. In Section 2 we
outline our algorithm for computing weighted tree edit
distance. Section 3 presents the clustering algorithm.
In Section 4 we provide experiments on shock graphs.
Finally, Section 5 presents conclusions and suggests
directions for further investigation.

2. Tree Edit Distance

The problem we aim to solve is the automatic extraction
of correspondences between tree representations. For-
mally, given two trees t1 = (V1, E1) and t2 = (V2, E2),
where V1 and V2 are set of nodes and E1 and E2 set
of edges, we wish to find the edit-distance between the
two trees. That is, the sequence of basic edit operations
that make t1 and t2 isomorphic with one another. Fol-
lowing common use, we consider three fundamental
operations:

• node removal: this operation removes a node and
links the children to the parent of said node.

• node insertion: the dual of node removal.
• node relabel: this operation changes the weight of a

node.

Since a node insertion on the data tree is dual to a
node removal on the model tree, we can reduce the
number of operations to be performed to only node
removal and node relabeling, as long as we perform the
operations on both trees. Clearly, the cost of removing
a node in the model tree must be equal to the cost
of inserting it in the data tree. We assign a cost rv to
the operation of removing node v and a cost mvu to
matching node v to node u (that is, the minimum cost
of relabeling nodes v and v to a common label).

With these definitions, the edit-distance between
trees t1 and t2 is:

d(t1, t2) = min
S

[ ∑
v∈R1

rv +
∑
u∈R2

ru +
∑

(v,u)∈M

mvu

]
,

(1)

where S is sequence of edit operations, R1 and R2 are
the sets of nodes of t1 and t2, respectively, that are
removed by S, and M ∈ V1 × V2 is the set of matches
between nodes of t1 and t2 induced by S.

The edit-distance approach is general in the sense
that, by applying different costs to the edit operations, it
can be equally applied to unattributed trees and to trees
with either symbolic or continuous-valued attributes.
In particular, to solve the correspondence problem for
unattributed trees, we set rv = 1 and mvu = 0 for each
node v and u of the two trees. On the other hand,
later in the paper, to solve the correspondence prob-
lem for shock trees attributed with the weight described
in Torsello and Hancock (2004), we set rv = wv and
mvu = |wv − wu |, where wv is the weight assigned to
node v. Obviously, other cost assignments are possible.

It is easy to see that the cost of the edit-sequence is
completely determined by the nodes in the two trees
that are matched to one-another. In fact, given the op-
timal edit-sequence S, we have:

d(t1, t2) =
∑
v∈R1

rv +
∑
u∈R2

ru +
∑

(v,u)∈M

mvu

=
∑
v∈V1

rv +
∑
u∈V2

ru −
∑

(v,u)∈M

(rv + ru − mvu).

(2)
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Since
∑

v∈V1
rv and

∑
u∈V2

ru are constant and indepen-
dent fromS, the edit-distance is completely determined
by the set of matches that maximize the utility

U(M) =
∑

(v,u)∈M

(rv + ru − mvu). (3)

The edit-distance is related to the maximum value of
the utility maxM U(M) in the following manner

d(t1, t2) =
∑
v∈R1

rv +
∑
u∈R2

ru − max
M

[U(M)],

where the maximization is over all the matches that are
compatible with the hierarchical constraints imposed
by the trees.

At this point we introduce the concept of an edited
isomorphism. Let us assume that we have two trees
t1 = (V1, E1) and t2 = (V2, E2). Furthermore, let t ′ =
(V ′, E ′) be a tree that can be obtained from both t1
and t2 with node removal and relabel operations. The
correspondences M1 and M2 between the nodes of t ′

and the nodes of t1 and t2, respectively, will induce an
isomorphism M ′ = M−1

1 ◦ M2 between nodes in t1 and
t2. This isomorphism places two nodes in correspon-
dence with each other if and only if they are mapped
to the same node in t ′. This isomorphism is referred to
as an edited isomorphism induced by t ′. Furthermore,
we say that the isomorphism induced by this tree is a
maximum edited isomorphism if it maximizes the total
utilityU(M ′). Clearly, finding the maximum edited iso-
morphism is equivalent to solving the tree edit-distance
problem.

In the remainder of this section, we present the
steps necessary for computing the maximum edited
isomorphism using relaxation labeling. We commence
by explaining the relationship between the maximum
common subtree and the association graph, in the case
of exact tree matching. We show how to extend this
to the case of inexact tree matching by exploiting the
equivalence of transitive closures and node removal op-
erations on trees. Next, we show how to decompose the
process into a series of maximum weighted clique find-
ing subproblems. Finally, we map the max-weighted
clique problems onto a relaxation labeling process.

2.1. Association Graphs and the Maximum
Common Subtree

To commence, we describe a polynomial-time algo-
rithm for the subtree isomorphism problem. This allows

us to formalize some concepts and provide a starting
point to extend the approach to the minimum tree edit-
distance problem.

Let G = (V, E) be a graph, where V is the set
of nodes (or vertices) and E ⊆ V × V is the set of
directed edges. With the notation v � u we shall mean
that there is a directed edge going from node v to node
u. If there is a directed path from v to u, we shall write
v -- → u. Hierarchical trees have a canonical order
relation O induced by paths: given two nodes v and u,
we have (v, u) ∈ O ⇔ v --→ u. That is, two nodes are
in the canonical relation if and only if there is a path
connecting them. This relation can be shown to be an
(irreflexive) order relation.

The phase-space we use to represent the matching
of nodes is the directed association graph. This is a
variant of the association graph, a structure that is fre-
quently used in graph matching problems (Barrow and
Burstall, 1976; Pelillo et al., 1999). The association
graph G A = (VA, E A) of two graphs G1 = (V1, E1)
and G2 = (V2, E2) has node set VA = V1 × V2 equal
to the Cartesian products of nodes of the graphs to be
matched. Hence, each node represents a possible asso-
ciation, or match, of a node in one graph to a node in
the other. The edges represent the pairwise constraints
of the problem. In particular, they represent both con-
nectivity on the original graphs and the feasibility of
a solution having both associations linked by an edge.
The use of directed arcs in the association graph allows
us to make use of the order provided by the tree hierar-
chies. For the exact isomorphism problem (maximum
common subgraph) the edges of the association graph
G A = (V1 × V2, E A) of two graphs G1 = (V1, E1) and
G2 = (V2, E2) are:

(v, v′) � (u, u′) iff v � u and v′� u′, (4)

where v, u ∈ V1 are nodes of graph G1 and v′, u′ ∈
V2 are nodes of graph G2. The graph obtained can be
shown to be still be ordered. Specifically, an association
graph for the tree isomorphism problem can be shown
to be a forest.

Proposition 1. The directed association graph of two
directed acyclic graphs (DAGs) G and G ′ is acyclic.

Proof: Let us assume that (u1, v1) � · · · � (un, vn)
is a cycle. Then, since an arc (v, v′) � (u, u′) in the
association graph exists only if the arcs v � u and
v′ � u′ exist in G and G ′ respectively, we have that
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u1� · · ·� un is a cycle in G and v1� · · ·� vn is a
cycle in G ′ against the hypothesis that they are DAGs.

Proposition 2. The directed association graph of two
trees t and t ′ is a forest.

Proof: Since we already know that the association
graph is a DAG, we have to show that for each node
(u, u′) there is at most one node (v, v′) such that
(v, v′) � (u, u′). Due to the way in which the asso-
ciation graph is constructed this means that either u
or u′ must have at most one incoming edge. However,
both t and t ′ are trees, so in consequence both u and u′

have at most one incoming edge, namely the one that
originates from the parent.

The directed association graph can be used to re-
duce a tree matching problem into subproblems using
a divide-and-conquer approach. We call the maximum
(weight) common subtree rooted at (v, v′) a solution
to the maximum (weight) common subtree problem
applied to two subtrees of t and t ′. In particular, the
solution is constrained to the subtrees of t and t ′ rooted
at v and v′ respectively. This solution is further con-
strained by the condition that v and v′ are roots of the
matched subtrees.

With the maximum rooted common subtree problem
for each child of (v, v′) at hand, the maximum isomor-
phism rooted at (v, v′) can be reduced to a maximum
weight bipartite match problem between the set D of
the children of v and the set D′ of the children of v′.

To proceed, let B = (D ∪ D′, E) be a bipartite graph
with partitions D and D′ and w : E → R be a weight
function on the edges of B. A bipartite match is a set of
non-adjacent edges of B. The maximum weight bipar-
tite match is the set of non-adjacent edges with maxi-
mum total weight. The search for a maximum weight
bipartite match is a well known linear programming
problem with several very efficient polynomial time al-
gorithms to solve it (Papadimitriou and Steiglitz, 1982).

The two partitions V and V ′ of the bipartite match
consist of the children of v and v′ respectively. The
weight of the match between u ∈ V and u′ ∈ V ′ is the
sum of the matched weights of the maximum isomor-
phism rooted at (u, u′). In the case of an un-weighted
tree this is the cardinality of the isomorphism. This
structure provides us with a one-to-one relationship be-
tween matches in the bipartite graph and the children
of (v, v′) in the association graph. The solution of the
bipartite matching problem identifies a set of children

of (v, v′) that satisfy the constraint of matching one
node of t to no more than one node of t ′. Furthermore,
among such sets is the one that guarantees the maxi-
mum total weight of the isomorphism rooted at (v, v′).
In Reyner (1977) a similar approach is applied to the
subtree problem.

The maximum isomorphism between t and t ′ is a
maximum isomorphism rooted at (v, v′), where either
v or v′ is the root of t or t ′ respectively. This reduces
the isomorphism problem to n+m rooted isomorphism
problems, where n and m are the cardinalities of t and
t ′. Furthermore, since there are n × m nodes in the
association graph, the problem is reduced to a set of
n × m maximum bipartite matching problems, each of
which can be solved with known polynomial time algo-
rithms. In what follows, we will extend this approach to
the minimum weighted tree-edit problem and present
an evolutionary method to conquer the subproblems.

2.2. Inexact Tree Matching: Node Removal
and Transitive Closure on Trees

We would like to extend the algorithm described in the
previous section to develop an error-tolerant method
for locating tree isomorphisms. As noted earlier, there
is a strong connection between the computation of the
maximum common subtree and the tree edit-distance.
Bunke and Kandel (2000) showed that, under cer-
tain constraints applied to the edit-costs, locating the
maximum common subgraph problem and computing
the minimum graph edit-distance are computationally
equivalent to one another.

This is not directly true for trees, because of the
added constraint that a tree must be connected. How-
ever, extending the concept to the common edited sub-
tree, we can use common substructures to find the
minimum-cost edited tree-isomorphism.

Given a tree t = (V, E), we define the closure �(t) =
(V, E�) to be a directed acyclic graph with the same
node set and with edges satisfying

u � v in �(t) ⇐⇒ u --→ v in t. (5)

Clearly, t and �(t) are subject to the same order re-
lation O between their nodes. Furthermore, we have
u � v in �(t) ⇐⇒ uOv, i.e. the edge set of �(t) is a
complete description of O.

For each node v of t , we can define an edit operation
Ev on the tree and an edit operation Ev on the closure
�(t) of the tree t (see Fig. 1). In both cases the edit
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Figure 1. Terminology on directed graphs.

operation removes the node v, all the incoming edges,
and all the outgoing edges.

In a previous work (Torsello and Hancock, 2003), we
have shown that the transitive closure operation and the
node removal operation commute. That is, we have

Lemma 1. Ev(�(t)) = �(Ev(t)).

Furthermore, the transitive closure operation com-
mutes with node relabeling as well, since one acts only
on weights and the other acts only on node connectivity.

To take our discussion one step further, we need to
define the concept of obtainability. To commence, we
say that two nodes a and b of tree t are independent
if there is no path from a to b or from b to a, that is
if neither is a descendent of the other in t . A subtree s
of �(t) is said to be obtainable if for each node v of s
there cannot be two children a and b so that the edge
(a, b) is in �(t). In other words, s is obtainable if and
only if every pair of siblings in s are independent.

These definitions lead us to the following theorem
which is also proved in Torsello and Hancock (2003):

Theorem 1. A tree t̂ can be obtained from a tree t
with an edit sequence composed of only node removal
and node relabeling operations if and only if t̂ is an
obtainable subtree of �(t).

By virtue of Theorem 1, every common edited iso-
morphism between tree t and tree t ′ induces a consis-
tent subtree of both �(t) and �(t ′). Since minimizing

the edit-cost and maximizing the utility are equiva-
lent, the set of correspondences of the minimum-cost
edited tree-isomorphism can be found by searching
for the consistent subtree with maximum utility. As
a consequence, finding a minimum-cost edit-sequence
is equivalent to finding a maximum utility common ob-
tainable subtree of �(t) and �(t ′).

2.3. Cliques and Common Obtainable Subtrees

In this section we show that the directed association
graph allows us to decompose the tree matching task
into a series of subproblems, that can be solved using
a divide-and-conquer strategy. Given two trees t and
t ′ to be matched, we create the directed association
graph of the transitive closures �(t) and �(t ′) and we
search for an obtainable matching tree in the graph.
That is, we seek a tree in the graph that corresponds to
two obtainable trees in the transitive closures �(t) and
�(t ′). Any such tree having maximum utility induces
the optimal set of node-correspondence between t
and t ′.

By analogy to what we did for the exact matching
case, we divide the problem into a maximum com-
mon obtainable subtree rooted at (v, w), for each node
(v, w) of the association graph. We show that, given
the utility of the maximum common consistent subtree
rooted at each child of (v, w) in the association graph,
we can transform the rooted subtree problem into a
maximum weighted clique problem. A clique of a graph
G = (V, E) is a complete, or fully connected, subgraph
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of G. A maximum (unweighted) clique is a clique with
maximum node cardinality among all cliques of G,
while a maximum weighted clique of a weighted graph
G is a clique with maximum total weight among all
cliques of G. The search for a clique with maximum
weight is a well-known NP-hard problem. Solving this
problem for each node in the association graph and
searching for the one with maximum utility, we can
find the solution to the minimum-cost edit-sequence
problem and hence find the edit-distance.

Let us assume that we know the utility of the subtree
for every child of the node (v, w) in the association
graph. We wish to find the set of independent siblings
with greatest total utility. Let us construct an undirected
graph whose nodes consist of the children of (v, w) in
the association graph. We connect the two nodes (p, q)
and (r, s) if and only if p and r are independent in t , and
q and s are independent in t ′. Furthermore, we assign to
each association node (a, b) a weight equal to the utility
of the maximum common obtainable subtree rooted at
(a, b). The maximum weight clique of this graph will be
the set of mutually independent siblings with maximum
total weight. Let W (u,v) be the weight of this clique.
The utility of the maximum common obtainable subtree
rooted at (v, w) will be

U (u,w) = W (u,v) + rv + rw − mvw, (6)

where rv and rw are the costs of removing nodes v and
w respectively, while mvw is the cost of matching v

to w. Furthermore, the nodes of the clique will be the
children of (v, w) in the maximum common consistent
subtree. With the set of rooted utilities to hand, the
expression for the tree edit distance becomes

d(t1, t2) =
∑
v∈R1

rv +
∑
u∈R2

ru − max
u∈V1

max
w∈V2

U (u,w)

2.4. Heuristics for Maximum Weighted Clique

We have transformed an inexact tree-matching prob-
lem into a series of maximum weighted clique prob-
lems. That is, we transformed one NP-hard problem
into multiple NP-hard problems. The observation un-
derlying this approach is the fact that there are a large
number of approaches and very powerful heuristics ex-
ist to solve or approximate the max-clique problem.
Furthermore, since the seminal paper by Barrow and
Burstall (1976), transforming matching problems into
max-clique problems has become a standard technique.

The method adopted here to solve each instance of
the maximum weight clique problem is an evolutionary
one introduced by Bomze et al. (2000). This method is
based on a continuous formulation of the discrete com-
binatorial problem. This is achieved by transforming
the discrete problem into one of symmetric quadratic
programming. This approach has proven to be power-
ful, and is competitive in terms of performance with the
best clique finding algorithms in the literature (Pelillo,
1999; Pelillo and Torsello, 2006).

In 1965, Motzkin and Straus (1965) showed that
the (unweighted) maximum clique problem can be re-
duced to a quadratic programming problem on the n-
dimensional simplex � = {x ∈ Rn|xi ≥ 0 for all i =
1 . . . n,

∑
i xi = 1}, where xi are the components of

vector x. More precisely, let G = (V, E) be a graph
where V is the node set and E is the edge set, and let
C ⊆ V be a maximum clique of G, then the vector
x∗ = {x∗

i = 1/#C if i ∈ C, 0 otherwise} maximizes
in � the function g(x) = xTAGx, where AG is the ad-
jacency matrix of G. Furthermore, given a set S ⊆ V ,
we define the characteristic vector xS has components

xS
i =

{
1/#S if i ∈ S
0 otherwise.

With this definition, S is a maximum (maximal)
clique if and only if g(xS ) is a global (local) maximum
for the function g.

Gibbons et al. (1997) generalized this result to the
weighted clique case. In their formulation the associa-
tion graph is substituted with a matrix ĀG = (āi j )i, j∈V

related to the weights and connectivity of the graph by
the relation

āi j =

⎧⎪⎪⎨⎪⎪⎩
1/wi if i = j

ki j ≥ āi i + ā j j

2
if (i, j) /∈ E

0 otherwise.

(7)

Let us consider a weighted graph G = (V, E, w),
where V is the set of nodes, E the set of edges, and
w : V → R a weight function that assigns a weight
to each node. Gibbons et al. proved that, given a set
S ⊆ V and its characteristic vector xS defined as

xS
i =

⎧⎨⎩
w(i)∑

j∈S w( j)
if i ∈ S,

0 otherwise,

then S is a maximum (maximal) weight clique only
if xS is a global (local) minimizer for the quadratic
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form xT ĀGx. Furthermore, the weight of the clique S
is w(S) = 1

xST ĀG xS
.

Unfortunately, under this formulation, the minima
are not necessarily isolated. As a result, when we have
more than one clique with the same maximal weight,
any convex linear combinations of their characteristic
vectors will give the same maximal value. This im-
plies that, if we find a minimizer x∗ we can derive the
weight of the clique. However, we might not be able to
determine the nodes that constitute the clique.

To overcome this problem, Bomze et al. (2000)
introduce a regularization factor to the quadratic
programming method that generates an equivalent
problem with isolated solutions. The new quadratic
program minimizes xT Cx in the simplex, where the
matrix C = (ci j )i, j∈V is defined as

ci j =

⎧⎪⎪⎨⎪⎪⎩
1

2wi
if i = j

ki j ≥ cii + c j j if (i, j) /∈ E, i = j

0 otherwise.

(8)

With this regularization factor, S is a maximum (maxi-
mal) weighted clique if and only if xS is a global (local)
minimizer for the quadratic program.

To solve the quadratic problem we transform it into
the equivalent problem of maximizing xT (γ eeT −C)x,
where e = (1, . . . , 1)T is the vector with every compo-
nent equal to 1 and γ is a positive scaling constant.

To approximate the quadratic programming prob-
lem, we use relaxation labeling. Relaxation labeling
is an evidence-combining process developed in the
framework of constraint satisfaction. Its goal is to
find a classification that assigns a label from a set
� = {λ1, . . . , λm} to a set of objects O = {o1, . . . , on}
that satisfies pairwise constraints and interactions be-
tween the objects and labels. The discrete assignment
space is relaxed into a probability space � = (�m)n ,
where �m is an m-dimensional simplex. Given a re-
laxed assignment p, pi (λ) represents the probability
that object oi ∈ O is classified with label λ ∈ �.
The constraints to the possible assignments are given
in the form of mutual compatibility between pair of
assignments. We indicate with Ri j (λ, μ) the degree of
compatibility of assigning label λ to object oi , given
that object o j is labeled μ. A relaxation labeling pro-
cess takes as input the initial labeling assignment p0

and iteratively updates it taking into account the com-
patibility model. The evolution of the assignment is

determined by the update rule

pt+1
i (λ) = pt

i (λ)qt
i (λ)∑

μ pt
i (μ)qt

i (μ)
, (9)

where the compatibility coefficient is qi (λ) =∑n
j=1

∑m
μ=1 Ri j (λ, μ)p j (μ).

Pelillo (1997) showed that, when the compatibilities
are symmetric, that is Ri j (λ, μ) = R ji (μ, λ), the func-
tion A(p) = ∑

i,λ pi (λ)qi (λ) is a Lyapunov function

for the process, i.e. A(pt+1) ≥A(pt ), with equality if
and only if pt is a stationary point. Therefore, this pro-
cess can be used to find local optima of a quadratic
programming problem defined on �. By setting the
number of objects equal to 1, the quadratic problem
solved by the relaxation labeling process is

max
∑

λ

∑
μ

p(λ)R(λ, μ)p(μ)

subject to p ∈ �m .
(10)

By setting R(λ, μ) = γ − cλμ, this problem is equiv-
alent to that stated in Eq. (8) above. Therefore, relax-
ation labeling can be used to approximate the maximum
weighted clique problem and hence the maximum set
of independent children of nodes v and v′. Each label
λi of the labeling problem is in relation with a node
(ui , u′

i ) which is a child of (v, v′) in the association
graph. Upon convergence, the non-zero components of
p∞ are in correspondence with nodes of the children of
(v, v′) that from a clique of independent siblings with
maximal weight. That is, we find a set S such that

(ui , u′
i ) ∈ S ⇐⇒ p∞(λi ) > 0. (11)

This set of correspondences is optimal subject to the
fact that v is matched to v′. Hence, the weight of the
match rooted at (v, v′) is

W (v,v′) = mvv′ +
∑

(u,u′)∈S
W (u,u′). (12)

In this way we can propagate the associations from
the leaves of the directed association graph upwards,
using the weight of the extracted cliques to initial-
ize the compatibility matrix of every parent associa-
tion. For a subproblem rooted at (u, v) the compatibil-
ity coefficients can be calculated knowing the weight
of every isomorphism rooted at the descendants of u
and v. Specifically, the compatibility coefficients be-
tween matches λ and μ which link node a to node a′
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and node b to node b′ respectively, are initialized as
R(u,v)(λ, μ) = γ − c(u,v)

(λ,μ), where

c(u,v)
(λ,μ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2W (a,a′) if (a, a′) = (b, b′)

c(u,v)
(λ,λ) + c(u,v)

(μ,μ) if (a, a′) and (b, b′) are independent

0 otherwise.

(13)

We can now compute the approximate weighted tree
edit distance using the formula

d(t1, t2) =
∑
v∈R1

rv +
∑
u∈R2

ru − max
u∈V1

max
w∈V2

U (u,w)

where

U (u,w) = W (u,v) + rv + rw − mvw

and the weight of the maximum clique is obtained from
the label probabilities at convergence of the relaxation
process using the formula

W (u,v) = 1

(p∞)T ĀGp∞ .

Once all the optimal associations have been calcu-
lated for all possible nodes of the association graph, we
can determine the topmost match in the edited isomor-
phism by searching for the association with the maxi-
mum weight. Once the topmost match is found, we can
construct the complete isomorphism by following the
optimal matches obtained with relaxation labeling.

This optimization approach allows us to make use of
problem specific information about the solutions. Usu-
ally, when solving the maximum clique problem, the
label assignment probabilities are initialized with a uni-
form distribution so that the relaxation labeling process
starts from a point close to the barycenter of the sim-
plex. A problem with this approach is that the dimen-
sion of the basin of attraction of one maximal clique
grows with the number of nodes in the clique, regard-
less of their weights. While in general there is a strong
correlation between clique size and clique weight, this
is not the case for the cliques generated by our algo-
rithm. With the problem decomposition adopted here,
the wider cliques tend to that map nodes to lower lev-
els. Matches at higher level, on the other hand, yield
smaller cliques that are likely to weigh more. As a re-
sult the solution will be biased towards matches that are

very low on the graph, even if these matches require
cutting a large number of nodes and are, thus, less likely
to give an optimum solution. Due to the nature of our
problem decomposition, matches higher up in the hi-
erarchy are more likely than matches lower down. For
this reason, we initialize the assignment probabilities
as p0(λi ) = p̂(λi )∑

j p̂(λ j )
, where

p̂(λi ) = exp[−k(depth(ui ) + depth(u′
i ))]. (14)

Here, k is a constant and depth(ui ) is the relative depth
in the original tree t of node ui with respect to node
v. A value of k = 1.2 was empirically found to yield
good results on shock-graphs.

3. Pairwise Clustering

The process of pairwise clustering is somewhat dif-
ferent to the more familiar one of central clustering.
Whereas central clustering aims to characterize cluster-
membership using the cluster mean and variance, in
pairwise clustering it is the relational similarity of pairs
of objects which is used to establish cluster member-
ship. Although less well studied than central clustering,
there has recently been renewed interest in pairwise
clustering aimed at placing the method on a more prin-
cipled footing using techniques such as mean-field an-
nealing (Hofmann and Buhmann, 1997), spectral graph
theory (Shi and Malik, 2000), and relaxation labeling
(Pavan and Pelillo, 2003a).

To commence, we require some formalism. We are
interested in grouping a set of treesG= {G1, . . . , G |K |}
whose index set is K . The set of trees is characterized
using a matrix of pairwise similarity weights. The ele-
ments of this weight matrix are computed using the ap-
proximate tree edit distance d(ti , t j ) between the shock
trees ti and t j .

3.1. Similarity Matrix

In order to compute the matrix of similarities among
the trees in G, we adopt a picture of the graph clus-
tering process in which the trees can be embedded in
an n-dimensional space Rn . Here we treat the em-
bedding space as a latent representation. Hence we
are not concerned with a specific embedding proce-
dure. However, a number of concrete possibilities ex-
ist. For instance, features could be extracted from the
graph adjacency structure and subjected to principal
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components analysis, or the pattern of pairwise dis-
tances could be subjected to multi-dimensional scaling.
In this way each graph would become a point in the em-
bedding space. We assume that for each distinct cluster
of trees the embedded position vectors follow a spher-
ically symmetric Gaussian distribution. For the cluster
with index ω, the covariance matrix is σω In where n
is the n × n identity matrix. Suppose that xiω and x jω

represent the embedded position vectors for the trees
Gi and G j , and that the trees both belong to the cluster
indexed ω. The difference in position between the trees,
i.e. xiω−x jω will be drawn from the normal distribution
N (0, 4σ 2

ω I ). As a result the distance measure∥∥∥∥ xiω − x jω

2σω

∥∥∥∥ = d(ti , t j )
2

4σ 2
ω

≈ χ2
n (15)

will follow a χ2 distribution with n degrees of freedom.
Given a distance d(ti , t j ) between two points i and

j , we can estimate the probability that the two points
belong to the same cluster ω′ using the χ2 distribution,
provided that we know the cluster variance σ 2

ω′ . The
estimated probability is:

P{i ∈ ω′ and j ∈ ω′} = P

{
χ2

n >
d(ti , t j )

2

4σ 2
ω′

}
. (16)

Using this simple model, we can define the similarity
matrix A setting its coefficients Ai, j to the probability
that the trees i and j belong to the same cluster. In other
words:

Ai, j = P

{
χ2

n >
d(ti , t j )

2

4σ 2
ω′

}
. (17)

The element Ai, j of the affinity weight matrix repre-
sents the strength of association between the trees i and
j . We will work with affinity-weights which are con-
structed to fall in the interval [0, 1]. When the affinity
weight is close to one, then there is a strong association
between the pair of nodes; when it is close to zero then
there is a weak association.

3.2. Maximum Likelihood Clustering

The aim in clustering is to partition the set of graphs
into disjoint subsets. If Tω represents one of these sub-
sets and � is the index-set of different partitions (i.e.
the different pairwise clusters), then T = ⋃

ω∈� Tω and
Tω′ ∩ Tω′′ = ∅ if ω′ = ω′′.

To represent the assignment of nodes to clusters,
we introduce a cluster membership indicator siω. This
quantity measures the degree of affinity of the tree in-
dexed i to the cluster ω ∈ � and is in the interval [0, 1].
When the cluster membership is close to 1 then there
is a strong association of the node to the cluster; when
the value is close to 0 then the association is weak.

Later on, it will be convenient to work with a ma-
trix representation of the cluster membership indica-
tors. Hence, we introduce a vector of indicator vari-
ables for the cluster indexed ω which we denote by
s
¯ω = (s1ω, s2ω, . . .)T . The vectors are used as the
columns of the |V | × |�| cluster membership matrix
S = (s

¯1|s¯2| . . . |s|�|) whose rows are indexed by the set
of nodes and whose columns are indexed by the set of
clusters.

We adopt a maximum likelihood approach to the
joint recovery of the cluster indicators S and a revised
estimate of the affinity matrix A with an improved block
structure. Both problems are posed in terms of the joint
log-likelihood function L(S,A). To recover the clus-
ter indicator variables, we maximize L(S,A), with re-
spect to S keeping A fixed. The re-estimation of A
is posed as maximum likelihood estimation, with the
cluster membership indicators playing the role of fixed
data.

We assume that the the observed affinity structure of
the pairwise clusters arises as the outcome of a series of
Bernoulli trials, where the probability of success is the
affinity weight. To be more formal, let us consider the
pair of trees i and j . We are concerned with whether or
not this pair of trees both belong to the cluster indexed
ω. The random variable that governs the outcome of
the Bernoulli trial is the product of indicator variables
ζi, j,ω = siωs jω. If siω = s jω = 1, then the two trees
have a pairwise association to the cluster indexed ω,
and ζi, jω = 1. When either siω = 0 or s jω = 0, then
the pair of trees do not both associate to the cluster ω

and ζi, j,ω = 0. According to our Bernoulli model of the
cluster formation process, success is the event that both
nodes belong to the same cluster, while failure is the
event that they do not. The parameter of the Bernoulli
trial is the affinity-weight Ai, j . This simple model is
captured by the distribution rule

p(Siω,S jω|Ai, j )=
{

Ai, j if Siω =1 and S jω =1

(1 − Ai, j ) if Siω =0 or S jω =0

(18)
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This rule can be written in the more compact form,

p(Siω,S jω|Ai, j ) = A
SiωS jω

i, j (1 − Ai, j )
1−SiωS jω (19)

The joint log-likelihood function for the indicator
variables S and the affinity matrix A is given by

L(A, S) =
∑
ω∈�

∑
(i, j)∈�

ln p(siω, s jω|Ai, j ) (20)

After substituting the Bernoulli distribution into the
log-likelihood function, we find that

L(A, S)

=
∑
ω∈�

∑
(i, j)∈�

{siωs jω ln Ai, j + (1 − siωs jω) ln(1 − Ai, j )}

(21)

Collecting terms this simplifies to

L(A, S)

=
∑
ω∈�

∑
(i, j)∈�

{
SiωS jω ln

Ai, j

1 − Ai, j
+ ln(1 − Ai, j )

}
(22)

The log-likelihood function can be maximized with
respect to the affinity-weights and the cluster mem-
bership variables. This is interleaves two iteration
steps. First, the maximum likelihood affinity-weight
is located by taking the outer-product of the vectors
of cluster membership indicators. Second, we update
the cluster membership indicators by applying a naive
mean field method to the likelihood function.

3.2.1. Updating the Link-Weight Matrix. Our aim
is to explore how the log-likelihood function can be
maximized with respect to the affinity-weights and the
cluster membership indicators. In this section, we turn
our attention to the first of these. To do this we com-
pute the derivatives of the log-likelihood function with
respect to the elements of the affinity-weight matrix

∂L
∂ Ai, j

=
∑
ω∈�

{
siωs jω

1

Ai, j (1 − Ai, j )
− 1

1 − Ai, j

}
(23)

The matrix of updated affinity-weights Â may be found
by setting the derivatives to zero and solving the equa-

tion ∂L
∂ Ai, j

= 0. The derivative vanishes when

Âi, j = 1

|�|
∑
ω∈�

SiωS jω (24)

In other words, the affinity-weight for the pair of
nodes (i, j) is simply the average of the product of
individual node cluster memberships over the differ-
ent perceptual clusters. We can make the structure
of the updated affinity-weight matrix clearer if we
make use of the vector of membership variables for
the cluster indexed ω, i.e. s

¯ω = (S1ω,S2ω, . . .)T . With
this notation the updated affinity-weight matrix is Â =

1
|�|

∑
ω∈� s

¯ωs
¯

T
ω . Hence, the updated affinity-weight ma-

trix is simply the average of the outer-products of the
vectors of cluster membership indicators.

3.2.2. Updating Cluster Membership Variables. We
can repeat the gradient-based analysis of the log-
likelihood function to develop update equations for the
cluster-membership variables. We commence by com-
puting the derivatives of the log-likelihood function
with respect to the cluster-membership variable

∂L(A, S)

∂Siω
=

∑
j∈V

S jω ln
Ai, j

1 − Ai, j
(25)

Since the associated saddle-point equations are not
tractable in closed form, we use the soft-assign ansatz
of Bridle (1990) to update the cluster membership as-
signment variables. This is a form of naive mean field
theory (Ghahramani and Jordan, 1997). According to
mean field theory the cluster memberships should be
updated by replacing them with their expected values
(Hofmann and Buhmann, 1997). Rather than perform-
ing the detailed expectation analysis, soft-assign allows
the cluster memberships to be approximated by expo-
nentiating the partial derivatives of the log-likelihood
function. The updated cluster memberships are given
by

Ŝiω =
exp

[
∂L(A,S)

∂siω

]∑
i∈V exp

[
∂L(A,S)

∂Siω

]
=

exp
[ ∑

j∈V S jω ln
Ai, j

1−Ai, j

]
∑

i∈V exp
[ ∑

j∈V S jω ln
Ai, j

1−Ai, j

] (26)
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After simplifying the argument of the exponential, the
update formula reduces to

ŝiω =
∏

j∈V

{ Ai, j

1−Ai, j

}S jω∑
i∈V

∏
j∈V

{ Ai, j

1−Ai, j

}S jω
(27)

It is worth pausing to consider the structure of this
update equation. First, the updated affinity-weights are
an exponential function of the current ones. Second, the
exponential constant is greater than unity, i.e. there is
re-enforcement of the cluster memberships, provided
that Ai, j > 1

4
.

The update process requires and initialization for the
cluster membership indicators.

Here we make use of the method of Sarkar and Boyer
(1998) who have shown how the same-sign eigenvec-
tors of the matrix of similarity-weights can be used
to define disjoint clusters. for clustering. The eigen-
values l1, l2 . . . of A are the solutions of the equa-
tion |A − l I | = 0 where I is the |K | × |K | iden-
tity matrix. The corresponding eigenvectors vl1

, vl2
, . . .

are found by solving the equation Avli = li vli . Let
the set of same-sign eigenvectors be represented by
� = {ω|lω > 0 ∧ [(v∗

ω(i) ≥ 0∀i) ∨ v∗
ω(i) ≤ 0∀i])}.

Since the same-sign eigenvectors are orthogonal, this
means that there is only one value of ω for which
v∗

ω(i) = 0. In other words, each node i is associated
with a unique cluster. We therefore initialize the cluster
membership variables using the same sign eigenvectors
and set

S (0)
iw = |v∗

ω0
(i)|∑

i∈Tω0
|v∗

ω0
(i)| . (28)

Since each node is associated with a unique cluster,
this means that the updated affinity matrix is composed
of non-overlapping blocks. Moreover, the link-weights
are guaranteed to be in the interval [0, 1]. Finally, it is
important to note that the updating of the link-weights is
a unique feature of our algorithm which distinguishes
it from the pairwise clustering methods of Hofmann
and Buhmann (1997) and Shi and Malik (2000).

3.3. Algorithm Description

Finally, to summarize, the iterative steps of the pairwise
clustering algorithm are as follows:

1. Initialization: Compute the initial current affinity-
weight matrix A(0) using (17). The same-sign eigen-

vectors of A(0) are used to initialize the cluster-
membership variables using Eq. (28).

2. Compute the updated cluster-membership variables
using Eq. (27).

3. Update affinity-weight matrix Â using Eq. (24).
4. Repeat steps (2) and (3) until convergence is

reached.

Once the cluster membership has been determined,
the relevant objects are extracted and the algorithm is
iterated again on the remaining nodes. This procedure
is repeated untill all the objects are assigned to a class.
In this way the algorithm does not need require a priori
information concerning the number of classes, but in-
stead infers the class structure from the available data
in an unsupervised manner.

At present we have no formal proof of convergence
or analysis of the rate of convergence of the clustering
algorithm. However empirical evidence show that it
locates stable clusters in 100 iterations, and appears to
monotonically increase the log-likelihood function.

4. Experimental Results

We illustrate the utility of the tree-clustering algorithm
on sets of shock trees. The organization of this section is
as follows. We commence by discussing the shock-tree
and its use as a structural representation of 2D shape.
We then provide our experimental results. The exper-
imental evaluation of the clustering method is divided
into three parts. We commence by evaluating the effec-
tiveness of the weighted tree edit distance as a means
of distinguishing and clustering different shapes. Next,
we provide a quantitative analysis of the proportion
of correct classifications with the clustering algorithm.
Finally, we present a sensitivity analysis to explore the
effect of structural differences between trees on the
computed edit distance.

4.1. Shock Trees

The shock tree is a graph-based representation of the
differential structure of the boundary of a 2D shape. It is
obtained by locating the shape skeleton, and examining
the differential behavior of the radius of the bitangent
circle from the skeleton to the object boundary, as the
skeleton is traversed. The idea of characterizing bound-
ary shape using the differential singularities of the re-
action equation was first introduced into the computer
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vision literature by Kimia et al. (1995). The idea is to
evolve the boundary of an object to a canonical skeletal
form using the reaction-diffusion equation. The skele-
ton represents the singularities in the curve evolution,
where inward moving boundaries collide. The reac-
tion component of the boundary motion corresponds
to morphological erosion of the boundary, while the
diffusion component introduces curvature dependent
boundary smoothing. In practice, the skeleton can be
computed in a number of ways (Arcelli and di Baja,
1992; Ogniewicz, 1994). Recently, Siddiqi, Tannen-
baum and Zucker have shown how the eikonal equation
which underpins the reaction-diffusion analysis can be
solved using the Hamilton-Jacobi formalism of classi-
cal mechanics (Bouix and Siddiqi, 2000; Siddiqi et al.,
1999a).

With the skeleton to hand, then the next step is to
devise ways of using it to characterize the shape of
the original object boundary. Here we follow Zucker,
Siddiqi, and others, by labeling points on the skeleton
using so-called shock-labels (Siddiqi et al., 1999b). Ac-
cording to this taxonomy of local differential structure,
there are different classes associated with the behavior
of the radius of the bitangent circle from the skeleton
to the nearest pair of boundary points. The so-called
shocks distinguish between the cases where the local
bitangent circle has maximum radius, minimum radius,
constant radius or a radius that is strictly increasing or
decreasing. We abstract the skeletons as trees in which
the level in the tree is determined by their time of forma-
tion (Shokoufandeh et al., 1999; Siddiqi et al., 1999b).
The later the time of formation, and hence their prox-
imity to the center of the shape, the higher the shock in
the hierarchy. While this temporal notion of relevance
can work well with isolated shocks (maxima and min-
ima of the radius function), it fails on monotonically
increasing or decreasing shock groups. To give an ex-
ample, a protrusion that ends on a vertex will always
have the earliest time of creation, regardless of its rel-
ative relevance to the shape.

To overcome this drawback, we augment the struc-
tural information given by the skeleton topology and
the relative time of shock formation, with a measure
of feature importance. We opt to use a shape-measure
based on the rate of change of boundary length with
distance along the skeleton. We consider two variants
of the shock tree matching problem. In the first variant
we use a purely structural approach. The nodes in the
shock trees are given uniform weight and we match
only their structure. The second variant is weighted.

Here we assign to each shock group a weight that is
determined by the ratio of the length of the associated
skeleton branch to the mean length of the associated
“left” and “right” boundary segments as outlined in
Torsello and Hancock (2004). Suppose that the ratio is
denoted by dl/dS. This quantity is related to the rate of
change of the bitangent circle radius along the skeleton,

i.e. dr/dS, by the formula dl
dS =

√
1 − ( dr

ds )2. The nodes
in our graphs are the skeletal branches which are as-
signed a weight which is by the average value of dl/dS
along the relevant skeletal branch. The edges indicate
connectivity of the skeletal branches. The level of a
node in the tree is determined by the time of formation
of the corresponding skeletal branch (Shokoufandeh
et al., 1999; Siddiqi et al., 1999b). The later the time of
formation of the shock, the higher the corresponding
node in the hierarchy.

Figure 6 shows an example of shape matching us-
ing the shock tree abstraction. The top row displays
the silhouettes with the corresponding skeleton super-
imposed. The skeleton is already separated into shock-
branches. the bottom row shows the corresponding tree
abstractions and the matching nodes. Note that the root
is a dummy node added to maintain connectivity, while
the direct children of the root are points of local max-
ima of the radius, and have zero boundary to shock ratio
and, hence, weight. The matching took an average of
146 milliseconds over 10 runs on a 2 GHz PC.

4.2. Qualitative Results

The silhouettes used to generate the shock graphs at the
basis of our experiments are shown in Fig. 2. There are
25 different shapes. These include brushes, tools, spec-
tacles, various animals and human hands. The figure is
annotated with the pairwise similarity of the shapes.
For the shapes indexed i and j , the similarity measure
is defined as

Si, j = 1 − 1

2
d(ti , t j ), (29)

where d(ti , t j ) is the edit-distance between shapes i and
j . In order to make the comparison independent of the
size of the picture or of the shock-tree representation,
the weight on each tree was previously normalized by
dividing it by the sum of all the weights on every node
of the tree. In this way the maximum possible edit-
distance between two trees was 2 units.

For comparison purposes, Fig. 3 reports the similar-
ities between the unweighted shock trees. In this case
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Figure 2. Pairwise similarities between shapes for the weighted shock trees.

the similarity between trees ti and t j is

Ti, j = 1

2

|Vi | + |Vj | − d(ti , t j )

2

(
1

|Vi | + 1

|Vj |
)

, (30)

where Vi is the node set of tree ti and d(ti , t j ) is the
unattributed edit-distance between tree ti and tree t j .

In Figs. 4 and 5 we show the six best matched shapes
for each object from the database. The top row of the
figures shows the shapes considered. The remaining
rows, from top to bottom, show the six best matched
shapes ordered according to similarity. Hence, the fur-
ther down we go in each column, the poorer the match
to the shape in the top position. Figure 4 shows the
matches obtained when we associate the shape mea-
sure to the shock trees. In each case the first matched
shape is the object under study. From the third row
down errors begin to emerge. For instance, a mon-

key wrench (object 6) matches to a hammer (object
11), and a horse (object 22) matches to a hand (ob-
ject 25). Although there are 6 such errors in the third
row (objects 6, 10, 11, 14, 16, 22), several of these are
associated with small differences in the similarity val-
ues. This is the case with object 6, where a monkey
wrench is matched to a hammer. In both objects the
dominant feature is the long handle. Additionally, for
four of the objects the correct matches appear in the
fourth (object 6, 16), fifth (object 14), or sixth (object
22) position. It is only the two hammers that pose a
real problem. This is due to the fact that the handle, the
main feature on both objects, shows variation in its dif-
ferential properties. Specifically, object 10 bulges at the
grip, creating two separate shock segments for the han-
dle, whereas the handle of object 11 generates a single
shock segment. The problem could be solved by allow-
ing the edit-distance calculation to merge segments, as
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Figure 3. Pairwise similarities between shapes for the unweighted shock trees.

do Sebastian, Sebastian et al. (2001, 2004) but this is
beyond the scope of the present study.

Figure 5 displays the top matches obtained using
unattributed shock trees. Here again the top match is
a perfect fit in each case. However, the performance
degrades more quickly as we go down the columns of
the table. In fact, the first error emerges in the second
row of the figure.

To visualize the pairwise relationships between the
different shapes, we have performed multi-dimensional
scaling on the set of pairwise similarities. Multi-
dimensional scaling is a well known statistical tech-
nique for visualizing data which exists in the form
of pairwise similarities rather than ordinal values.
Stated simply, the method involves embedding the ob-
jects associated with the pairwise distances in a low-
dimensional space. This is done by performing prin-
cipal components analysis on the matrix of pairwise
similarities, and projecting the original objects into

the resulting eigenspace. The objects are visualized by
displaying their positions in the space spanned by the
leading eigenvectors. The method has been widely ex-
ploited for data-analysis in the psychology literature. A
comprehensive review can be found in the recent book
by Cox and Cox (1994).

The projections of the edit-distances onto the 2D
space spanned by the two leading eigenvectors is shown
in Fig. 7 (where the skeleton is weighted with the
border-length to shock length ratio) and Fig. 8 (where
it is not). When the skeleton is weighted with this ra-
tio the MDS projection reveals the emergence of some
class structure. Unfortunately, the full shape-structure
is not captured by the two leading eigenvectors. For in-
stance, the hands, the fish, the tools and the brushes
all appear close to each other. In addition, there is
no clear delineation of the shape-classes. When the
skeleton is not weighted using the above-mentioned
measure the grouping of the shapes is even poorer,
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Figure 4. Top six matches for each shape for the weighted shock trees.

Figure 5. Top six matches for each shape for the unweighted shock trees.

with only the spectacles forming a well separated
group.

Encouraged by these results, we have performed a
detailed pairwise clustering of the pattern of similari-
ties. Here we use the method detailed in Section 3 of the
paper. The initial and final matrices of pairwise distance
are shown in Fig. 9 for the measure-weighted skeleton
and in Fig. 10 for the unweighted skeleton. In the case
of the weighted skeleton the initial pairwise similarity
matrix shows a strong separation of the shape-groups,
which is further re-enforced by the iterative clustering
method. On the basis of the block structure of the final

matrix of pairwise distances, we identify eight clusters.
Figure 11(a) presents the clusters in order of extraction.

In other words, the hands, tools, spectacles and an-
imals form clusters. However, there are shapes which
leak between these clusters. The problems encountered
above are due to the fact that certain shapes straddle
the true shape-classes and cause cluster-merging. Fig-
ure 11 (b) shows the result of applying the clustering
algorithm to a pruned set of 16 shapes.

This is a much better set of clusters, which reflects the
true shape-classes in the data. We have repeated these
clustering experiments with the unweighted skeletons.
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Figure 6. Example of shape matching using shock trees.

Figure 7. First and second principal components of the edit-

distances of the shapes for the weighted shock trees.

Here the initial pairwise similarity matrix contains less
structure than in the weighted case, and iteration of
the clustering algorithm results in a noisier set of final
cluster membership indicators (Fig. 10(b)). In particu-
lar, the clusters extracted from unweighted shock trees
do not appear to correlate well with the shape classes
in the database (Fig. 12(a)).

Clearly there is considerable merging and leakage
between clusters. As illustrated in Fig. 12 (b), the
classification does not improve when the algorithm is
applied to the reduced database.

Figure 8. First and second principal components of the

edit-distances of the shapes for the unweighted shock trees.

4.3. Quantitative Analysis

We now turn our attention to the properties of the
weighted variant of our edit-distance approach when
applied to larger databases. The first database consists
of 150 shapes divided into 10 shape classes contain-
ing 15 shapes each. The silhouettes in this database are
segmented quite roughly and the resulting skeletons
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Figure 9. (a) Initial similarity matrix for the weighted tree edit-distances; (b) Final similarity matrix for the weighted tree edit-distances.

Figure 10. (a) Initial similarity matrix for the unweighted tree edit-distances; (b) Final similarity matrix for the unweighted tree edit-distances.

are very noisy. The second database consists of a sub-
set of the MPEG7 shape database used in Sebastian
et al. (2001). This database is composed of 420 shapes
divided into 35 shape classes of 12 shapes each.

In Fig. 13 we show the results of the application
of multi-dimensional scaling to the edit-distances be-
tween the trees in the first database. Each label in the
plot corresponds to a particular shape class. Label 1
identifies cars, label 2 dogs, 3 ducks, 4 fishes, 5 hands,
6 horses, 7 leaves, 8 men, 9 pliers, and, finally, la-
bel 10 is associated with screwdrivers. The plot clearly
shows the difficulty of this clustering problem, which
clearly cannot be linearly separated at least in with a

2D embedding. The shape-groups are not well sepa-
rated. Rather, there is a good deal of overlap between
them. Furthermore, there are a considerable number
of outliers. Note, however, that while edit-distance
satisfies metric properties, it is unlikely that the dis-
tances can be embedded in a 2D subspace without
distortion.

In Fig. 14 the results of the application of multi-
dimensional scaling to the distances extracted from
the MPEG7 database is displayed. As is the case
for the first database, here too the shape-groups are
not well separated. Instead, they are significantly
overlapped and there are a considerable number of
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Figure 11. Clusters extracted from weighted edit-distance.

Figure 12. Clusters extracted from un-weighted edit-distance.

outliers.
To assess the ability of the clustering algorithm to

separate the shape-classes, we have performed exper-
iments on an increasing number of shapes. With the
first database we commenced with the 30 shapes from
two shape-classes, and then increased the number of
shape-classes under consideration untill there were 120
shapes, i.e. 8 classes. With the MPEG7 database we
commenced with 24 shapes from two shape-classes,
and then increased the number of shape-classes under
consideration to 32, i.e. to 384 shapes in total. Each
experiment was performed four times with different
choices of shape-groups in order to allow us to per-
form an error analysis.

In order to evaluate the approach, we compare the
classes obtained by clustering edit-distance with those
obtained using the tree distance metric d1 which is
computable in polynomial time and which is presented
in Torsello et al. (2005). The similarity measure for the
two trees is S(t1, t2) = maxφ

∑
(u,v)∈φ σ (u, v), where

φ is a subtree isomorphism between t1 and t2. Hence,

the distance metric is defined as:

d1(t1, t2) = 1 − S(t1, t2)

max(|t1|, |t2|) .

Additionally, we explore the use of two alternative pair-
wise clustering algorithms for grouping the different
distance measures. In order to provide a fair compari-
son, we restricted the analysis to clustering algorithms
that do not require the number of classes to be known
a priori. The selected algorithms are the matrix factor-
ization algorithm developed by Perona and Freeman
(1998) and the dominant-set framework developed by
Pavan and Pelillo (2003a). In order to assess the qual-
ity of the clusterings, we have used two well-known
cluster-validation measures (Jain and Dubes, 1988).
The first is the standard classification rate. To compute
the measure, for each cluster, we note the predomi-
nant shape class. Those graphs assigned to the cluster
which do not belong to the predominant shape class
are deemed to be misclassified. The classification rate
is the total number of graphs belonging to the predom-
inant cluster shape classes, divided by the total number
of graphs. This measure exhibits a well known bias to-
wards a large number of classes. To overcome this we
also used the Rand index. The Rand index is defined
as RI = A

A+B . Here A is the number of “agreements,”
that is the number of pairs of graphs that belong to the
same class and that are assigned to the same cluster.
The quantity B is the number of “disagreements,” that
is, the number of pairs of graphs that belong to different
shape classes and that are assigned to different clusters.
The index is hence the fraction of graphs of a particular
shape class that are closer to a graph of the same class
than to one of another class. Note that the classification
rate does not penalize oversegmentation of the clusters,
while the Rand index is specifically designed to do so.

Figure 15 plots the proportion of shapes from the first
database correctly classified as the number of shapes
is increased, while Fig. 16 plots the Rand index of the
extracted groups. From these two plots we can draw
several conclusions. First, the dominant set framework
is the clear winner, providing the best results regard-
less of the distance measure used. Note, however, that
the large difference in classification rate is mislead-
ing. In fact, the dominant set framework is known to
extract very compact clusters. It hence has the ten-
dency to oversegment the data into many clusters. On
the other hand, the classification rate does not penal-
ize oversegmentation. Instead, it is biased in favor of
algorithms that tend to oversegmenting the data. The
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Figure 13. Multi-dimensional scaling of the pairwise distances of the shock graphs. The numbers correspond to the shape-classes.

Rand index does not exhibit this bias. Although the
dominant set method is still the best performer, the
performance gap is significantly reduced. The Perona
and Freeman algorithm has the worst performance of
the three clustering algorithms. The clusters extracted
from edit-distance where better than those extracted
from the d1 metric using the same clustering algo-
rithm. In general, as the number of shapes increases
then so the classification rate decreases, while the
Rand index increases. This means that while the clus-
ters tend to incorporate more noise as the number of
shapes is increased, the overall shape class-structure
remains intact and do not fragment into unrelated
clusters.

Figure 17 plots the classification rate of the groups
extracted from the much larger MPEG7 database as the
number of shapes is increased, while Fig. 18 plots the
corresponding Rand index. We can see that the values of

the Rand index are generally higher than those obtained
from the previous database. This is probably do to the
fact that the silhouettes in this database are better seg-
mented and the resulting shock-graphs are less noisy.
In this database the proposed approach is the best per-
former, however the dominant set framework confirms
it quality, providing very similar results. Similarly to
what observed with the first database, the dominant set
framework starts as the best performer, but it is over-
come by the proposed approach when clustering more
than 100 shapes. Finally, the experiments confirms that
the Perona Freeman approach yields the lowest values
for the Rand index. The difference in performance be-
tween edit-distance and d1 metric is marginal for the
proposed approach, but it is significant for the other
algorithms.

In conclusion, the experiments show that the combi-
nation of edit-distance and the proposed approach can
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Figure 14. Multi-dimensional scaling of the pairwise distances of the shock graphs extracted from the MPEG database. The numbers correspond

to the shape-classes.

Figure 15. Proportion of correct classifications obtained with pairwise clustering of the distances of the shapes in the first database.
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Figure 16. Rand index of the groups obtained with pairwise clustering of the distances of the shapes in the first database.

Figure 17. Proportion of correct classifications obtained with pairwise clustering of the distances of the shapes in the MPEG7 database.

extract the class structure present in a shape database
with good accuracy, Comparative evaluation show that
the dominant-set framework is a valid alternative to
the proposed clustering approach, while the Perona-

Freeman matrix factorization approach performs much
worse. On the other hand, edit-distance constantly
yields better clusters than the d1 metric, although the
difference can be marginal in some cases, making
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Figure 18. Rand index of the groups obtained with pairwise clustering of the distances of the shapes in the MPEG7 database.

Figure 19. Sensitivity analysis: top-left node removal, top-right node removal without outliers, bottom-left weight jitter, bottom-right weight

jitter without outliers.
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d1 distance preferable for its lower computational
cost.

4.4. Sensitivity Study

To augment these real world experiments, we have per-
formed a sensitivity analysis. The aim here is to char-
acterize the behavior of our edit-distance algorithm
when confronted with measurement errors resulting
from noise, or jitter, on the weights and with structural
errors resulting from node removal.

To test how well the method copes with structural
modification we use it to match a randomly generated
tree with modified versions of itself. To create these
modified versions we removed an increasing fraction
of nodes. Since we remove nodes only from one tree,
the edited tree will have an exact match against the
unedited version. Hence, we know the optimum value
of the weight that should be attained by the maximum
edited isomorphism. This is equal to the total weight
of the edited tree.

By adding measurement errors or jitter to the
weights, we test how well the method copes with a
modification in the weight distribution. The measure-
ment errors are distributed normally, with zero mean
and controlled variance. Here we match the tree with
noisy or jittered weights against its noise-free version.
In this case we have no easy way of determining the
optimal weight of the isomorphism, but we do expect
a smooth drop in total weight with increasing noise
variance.

We performed the experiments on trees with 10, 15,
20, 25, and 30 nodes. For each experimental run we
used 11 randomly generated trees. The procedure for
generating the random trees was as follows: we com-
menced with an empty tree (i.e. one with no nodes)
and we iteratively added the required number of nodes.
At each iteration nodes were added as children of one
of the existing nodes. The parents were randomly se-
lected with uniform probability from among the exist-
ing nodes. The weight of the newly added nodes was
selected at random from an exponential distribution
with mean 1 unit. This procedure tends to generate
trees in which the branch ratio is highest closest to
the root. This is quite realistic in real-world situations,
since shock trees tend to have this property.

The fraction of nodes removed was varied from 0%
to 60%. In Fig. 19 top left we show the ratio of the
computed weighted edit-distance to the optimal value
of the maximum isomorphism. Interestingly, for cer-

tain trees the relaxation algorithm failed to converge
within the allotted number of iterations. Furthermore,
the algorithm also failed to converge on the noise cor-
rupted variants of these trees. In other cases, the algo-
rithm exhibited particularly rapid convergence. Again,
the variants of these trees also showed rapid algorithm
convergence. When the method fails to converge in an
allocated number of iterations, we can still give a lower
bound to the weight. However, this bound is substan-
tially lower than the average value obtained when the
algorithm does converge. The top right-hand graph of
Fig. 19 shows the proportion of matched nodes when
we eliminate these convergence failures. The main con-
clusions that can be drawn from these two plots are as
follows. First, the effect of increasing structural error
is a systematic underestimation of the weighted edit-
distance. Second, the different curves exhibit a mini-
mum within the plot-range. The reason for this is that
the matching problem becomes trivial as the trees are
decimated to extinction.

The bottom row of Fig. 19 shows the results ob-
tained when measurement errors or jitter was added
to the weights. Noise corrupted weights were obtained
by adding random Gaussian noise with standard devia-
tion ranging from 0 to 0.6. The bottom left-hand graph
shows the result of this test. It is clear that the matched
weight decreases almost linearly with the noise stan-
dard deviation. In these experiments, we encountered
similar problems with algorithm convergence failure.
Furthermore, the problematic trees were identical. This
further supports the observation that the performance of
the algorithm strongly depends on the randomized real-
ization of the tree. The bottom right-hand plot shows the
results of the jitter test with the convergence failures re-
moved. Here we see a smaller variation in performance
as the number of nodes increases.

5. Conclusions

This paper has presented a study of the problem of
clustering shock tress. We commence by showing how
to gauge the similarity of the trees using weighted
edit distance. To compute the edit distance, we have
adopted an optimization approach to tree matching.We
show that any tree obtained with a sequence of cut
operations is a subtree of the transitive closure of the
original tree. Furthermore we show that the necessary
condition for any subtree to be a solution can be re-
duced a clique problem in a derived structure. Using
this idea we transform the tree edit distance problem
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into a series of maximum weight cliques problems and
then we use relaxation labeling to find an approximate
solution.

To identify distinct groups of graphs, we developed a
maximum likelihood algorithm for pairwise clustering.
This takes as its input, a matrix of pairwise similarities
between shock-trees computed from the edit distances.
The algorithm interleaved iterative steps for comput-
ing cluster-memberships and for updating the pairwise
similarity matrix. The number of clusters is controlled
by the number of same-sign eigenvectors of the cur-
rent similarity matrix. Experimental evaluation of the
method shows that it is capable of extracting clusters of
trees or graphs which correspond closely to the shape-
categories present. Comparative studies show that both
the edit-distance and the clustering algorithm are com-
petitive with the state of the art.
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