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One essential topic of mining sequential patterns in the data stream is to optimize the time-space computations. However, more
importantly, it should pay more attention to the signifcance of mining results as a large portion of them just response to the user-
defned constraints purely by accident and they may have no statistical signifcance. In this paper, we propose FSSPDS, an efcient
two-phase algorithm to discover the signifcant sequential patterns (SSPs) in the data stream with typical sliding windows, which
has never been considered in existing problems. First, for generating SSPs candidates with high-quality, FSSPDS takes testable
support and pattern length constraints into account and insignifcant patterns were removed timely by a pattern-growth method.
In the second phase, appropriate permutation testing is used to test the signifcance of the SSPs candidates. Exact permutation p

values are obtained in a novel combination way based on unconditional Barnard’s test statistic which better refects the process of
data generations and collections. Experimental evaluations show that FSSPDS allows the discovery of SSPs in the data stream and
rivals the state-of-the-art approaches efciently under the control of family-wise error rate (FWER), especially for time efciency,
which was approximately an order of magnitude higher.

1. Introduction

Mining sequential patterns [1] in the transaction data stream
is to output patterns that satisfy the user-defned constraints,
such as support (the number of patterns that appear in the
transactions), utility, and length. Lots of efcient algorithms
are proposed to deal with this kind of problems, including
CM-Spam [2], HUSP-ULL [3], and NegPSpan [4], but when
there is transactions with the feature of labels, many of the
results by traditional mining algorithms may lack statistical
signifcance, i.e., they are appeared just by chance, and we are
going to draw patterns which are statistically signifcant to
one of the labels.

Statistically signifcant pattern mining (SSPM [5]) al-
gorithms are used to solve such problems. It can be used in
many applications; for example, in medical treatment,
doctors are interested in some sequence of treatments that
are statistically signifcant in the process of adverse drug
reaction (ADR) signal detection (responsive vs.

unresponsive). Often, SSPM is a two-phase method: pro-
ducing signifcant pattern candidates frst and then test their
signifcance. It tests the signifcance of the patterns based on
hypothesis testing. If the p value of the testing pattern is less
than the test level threshold, it will be fagged as a signifcant
pattern. Tere may exist a large number of patterns waiting
for testing, so it turns into a multiple hypothesis testing
problem under FWER or false discovery rate (FDR [6]).

Sliding window [2] is a typical data generation mode of
the data stream. In this paper, we focus on mining SSPs in
the data stream with sliding windows under the control of
FWER. Te challenge for achieving this goal is twofold.

One is producing candidates for SSP. Most of the current
SSPM methods consider frequent sequential patterns (FSPs)
as SSP candidates and many efcient FSPs mining algo-
rithms are used to be candidates producing methods [7].
However, most of the algorithms did not consider the
signifcant factors in the process of candidates generation. In
fact, some low-support patterns (although theymay be FSPs)
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do not meet the minimal testable support requirements
[8, 9], and they should be removed in the process of can-
didates generation so as to reduce the testing number in the
second phase, and we are going to consider such require-
ments in candidates mining phase by introducing pattern
lengths and testable support constraints. Te insignifcant
pattern would be removed timely by a pattern-growth
method.

Te other is testing the candidates. Te data size in a
sliding window of the data stream is usually small and such
data may not have sample representativeness. Permutation p

values would be an efective strategy for calculating ap-
proximate or exact p values to test the signifcance of small
datasets [10, 11]. In [10–12], the permutation testing algo-
rithm can be acted as a useful method to get better results
compared with traditional methods. Nevertheless, such an
approach has two disadvantages when they are used to fnd
SSPs in candidates produced in the frst phase. One is
existing literature produce p values based on the random
swapping strategy [11] and it will take a high computational
cost to get the fnal results. Te other is that the p values
based on the random sampling strategy [10] may be
equivalent to 0, and the approximate p values may result in a
bad estimation.

Additionally, in the second phase of pattern testing,
Fisher’s test statics [7, 13] is a frequently used data evaluation
statistics, and it can be understood that the data generating
process is similar to the observed data sample, and the
supports are fxed. However, actually data generations and
collections do not show such rules, especially, since the
support of the pattern may be changing with time passing.
For the example of click patterns drawing in an e-commerce
website of members from two districts (regarding two
classes), to test the signifcance of a certain click behavior
occur more for one class (district), Fisher’s test means that
the behaviors are collected to a certain amount of members
(overall), and the repeated experiment maintains the test
pattern’s support. However, there may be another way to
collect the data in a fxed period of time; by such a method,
the frequency of a click behavior occurrence is not fxed and
would be always changed in the experiments. In such a
scenario, the latter method can better refect the process of
data generation and collection. Unconditional test statistic
such as Barnard’s test statistic [9] calculates test statistic
value which does not fx the support of testing pattern, and it
can be a more appropriate than the calculation rule of
traditional Fisher’s test statistic.

In this study, we serve to propose FSSPDS for mining
SSPs in a novel way. Our contributions are listed as follows.

We produce SSP candidates with a length control by a
pattern-growth method under the testable support re-
quirement of Barnard’s unconditional test statistic and in-
signifcant candidates are removed timely so as to increase
the test level and fnd more SSPs.

We introduce the usage of Barnard’s unconditional test
statistic. For reducing the computational time, an approx-
imate upper bound is proposed to reduce calculation time.

We discover SSPs in the data stream based on exact
permutation p values by a new combinatorial calculation

approach. By producing p values in a short time, it shows
superiorities compared with the state-of-the-art exact per-
mutation p values algorithms.

We run experiments on real-world datasets to prove the
efectiveness of PSSPDS. Ourmethod can be considered with
higher efciency compared with its counterparts.

Te rest of this article is as follows. Section 2 reviews the
related works. Section 3 describes the problem and defnes
related terms. Section 4 gives our corresponding algorithm
PSSPDS. Teoretical analysis is given in Section 5. Section 6
shows experimental results on real datasets, and Section 7
gives conclusions.

2. Related Works

Many efcient algorithms have been introduced to deal with
the problem of sequential pattern mining with frequency
constraints, including Spade [14], PrefxSpan [15], CM-
Spam [2], and Lapin [16]. In recent years, specifc con-
straints-based sequential patternmining has been paidmuch
attention. Sequential association rule mining [17, 18] looks
up association rules in transactional data. It does not con-
sider the sequence of items but focuses on the fact that there
is an intersection between the front and back itemsets.
Episode sequential pattern mining [19] is used to look for
patterns in a single sequence, rather than a group of se-
quences. Periodic sequential pattern mining [20, 21] is used
to fnd patterns that occur frequently and periodically in
long sequences. Subgraph mining [22, 23] is another feld of
sequential pattern mining, which aims to discover all fre-
quent subgraphs in graph databases, the corresponding
algorithms based on diferent data structures (such as list-
structure [24], pattern-tree [25], and optimization algorithm
[19]) are proposed to solve the related pattern mining
problem from sequences database, and all these pattern
mining approaches are based on the sequential database and
the constraints threshold (selected by the user). Recently,
Wang gives Miner-K [25] algorithm to mine the patterns
with length constraints, and Nader proposes NEclat-Closed
[24] to mine the closed pattern based on a vertical structure.
Tey can obtain the related pattern results in a short time.

When the transaction with label feature, the results
returned by the above algorithms may lack signifcance and
some patterns are not statistically meaningful. SSPM algo-
rithms look for signifcant patterns and have been widely
used in e-commerce searching [26], essential protein rec-
ognition [27], and community detection [28, 29].
Hämäläinen [30] proposes the SSPMmodel frst and regards
signifcant pattern mining as a multiple-hypothesis testing
problem. Webb [31] controls the error rate by introducing
FWER and FDR in signifcant pattern discovery. Bonfer-
roni’s control [32] is a traditional correction method under
the control of FWER.

Te test statistic is an important part of SSPM. Fisher’s
conditional test statistic is a popular approach to measure
the signifcance [7, 10, 31], and LAMP [8] strategy is used to
reduce the calculation time as it puts forward testable
support requirements to the testing patterns based on
Fisher’s test statistic. Barnard’s test statistic [9, 14] is known
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to be another efective method for calculating p value.
Leonardo et al. [9] propose a novel structure UT for eval-
uating the signifcance of a pattern and it gives the testable
support requirements based on Barnard’s test statistic. Jiang
et al. [33] put forward an unconditional test to get the p

values of two diferent distributions, and it gives the con-
clusion that the p value produced by Barnard’s test statistic
has less risk but usually the computation is expensive when
the test data sample is large.

Te permutation-based method could be acted as an
excellent technology to mine signifcant patterns on small
data samples. He et al. [10] use a permutation test by
returning all exact p values of the patterns. Llinares-
L_opez and Sugiyama [34] propose a permutation test for
the process of mining signifcant sequential patterns, and
Pellegrina and Vandin [35] apply a permutation test to
mine the top-k signifcant sequential patterns in the da-
tabase. Recently, Tonon and Vandin [11] propose the
algorithm PROMISE with two strategies: itemsets swap-
ping and random permutations, and it can be known as a
state-of-the-art method that draws signifcant sequential
patterns in the transactional database under the control of
FWER.

Tere are also some other methods for studying sig-
nifcant patterns. Riondato et al. [36] propose a signifcant
pattern mining algorithm based on progressive sampling
pattern testing. Tien et al. [37] apply the mining results of
the signifcant pattern test to utility dataset analysis. Zihayat
et al. [38] extract signifcant patterns in gene sequences.
Fournier-Viger et al. [39] output signifcant subgraphs in
large graphs. Cheng et al. [40] propose the algorithm LTC to
look for signifcant patterns in the data stream which are not
only frequent but also persistent.

To the best of our knowledge, no SSPM studies have
hitherto considered the signifcant factors in candidates
mining and focused on producing permutation p values
based on unconditional test statistics for mining statistically
signifcant sequential patterns in the data stream. Our
present paper demonstrates the feasibility and the advan-
tages of our efcient two-phase algorithm.

3. Related Works

3.1. Signifcant Sequential Patterns. A transaction data
stream DS (data stream) can be known as DS� {t1, t2, . . . ,
tn}, where ti is the ith transaction. I� {x1, x2, . . ., xm} be a set
of literals. Each transaction is assigned to the label G0 or G1.
A sliding windowW is defned as drawing transactions from
ith to jth arrival of transactions with a pregiven sliding
length. We are going to mine SSPs based on the following
defnitions.

Defnition 1. Pattern X is fagged as a candidate of SSP if its
support is higher than or equal to MinS.

X could be a sequence of items in I, the number of X
occurrences inW is known as the support S(X), and given a
support threshold λ (0< λ< 1), MinS� λ|W|, and if S(X)≥
MinS, it is said to be a candidate of SSP.

Defnition 2. FSP X is fagged as SSP if its p value is less than
a test level threshold.

Hypothesis testing is used to highlight the signifcance of
the pattern in a sliding window. π(X, Gi) is the probability
that X with label Gi(i ∈ 0, 1{ }). H0: π(X, G0) � π(X, G1) is
considered as the null hypothesis; our goal is to assess the
signifcance of X based on the observed contingency table
[15] for evaluating whether it supportsH0. If the p value of X
is known, H0 will be rejected if PX< α, where α is the
signifcant level, and then X is considered as a signifcant
pattern. PX is the p value of X based on the observed data
sample.

3.2. Permutation Testing and Test Statistic Selection.
According to excellent performance on small data samples,
we are going to produce p values in Defnition 2 by per-
mutation testing. Permutation testing judges whether the
observed patterns are signifcant through the distribution of
the patterns. Te general process of the testing signifcance
of pattern X can be shown in Figure 1.

Fisher’s test statistic is a frequently used statistic value in
the traditional permutation testing [15–17]. Its calculation
process is based on the 2× 2 contingency table which is
known in Table 1.

S1(X) and S0(X) are the supports of X belonging to G1

and G0. n1 and n0 are the total numbers of rows with each
label, and n is the whole transaction number. Given the
support of X, PF(S1(X)) is calculated as follows:

PF S1(X)( 􏼁 �

n1

S1(X)

⎛⎝ ⎞⎠
n0

S0(X)

⎛⎝ ⎞⎠

n

S(X)

⎛⎝ ⎞⎠

. (1)

Te fnal test statistic value for X was established as
follows:

P
F
(X) � 􏽘

PF(x)<�PF S1(X)( )

PF(x).
(2)

Barnard’s test statistic is another test statistic as previ-
ously mentioned and diferent from Fisher’s test statistic, it
does not fx the row or column value of the contingency table
which will better refect the data generations and collections,
and for X, the nuisance parameter π is the assumed value
based on the hypothesis H0. Te following is defned:

P S(X), S1(X), π( 􏼁 �
n0

S0(X)
􏼠 􏼡

n1

S1(X)
􏼠 􏼡πS(X)

(1 − π)
(n−S(X))

, (3)

where n0 and n1 are fxed and S(X) acted as a random
variable according to the support of the pattern. Given the
value of π, defne the function as follows:

PS(S(X), π) � 􏽘

P(x,y,π)<�P S(X),S1(X),π( )

P(x, y, π),
(4)

Ps(S(X), π) is the sum of the test statistic of observing a
contingency table for X that is as or more extreme than the
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observed one ifH0 is true.Te nuisance parameter π is in the
range of (0, 1), and the fnal test statistic value of X is known
as follows:

PB(X) � max
π∈[0,1]

PS(S(X), π)( 􏼁. (5)

Tis maximum is calculated over all possible values of
the nuisance parameter. Its test statistic value is usually less
than which is produced by Fisher’s test statistic.

For a given test level α, a testable support requirement by
Barnard’s test statistic [24] is given by the following:

PS

xs, xs

n
􏼒 􏼓 � α. (6)

Based on formula (6), for a testing pattern X, if it is to be
a signifcant pattern, then its support must meet S(X)> xs.

In step 2 of Figure 1, generating permuted datasets will
take high computational cost; in most practical cases, the
permutation number is constrained as a fxed value for
reducing the running time, but p value produced by such
strategy is an approximation of the exact distribution which
may lead to a bad estimation.

4. The Method

We are going to mine SSPs in a novel way under the
framework of FWER. In the mining process of SSPs can-
didates, we introduce pattern lengths and the testable
support constraints and insignifcant patterns are removed
timely. In the testing process, a close upper bound of

Barnard’s test statistic is proposed to reduce calculation
time, and permutation testing with a combination strategy is
introduced to get exact p values, and the proposed algorithm
is verifed to have a signifcant improvement compared with
state-of-the-art methods.

4.1. Mining SSP Candidates. Longer patterns tend to have
low support and are more likely to be insignifcant by
testable support requirement. In the process of SSP candi-
dates mining, we introduce a user-specifed length to reduce
the search computations; according to the excellent mining
performance by tree structure with length constraint in
[37, 38], we establish a pattern tree and mine all SSP can-
didates from the tree under pattern length and testable
support control; the mining process mainly consists of two
phases, as shown in Algorithm 1.

To draw SSPs candidates more efciently, two pruning
strategies are proposed to optimize the mining process, and
they are used in the process of CreateTree and SSPs_Can-
didates in Algorithm 1, respectively.

Theorem 1. If S(X)≤MinS, supersets of X are not SSP
candidates.

Proof. Let Xe be a super set of X, then S(Xe)≤ S(X); if S(X)≤
MinS, then X will not be a candidate based on Defnition 1,
so Xe must not be a SSP candidate.

Theorem 2. If S(X)< xs in formula (6), supersets of X are not
SSP candidates.

Proof. Let Xe be a super set of X. Te same as Teorem 1,
S(Xe)≤ S(X). When S(X)< xs, then S(Xe)< xs;based on for-
mula (6), Xe will not be an SSP candidate.

Based on the efcient two pruning strategies, we use the
efcient tree structure by a pattern-growth method to
produce the candidates. We take the data in Figure 2(a) as an
example and set λ� 0.5 and k� 3 as follows:

(1) Calculate the testable support value xs � 3 based on
formulas (4) and (6). Remove the unpromising items
whose support is less than 3. Terefore, delete “G.”

(2) Te header table consists of two parts which are the
support and the link pointer. By one scan, create the
header table H, add T1 to the tree, and there are two
types of nodes as shown in Figure 2(b); one is an
ordinary node, such as node “A” and “C.” Another
node is a leaf node such as “F.1,” which means “F” is
the leaf node and the support of the sequential path is
1.

(3) Add sequential transactions to the tree, Figure 2(c)
shows the result after the second transaction T2 is
added. Since there are two “D” items in this trans-
action, record the position of the previous “D,”
which is represented by S� {2}, and set the link
pointer to the previous item.

(4) Figure 2(d) shows the result of adding the third
transaction. In the process of adding, if the sequential

 

Select test statistic. Calculate test statistic
value of X on observed data sample. 

 Generate permutation datasets. Calculate
the test statistic values of X in permuted
datasets for generating distribution of X. 

Calculate p-value of X. The p-value is
calculated based on the different number with
same test statistic values in the distribution. 

Figure 1: Permutation testing in data stream.

Table 1: 2× 2 contingency table for X.

Transactions St(X) � 1 St(X) � 0 Rows

t ∈ G1 S1(X) η1 − S1(X) η1
t ∈ G0 S0(X) η0 − S0(X) η0
Columns S(X) η − S(X) η
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transaction items already exist in the tree, you only
need to add the corresponding support. Te result
after adding all transactions to the tree is shown in
Figure 2(e). In order to describe the sequence more
clearly, the pointer link is hidden in Figure 2(e).

Te creation algorithm is shown in Algorithm 2. We frst
calculate the testable support value, remove these items
whose support values or support are not satisfed from the
header table (lines 1–7), insert sequential transactions after
removing the insignifcant items, accumulate the support
values of the item in each path into the header table, and add
the link pointer of the new node to the header table (lines
8–16); line 17 returns the tree T and the header table H.

Te above process efectively constructs the global tree
and maintains the data into a tree and a header table, and
algorithm SSPs_Candidates uses pattern-growth method to
mine all SSPs candidates. Te algorithm processes the items
in the header table from a bottom-to-top sequence. Based on
the fnal tree and head table in Figure 2(e), here we dem-
onstrate the example by mining SSPs candidates with item
“F” and “E” as the tail nodes. Te process could be known in
Figure 3.

Te support of item “F” is bigger than 3, and we can
create a subtree and subheader table for base-item (“F”).
According to the node pointer, analyze the paths with “F.”
Te path <“A” and “C”> is obtained from <“A,” “C,” and
“F”> with leaf node “F,” <“A,” “C,” “D,” “B,” and “E”> and
<“C” and “E”> are obtained from the leaf node “C” and “B.”
Te subtree and subheader table of item (“F”) are shown in
Figure 3(a). Delete the items whose support does not meet
the support requirements; thus, only item “C” is left. Ten,
the subheader table and subtree with base <“C” and “F”> are
established, as shown in Figure 3(b). However, since the

support of the remaining item “A” is less than 3, the program
is interrupted. Continue to search the candidates of item “E”
by the same operation steps, the subtree and subheader table
with base “E” are shown in Figure 3(c), and the tree with base
<“B” and “E”> is shown in Figure 3(d). It can be seen that
patterns whose last item is “E” are also removed as the
supports that are not satisfed and continue to look for
candidates with the next item until all items in header table
H are processed.

Te specifc process of SSPs_Candidates is shown in
Algorithm 3. For the current processing item, if the length
and support constraints are satisfed, it will be added to the
base item (Lines 1–5). If the length is not satisfed but the
support is reached, then a subheader table and a subtree will
be established and continue to pursuit the candidates by a
recursion (Lines 6–9). When the current item is completed
and processed, remove it and go to look for candidates of the
next item in H (Line 10). Line 12 returns the fnal
candidates. □

4.2. Testing SSP Candidates

4.2.1. Close Upper Bound of Barnard’s Test Statistic. To
formula (5), one has to overcome the high computation to
calculate the sum of the value which has equal or lower
probability than being observed, and we look for a close
upper bound of Barnard’s test statistic.

Lemma 1. argmaxπ P(S(X), S1(X), π)􏼈 􏼉 � S(X)/n.

Proof. To formula (3), when nuisance parameter π is unique
variable and other variables are fxed, based on [24],
P(S(X), S1(X), π) is a function of π (0< π < 1) and the
derivative of π could be calculated as follows:

zP S(X), S1(X), π( 􏼁

zπ
�

n0

S(X) − S1(X)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

n1

S1(X)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ S( X( )π(S(X)− 1)

(1 − π(n− S(X))
+ S( X( ) −n)πS(X)

(1 − π(n− S(X)− 1)⎞⎟⎟⎟⎟⎟⎠

�

n0

S(X) − S1(X)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

n1

S1(X)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠π(S(X)− 1)

(1 − π(n− S(X)− 1)
S( X( ) − nπ⎞⎟⎟⎟⎟⎟⎠.

(7)

Input: DS: dataset
λ: support threshold
k: user-specifed length
xs: testable support

Output: SSPs candidates
//create a Tree T and a header table H

(1) T, H�CreateTree (DS, λ, xs)
//fnd SSPs Candidates

(2) Candidates� SSPs_Candidates (xs, T, H, base-item, k, and λ)
(3) Output Candidates

ALGORITHM 1: SSPsCandidates.
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It could be known that when π � S(X)/n, the value of the
frst derivative is 0. In this circumstance, the second de-
rivative could be calculated as follows:

z
2
P S(X), S1(X), π( 􏼁

z
2π

� −n
n0

S(X) − S1(X)

⎛⎝ ⎞⎠
n1

S1(X)

⎛⎝ ⎞⎠π(S(X)− 1)
(1 − π)

(n− S(X)− 1)
, (8)

Input: DS: dataset
λ: support threshold
xs: testable support

Output: a tree T and a header table H
(1) Initiate a header table H containing the felds of the item, support, and links
(2) For each transaction Td of DS, do
(3) For each item X in Td do
(4) Calculate H.X.support
(5) End For
(6) End For
(7) Delete unpromising items from H with support and xs constraints
(8) Initialize a Tree T with an empty root node
(9) For each transaction Td of DS, do
(10) Delete unpromising items from Td
(11) Insert the sequential itemset S of Td
(12) For each item X in S
(13) Update H.X.support
(14) Add the links
(15) End For
(16) End For
(17) Return T and H

ALGORITHM 2: GreateTree.

Input: T: a tree, H: a header table, and base-item
λ: support threshold
k: user-specifed length
xs: testable support

Output: candidates
(1) Candidates� ()
(2) For each item Q in H (with a bottom-up sequence) do
(3) If H.Q.support> xs then
(4) base-item�Q ∪ base-item
(5) If |base-item|≤ k and base-item.support≥MinS then
(6) Copy the base-item to Candidates
(7) Create a subtree subT and a subheader table subH
(8) SSPs_Candidates (subT, subH, base-item, k, xs, and λ)
(9) End If
(10) End If
(11) Remove Q from H
(12) End For
(13) Return Candidates

ALGORITHM 3:SSPs_Candidates.
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Data window
Tid items Class

T1

T2

T3

T4

T
5

T6

<A, C, F>

<B, D, E, A, G, D>

<B, E, A, D, E>

<C, E, F, G, B>

<B, D, B, C, D>

<A, C, D, B, E, F, C>

G0

G1

G1

G0

G1

G0

(a)

Header Table
item support link

A

B

C

D

E

F

1

0

1

0

0

1

root

A

C

F, 1

(b)

Header Table

item support link
A

B

C

D

E

F

root

A

A

C

F, 1

2

1

1

1
1

1

B

D

E

D, 1, S={2}

(c)

Header Table

item support link

E

A

B

C

D
E

F

root

A

A

A

C

F, 1

B

D

D
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Figure 2: A case of creating a tree and a header table. (a)Te header table, (b) the tree after adding T1, (c) the tree after adding T2, (d) the tree
after adding T3, and (e) the tree after adding all transactions (pointer hidden).
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Figure 3: Continued.
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and the second order derivative is always less than 0, and
Lemma 1 holds.

For any nuisance parameter π, to formula (3), P(S(X),
S1(X), π)�B(n1,S1(X), π)∗B(n0, S0(X), π) where B(z, h, π) �

z

h
􏼠 􏼡πh(1 − π)z− h, the maximal value of B(n1, S1(X), π) is at

q1 � 􏼄 n1 + 1( 􏼁π􏼅 � Q1π, and to B(n0, S0(X), π) is at q0 �

􏼄 n0 + 1( 􏼁π􏼅 � Q0π, assuming S1(X)≤ q1 and S0(X)≤ q0 (the
results for other situations are analogous), we can know that

the p value of data points in the range of (S1(X), q1) and
(S0(X), q0) is not less than the observed. Defning D(q1, q0)

as a minimal product of the data point number of each
range, we can calculate the value of D(q1, q0) by Lemma
2. □

Lemma 2. D(q0, q1) � min (|Q0S1(X)/Q1 − S0(X)|,

|Q1S0(X)/Q0 − S1(X)|).

Proof. Assuming S1(X)/Q1 > � S0(X)/Q0,

D q0, q1( 􏼁 � argmin
π

|Q1π − S1(X)| +1)( 􏼁 Q0π − S0(X)􏼁| + 1( 􏼁
􏼌􏼌􏼌􏼌,

(1)π > �
S1(X)

Q1
,

D q0( , q1􏼁 � Q1Q0π
2

− Q0(( S1( ( X) −1) + Q1 S0( ( X) −1))π + S1( ( X) −1) S0( ( X) −1) − 1,

argmin
π

D q0, q1( 􏼁 � Q0
S1(X)

Q1
− S0(X),

(2)
S0(X)

Q0
< � π< �

S1(X)

Q1
,

D q0, q1( 􏼁 � −Q1Q0π
2

+ Q0 S1(X) + 1( 􏼁 + Q1 S0(X) − 1( 􏼁( 􏼁π − S1(X) + 1( 􏼁 S0(X) − 1( 􏼁 − 1,

argmin
π

D q0, q1( 􏼁 � min Q0
S1(X)

Q1
− S0(X), Q1

S0(X)

Q0
− S1(X)􏼠 􏼡,

(3)π< �
S0(X)

Q0
,

D q0, q1( 􏼁 � Q1Q0π
2

− Q0 S1(X) + 1( 􏼁 + Q1 S0(X) + 1( 􏼁( 􏼁π + S1(X) + 1( 􏼁 S0(X) + 1( 􏼁 − 1,

argmin
π

D q0, q1( 􏼁 � Q0
S1(X)

Q1
− S0(X),

(9)
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Figure 3: A case of creating a subtree and a header table. (a) Subtree of item “F,” (b) the subtree of itemset <C and F>, (c) subtree of item “E,”
and (d) subtree of itemset <B and E>.
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thus proving Lemma 2; the proposition is also tenable when
S1(X)/Q1≤ S0(X)/Q0.

We propose an upper bound of the p value based on
Lemmas 1 and 2, the upper bound of p value could be
calculated in O(1) and it is proved in Lemma 3. Tis

dramatically speeds up the p value calculation of the un-
conditional test. □

Lemma  . PB(X)≤P(X(S), X1(S), X/n)((n0 + 1)(

n1 + 1) − D(q1, q0)).

PB(X) � maxπ 􏽘

P(x,a,π)≤P S(X),S1(X),π( )

P(x, a, π)
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤maxπ P S(X), S1(X), π( 􏼁|P(x, a, π)|􏼈 􏼉≤P S(X), S1(X), f(S)( 􏼁 n0 + 1( 􏼁 n1 + 1( 􏼁 − D q1, q2( 􏼁( 􏼁

� P
S(X), S1(X), X

n
􏼠 􏼡 n0 + 1( 􏼁 n1 + 1( 􏼁 − D q1, q2( 􏼁( 􏼁

. (10)

4.2.2. Permutation-Based p Values. Similar to [10], suppose
there are N patterns (including X) in the observed data
window waiting for test, the p value of X is calculated as
follows:

P − value(X) �
# Pi <PB( 􏼁i ∈ 1 . . . ..., NDp􏽮 􏽯

NDp

, (11)

where Dp is the number of permutation datasets, PB is the
test statistic value according to the tested pattern X on
observed dataset, and Pi are test statistic values according to
N patterns with permutated datasets; they are all calculated
by Lemma 3.

Each permutation dataset matches a contingency table.
So, looking for p values is transformed to look for con-
tingency tables, the contingency table is decided by n1 and
S1(X), and the same contingency table produces the same p
values; if permutation datasets are produced randomly, it
will be very time-consuming. In fact, there are many per-
mutation datasets with the same contingency tables, and we
are going to produce permutation p values based on a
combination strategy for improving the calculation ef-
ciency by following two steps.

Step 1. (permutation datasets generation). Unlike [10], our
permutation strategy produces a permuted dataset that does
not change the pattern support and the length of each
transaction. Tis strategy ensures that besides the label
number, everything else is fxed. Suppose a sliding window
W consists of 6 transactions in Figure 2(a), random two
permutation datasets using this approach are shown in
Figures 4(b) and 4(c). Te transactions have the same order
as them inW, and the support of the pattern is not changed;
instead, the sequential patterns with the certain label are
changed: S0(<A and C>) is 2 in Figure 2(a) but it is 1 in the
Figure 4(a). So, we will take n1 in Table 1 as a variable
quantity based on the calculation of Barnard’s test statistic
which is more in line with the process of data generations
and collections.

Step 2. (datasets combination with the same test statistic).
Literature [10] proposed the algorithm by producing per-
mutation p values based on a combination strategy. We
follow the strategy based on Barnard’s test statistic. Diferent
from [10], in our setting, n1 is variable and it could be
changed in (0, n). For a testing pattern X, set L�min(S(X),
n1) and U�max(0, (n1 − (n− S(X)))). S1(X) is in the range of
(L, U); selecting x transactions from S(X) transactions
(contain X) and S(X)− x transactions from n− S(X) trans-
actions (not contain X) could be known as follows:

r x, n1( 􏼁 �
S(X)

x
􏼠 􏼡

n − S(X)

S(X) − x
􏼠 􏼡. (12)

Based on the contingency table, x takes the value in (L,
U). Tus, according to the diferent value of n1, the total
number of the contingency tables is calculated as follows:

􏽘

n

n1�0
􏽘

U

x�L

r x, n1( 􏼁. (13)

Based on formulas (12) and (13), the p values of SSP
candidates could be known in Algorithm 4. For each testing
pattern (Line 2), the number of permutation datasets could
be calculated, and the combination process could be known
in Lines 3–13.Te original test statistic value for each pattern
in the observed data window could be calculated by Line 15,
and to each test statistic value in list p by combination, it
fnds the number that is less than the observed one (Lines
16–20), and Lines 21-22 calculate each p value of testing
pattern in the candidates and add it to the fnal results.
Algorithm 4 can be considered an efcient algorithm to
optimize the calculation of p values.

4.3. FSSPDS. We are going to draw signifcant sequential
patterns in the data stream under the framework of FWER
based on the p values by Algorithm 4. FSSPDS could be
designed for m windows. W1 is the frst window that can
reach Wm after m− 1 sliding. To data stream with m win-
dows, the process of FSSPDS for returning SSPs in the data
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stream under the control of FWER could be known in
Algorithm 5. For each sliding window, SPi in Line 3 returns
SSP candidates by algorithm 1, and Ri in Line 4 outputs the p

values by Algorithm 4. If its p value does not exceed the
corrected test level, the pattern is added to the result set
(Lines 5–12). Line 14 returns the fnal results.

5. Complexity Analysis

First, we study the computational complexity of producing SSP
candidates. By existing algorithms in [1, 2], SSP candidates are
obtained in time O(|DS|2·L·M2). DS is the dataset, L is the
distinguish items in DS, and M is the maximum sequential
length in the dataset. By introducing the length constraint k, the

complexity is performed in time O(|D|2·L·M·k). It is known that
k is not bigger than M, and often it is far smaller than H. Te
complexity of FSSPDS achieves a better result than traditional
candidates mining methods. Of course, it is important to note
that some efective SSP candidates with long lengths may be
removed, but actually, we can know that there are few candidates
which are lost when we choose a relatively bigger length con-
straint value in the experiments. Instead, in most cases, the
mining algorithm with length constraint accelerates the com-
pletion of candidates discovering tasks and fnding more SSP
patterns.

Second, we study the complexity of test statistics with
permutation p values. According to Lemma 3, the test
statistic could be obtained in O(1); such an upper bound is
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5 <B, D, B, C, D>

6 <A, C, D, B, E, F, C>

G0

G1

G1

G1

G0

G1

(a)

TID Transaction 
itemsets Class

1 <A, C, F>

2 <B, D, E, A, G, D>

3 <B, E, A, D, E>

4 <C, E, F, G, B>

5 <B, D, B, C, D>

6 <A, C, D, B, E, F, C>

G1

G0

G1

G0

G0

G1

(b)

TID Transaction 
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4 <C, E, F, G, B>
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G0

G1

G1

G1
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Figure 4: Te permuted datasets.

Input: support threshold λ, test level α, and transaction data window W.
Output: p values of testing patterns.

(1) n� |W|, P�R� (), total� 0, and number� 0
(2) For each FSSP candidate X do
(3) For n1 � 0 to n do
(4) L�min(S(X), n1)
(5) U�max(0, (n1 − (n− S(X))))
(6) For s� L to U do
(7) num� r(s, n1)

(8) p� PB (X)//by Lemma 3
(9) total+�num
(10) P.add (<X, p, and num>)
(11) End for
(12) End for
(13) End for
(14) For each FSSP candidate X do
(15) px� PB(X)
(16) For each item Pitem in P do
(17) If Pitem.p< px then
(18) number+�Pitem.num
(19) End If
(20) End for
(21) p value�number/total
(22) R.add (<X, p value>)
(23) End For
(24) Return R

ALGORITHM 4: p values.
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efcient-to-compute. In fact, in [24], a close upper bound of
Barnard’s test statistic is established as PB(X)≤P(X(S), X1(S),
S(X)/n) ((n1 + 1) (n0 + 1)) which can be used as an efective
value to assess the test static value of the signifcant patterns.
Our new upper bound which is proved in Lemma 3 is less
than this efective value. It is more close to the exact test
statistic value. Algorithm 4 produced permutation p values
based on combination strategy; if permutation p values in a
sliding window W are produced randomly and there are J
FSSP candidates waiting for testing, there should be 2|W|

permutation datasets, and the complexity of such calculation
should be acted as O(J·2|W|). However, by our efcient
combination strategy, the complexity in Algorithm 4 is O(J·|
W|·(U− L)≤ J·|W|2). It can be proved that 2|W|> |W|2 by
simple mathematical induction when |W|≥ 4. Tus, we can
know that the running time by our permutation strategy
could be greatly reduced and no signifcant pattern is lost.

6. Experiments

6.1. Environment and Dataset. Te code used for the evalu-
ation has been developed in Python, and the platform of the
experiment is confgured as follows: Windows 10 system, 2G
Memory, and intel (R) Core(TM) i3-2310 CPU @2.10GHz. We
evaluate the performance of FSSPDS on six datasets, mush-
rooms, a2a are from libSVM [41]. T10I4D100K, bms-web2,
retail, and bms-pos are obtained from SPMF [42], and they are
labeled by [32]. Tey all have two classes. Table 2 shows the
details of datasets, where |I| is the size of the alphabet, avgLength
is the average length of the transactions, and |D| is the number of
sequences. Te window size is initialized with 100 transactions
and the length k� l×MaxLength, and MaxLength is the max-
imal transaction length and l is initialized as 0.85.

6.2. Efciency Evaluation

6.2.1. Candidates Evaluation. Firstly, we evaluate the per-
formance for producing SPP candidates of the proposed
algorithm FSSPDS compared with Miner-K [25] based on

index tree and TSPIN [21] of vertical structure and CM-
Spam in [2], and Figures 5(a)–5(f) show the running time,
and Figures 6(a)–6(f) show the maximal memory con-
sumption of the four algorithms under diferent minimum
support threshold, respectively. From Figure 5, FSSPDS
achieves the best time performance of the four algorithms.
Miner-K takes less time than TSPIN and CM-Spam. FSSPDS
spends signifcantly less time than the other three methods
by benefting from removing the insignifcant patterns
earlier. By the two requirements of testable support and
length constraints, FSSPDS can always achieve better ef-
ciency under diferent support thresholds. From Figure 6, we
also come to the conclusion that FSSPDS can complete all
tasks with less memory consumption.

Table 3 shows the number of candidates produced by the
four algorithms. TSPIN and CM-Spam return exact number
without length constraint and K-miner returns number with
length constraints which is less than TSPIN and CM-Spam.Te
number returned by FSSPDS is the least of the four algorithms.
For example, on Mushrooms when the threshold is 0.6, FSSP
produces 616 candidates (the number of real SSPs is 535), but
K-miner returns 786 candidates and the number by TSPIN and
CM-Spam is 1332.Te insignifcant patterns are removed timely
in the mining process and the testing number could be reduced.
Overall, FSSPDS has obvious advantages in producing candi-
dates with less number and running time, and FSSPDS can
return SSPs smoothly.

6.2.2. Signifcance Evaluation. For evaluating the signif-
cance of FSSPDS, it is compared with four algorithms. Te
frst is the recent advanced permutation p values producing
method in [11] with Fisher’s test statistic which is denoted as
FSSPPROM; the second version that we denote FSSPEPAR
is the one based on Fisher’s test statistic with combined
permutation p values strategy in [10]; the third, we call it
PROMBD, is the one that uses upper bound of Barnard’s test
statistic by SPuManTE [9] with permutation p values
producing method in [11]; and the last one FSSPDS∗

Input: data stream W, test threshold, minimum support threshold λ, and length k
Output: SSPs with FWER≤ α.

(1) SSP� (), calculate testable support xs by α
(2) For each sliding window Wi do
(3) SPi � SSPsCandidates (Wi, λ, xs, and k)
(4) Ri � p values (λ, α, Wi)
(5) For each pattern X in SPi do
(6) Add X to SSP
(7) End For
(8) For each pattern X in SSP do
(9) If Ri.X. p value> α/|SSP| then
(10) Remove X from SSP
(11) End If
(12) End For
(13) End For
(14) Return SSP

ALGORITHM 5: FSSPDS.
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Table 2: Data characteristics.

Dataset |I| avgLength |D| Class
Mushrooms 112 21.0 8124 2
a2a 108 13.87 2265 2
T10I4D100K 870 10.1 100000 2
Bms-pos 1656 6.5 515597 2
Retail 16470 10.3 88162 2
Bms-web2 330285 4.59 77158 2
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Figure 5: Continued.
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Figure 5: Running time of producing SSP candidates. (a) Mushrooms, (b) a2a, (c) bms-pos, (d) bms-web2, (e) retail, and (f) T10I4D100K.

FSSPDS
Miner-K

TSPIN
CM-Spam

0

300

600

900

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B)

0.2 0.60.50.40.3
Support threshold

(a)

FSSPDS
Miner-K

TSPIN
CM-Spam

0

300

600

900

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B)

0.60.40.3 0.5 0.7
Support threshold

(b)

FSSPDS
Miner-K

TSPIN
CM-Spam

0

500

1000

1500
M

em
or

y 
C

on
su

m
pt

io
n 

(M
B)

0.2 0.3 0.50.4 0.6
Support threshold

(c)

FSSPDS
Miner-K

TSPIN
CM-Spam

0

1000

2000

3000

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B)

0.005 0.0090.006 0.007 0.008
Support threshold

(d)

FSSPDS
Miner-K

TSPIN
CM-Spam

0

400

800

1200

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B)

0.18 0.20.17 0.190.16
Support threshold

(e)

FSSPDS
Miner-K

TSPIN
CM-Spam

0

800

1600

2400

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B)

0.40.350.25 0.30.2
Support threshold

(f )

Figure 6: Memory consumption of producing SSP candidates. (a) Mushrooms, (b) a2a, (c) bms-pos, (d) bms-web2, (e) retail, and
(f) T10I4D100K.
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focusses on SSPsmining the same as FSSPDS but without the
testable support and length constraints.

Figures 7(a)–7(f ) show the running time on six
datasets with diferent support thresholds. It shows that
FSSPDS spent the shortest time on each dataset,
benefting from reducing search space by length and
testable support constraints, and mining SSP candidates
by FSSPDS can save a lot of time. Also, by using our
efective combination strategy for permutation testing,
the testing time is greatly reduced. For example, on a2a
with a support threshold 0.3, FSSPDS spent 52.03125
seconds, while FSSPPROM, FSSPDS∗, FSSPBD, and
PSSPEPAR spent 667.53125 s, 465.4 s, 476.5 s, and 500 s,
respectively. With threshold increases, the number of the
SSPs decreases, so the running time became less with a
bigger support threshold. However, from Figure 7, the
running time of FSSPDS always have computational
advantages. It can also show that the running time of
FSSPDS∗ is less than other algorithms except for FSSPDS;
this could confrm that by our efective candidates
mining and testing process, the running time can be
reduced even without considering length constraints.
Additionally, from Figure 7, the time consumption of
FSSPDS is relatively stable compared with other algo-
rithms according to the increase of support thresholds.

Figures 8(a)–8(f) show the memory consumption of the
algorithms on the six datasets. Algorithm FSSPDS reduces
the number of items by using Teorems 1 and 2, and also,
FSSPDS combines the same p values for calculation and thus
the storage space could be reduced greatly. Benefting from
the pruning and combination strategies, it is known that the
memory consumption of FSSPDS∗ is less than other algo-
rithms except for FSSPDS. From Figure 8, FSSPDS is rel-
atively stable compared with other algorithms and has a
certain advantage in memory utilization.

As previously mentioned, the p values produced by these
algorithms may be 0 which may result in a bad estimation.
Te percent of SSPs whose p values are zeros by the fve
algorithms could be seen from Table 4, it could be known
that the proportion by FSSPDS is the smallest, and FSSPDS∗
is performed better than the other algorithms except for
FSSPDS. We can get all p values based on formula (7) and
FSSPDS achieves a better result than others. Onmushrooms,
Figure 9(a) shows p values distribution, and Figure 9(b) is
the corresponding p values, the variance of p values could be
known from Figure 9(c), the distribution by FSSPDS is more
concentrated, and there are more patterns worth testing.

Figures 10(a)–10(f ) show the pattern number compar-
ison of the fve algorithms on the six datasets. We can
observe that the number by FSSPDS is signifcantly bigger

Table 3: Number of SSP candidates.

Datasets Support
threshold

SSP candidates by
FSSPDS

SSPs by
FSSPDS

SSP candidates by K-
miner

SSP candidates by TSPIN/CM-
spam

Mushrooms

0.2 1065 695 1234 1986
0.3 954 643 1098 1765
0.4 832 616 986 1564
0.5 721 603 897 1456
0.6 616 535 786 1332

a2a

0.3 154 98 187 415
0.4 76 51 143 324
0.5 43 29 109 254
0.6 23 17 54 109
0.7 19 13 43 87

bms-pos

0.2 235 175 313 56
0.3 154 76 213 456
0.4 46 15 109 315
0.5 23 7 87 265
0.6 7 1 13 67

bms-web2

0.005 109 65 187 324
0.006 87 36 165 265
0.007 76 22 154 187
0.008 54 16 134 167
0.009 21 16 109 154

Retail

0.16 209 165 365 546
0.17 198 154 265 453
0.18 187 113 208 412
0.19 165 98 187 398
0.2 109 56 145 276

T10I4D100K

0.2 1654 1225 1986 3245
0.25 1567 999 1876 2986
0.3 1432 885 1765 2098
0.35 1398 576 1564 1986
0.4 1098 304 1256 `1786

14 Mathematical Problems in Engineering



0

1000

2000

3000
Ti

m
e (

s)

0.60.4 0.50.30.2
Support threshold

FSSPDS
FSSPPROM
FSSPDS*

PROMBD
FSSPEPAR

(a)

0.70.3 0.60.4 0.5
Support threshold

0

300

600

900

Ti
m

e (
s)

FSSPDS
FSSPPROM
FSSPDS*

PROMBD
FSSPEPAR

(b)

0.40.2 0.5 0.60.3
Support threshold

0

50000

100000

150000

Ti
m

e (
s)

FSSPDS
FSSPPROM
FSSPDS*

PROMBD
FSSPEPAR

(c)

0.005 0.007 0.008 0.0090.006
Support threshold

0

6000

12000

18000

Ti
m

e (
s)

FSSPDS
FSSPPROM
FSSPDS*

PROMBD
FSSPEPAR

(d)
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Figure 7: Running time of SSPs. (a) Mushrooms, (b) a2a, (c) bms-pos, (d) bms-web2, (e) retail, and (f) T10I4D100K.

FSSPDS
FSSPPROM
FSSPDS*

PROMBD
FSSPEPAR

0

400

800

1200

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B)

0.50.2 0.3 0.4 0.6
Support threshold

(a)

FSSPDS
FSSPPROM
FSSPDS*

PROMBD
FSSPEPAR

0

600

1200

1800

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B)

0.60.50.4 0.70.3
Support threshold

(b)

FSSPDS
FSSPPROM
FSSPDS*

PROMBD
FSSPEPAR

0

700

1400

2100
M

em
or

y 
C

on
su

m
pt

io
n 

(M
B)

0.2 0.4 0.60.3 0.5
Support threshold

(c)

FSSPDS
FSSPPROM
FSSPDS*

PROMBD
FSSPEPAR

0

1000

2000

3000

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B)

0.0080.006 0.0090.0070.005
Support threshold

(d)

FSSPDS
FSSPPROM
FSSPDS*

PROMBD
FSSPEPAR

0

700

1400

2100

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B)

0.19 0.20.180.170.16
Support threshold

(e)

FSSPDS
FSSPPROM
FSSPDS*

PROMBD
FSSPEPAR

0

800

1600

2400

M
em

or
y 

C
on

su
m

pt
io

n 
(M

B)

0.350.25 0.3 0.40.2
Support threshold

(f )

Figure 8: Memory consumption of SSPs. (a) Mushrooms, (b) a2a, (c) bms-pos, (d) bms-web2, (e) retail, and (f) T10I4D100K.
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than the other algorithms. For example, on dataset retail
when the support threshold is 0.16, FSSPDS produces 237
patterns, but the number by FSSPPROM, FSSPDS∗,
PROMBD, and FSSPEPAR is 163, 124, 87, and 145, re-
spectively. FSSPDS can always mine more patterns of all
algorithms. On most of the datasets, the number returned by
FSSPDS∗ is close to FSSPDS and more than the other al-
gorithms by benefting from the calculation advantage of
FSSPDS.

We also analyze the impact of length parameters l on
the number of SSPs. Te number of SSPs with diferent
length parameters by FSSPDS could be known from
Table 5. It could see that when l is more than 0.8, the
number returned by FSSPDS is bigger than the number
returned by FSSPDS∗ and Figure 11 shows the ratio of the
two returned numbers with diferent length parameters.
It is known that when l increases, the value of the ratio is
bigger than 1 which means that we can obtain more SSPs
by length constraint than without constraint. Such
conclusion could be explained that when we make length
constraint on the datasets, insignifcant patterns are

removed timely in the mining process; thus, more sig-
nifcant patterns could be drawn under the calculation
rule of FWER.

6.2.3. Scalability Evaluation. In order to test the scalability
of the FSSPDS, we evaluate its efciency according to the
diferent window sizes. We assess the performance under
varied size. With λ� 0.2, Figure 12(a) shows the running
time on mushrooms, Figure 12(b) shows the memory
consumption on T10I4D100K, and Figure 12(c) shows the
number of tested patterns whose p values are 0 on bms-pos.
According to the results of our calculations on all these six
datasets, it can be known that FSSPDS can achieve a better
result for all fve algorithms in terms of running time,
memory consumption, and efective p values. It can mine
SSPs smoothly under diferent data sizes.

Figure 13 shows the number of SSPs with diferent length
parameters and window sizes, Figure 13(a) returns the
number of SSPs with λ� 0.16 and l� 0.7 on retail,
Figure 13(b) returns the number of SSPs with λ� 0.005 and
l� 0.8 on bms-web2, and Figure 13(c) returns the number of

Table 4: Percent of SSPs whose p values are zeros.

Datasets Support threshold FSSPDS (%) FSSPPROM (%) FSSPDS∗ (%) PROMBD (%) FSSPEPAR (%)

Mushrooms

0.2 4.9 22.74 8.30 7.94 22.65
0.3 4.98 18.45 7.40 7.62 21.49
0.4 2.24 16.33 4.15 6.22 21.14
0.5 2.32 14.29 3.60 6.14 18.84
0.6 0.8 9.91 3.26 4.63 18.26

a2a

0.3 6.12 34.04 7.41 11.54 54.55
0.4 6.41 26.19 11.63 12.50 66.67
0.5 11.63 28.00 20.83 20.59 70.00
0.6 18.52 29.41 35.71 53.85 71.43
0.7 23.08 42.86 33.33 62.50 60.00

bms-pos

0.2 8.50 23.49 11.11 25.19 30.91
0.3 10.81 63.27 22.45 25.58 41.07
0.4 12.50 50.00 35.71 43.48 61.76
0.5 33.33 40.00 25.00 50.00 70.00
0.6 40.00 100.00 100.00 100.00 100.00

bms-web2

0.005 7.69 28.95 19.57 21.57 51.22
0.006 8.89 30.00 26.09 40.74 54.84
0.007 8.82 100.00 30.00 33.33 66.67
0.008 15.38 100.00 23.65 33.33 66.67
0.009 12.50 100.00 100.00 100.00 100.00

Retail

0.16 24.05 74.23 34.03 77.01 48.28
0.17 22.84 65.41 42.04 85.53 50.39
0.18 19.16 69.07 47.87 80.36 55.67
0.19 28.04 64.29 38.46 69.77 44.12
0.2 38.96 66.15 56.60 73.53 100.00

T10I4D100K

0.2 17.45 36.78 19.58 25.65 43.96
0.25 18.87 34.91 21.16 28.14 39.12
0.3 22.56 39.81 26.22 35.15 44.07
0.35 25.08 77.59 30.04 47.25 64.44
0.4 27.70 88.63 37.39 50.84 72.89
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Figure 9: p values of the tested patterns by FSSPDS. (a) Distribution, (b)p value� 0 and p value> 0, and (c) variance.
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Figure 10: Continued.
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Figure 10: Number of SSPs. (a) Mushrooms, (b) a2a, (c) bms-pos, (d) bms-web2, (e) retail, (f ) T10I4D100K.

Table 5: Number of SSPs with diferent length parameters.

Datasets Support threshold FSSPDS (l� 0.7) FSSPDS (l� 0.8) FSSPDS (l� 0.9) FSSPDS∗

Mushrooms

0.2 567 685 705 675
0.3 532 632 654 622
0.4 532 616 616 602
0.5 512 598 609 583
0.6 491 535 535 521

a2a

0.3 65 87 123 81
0.4 32 45 56 43
0.5 18 28 32 24
0.6 12 16 21 14
0.7 7 12 15 9

bms-pos

0.2 112 156 234 144
0.3 43 56 78 49
0.4 7 15 18 14
0.5 6 7 7 4
0.6 1 1 1 1

bms-web2

0.005 23 54 67 35
0.006 12 25 39 23
0.007 8 17 25 15
0.008 8 12 18 12
0.009 8 12 18 11

Retail

0.16 54 156 231 124
0.17 34 112 212 108
0.18 19 98 176 94
0.19 19 98 98 78
0.2 7 56 56 53

T10I4D100K

0.2 564 1125 1543 1065
0.25 435 987 1098 921
0.3 347 865 954 621
0.35 267 568 764 267
0.4 198 246 543 111
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Figure 12: Efciency with diferent window sizes. (a) Mushrooms, (b) T10I4D100K, and (c) bms-pos.
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Figure 13: Number of SSPs with diferent sizes. (a) Retail (l� 0.7), (b) bms-web2 (l� 0.8), and (c) a2a(l� 0.9).
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SSPs with λ� 0.3 and l� 0.9 on a2a. It can get the same
conclusions that pattern numbers by FSSPDS are higher
than the other algorithms. FSSPDS is relatively stable and it
has little efect on varied window size.

7. Conclusion and Feature Work

We introduce FSSPDS, an efcient algorithm to mine sta-
tistically signifcant sequential patterns in the data stream.
Firstly, insignifcant candidates can be removed timely by
introducing testable supports and length constraints with a
pattern-growth method based on the tree structure.
According to better refect the data generation process in the
time sliding window, diferent from the traditional Fisher’s
test statistic, we mine SSPs based on unconditional test
statistics with permutation p values under the framework of
FWER. To overcome the computation drawbacks of p values
production, we proposed a close upper bound of the un-
conditional test statistic and used a combination strategy to
look for efective permutation p values. Te experimental
results on real datasets demonstrate the efectiveness of
FSSPDS.

FSSPDS is still time-consuming on some datasets, es-
pecially on dense datasets where the length of each trans-
action is related long, and the permutation process spent lots
of time. Some useful pruning strategies could be used for
accelerating the calculation process. For example, the
boundary pruning and static bufering technology in [10]
could be used for reducing the computational cost. Te
continuous computation technology could be used in for-
mula (8) as r(S1(X), n1 + 1) � r(S1(X), n1)(n1 + 1)2/(n1 −

s + 1)(n − n1). Additionally, the data size is fxed in our
experiments, efciency evaluation on datasets with unfxed
size could be studied, and we will investigate these problems
in our future work.
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