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Abstract. Process mining techniques allow for the discovery of knowledge based on so-called

‘‘event logs’’, i.e., a log recording the execution of activities in some business process. Many

information systems provide such logs, e.g., most WFM, ERP, CRM, SCM, and B2B systems

record transactions in a systematic way. Process mining techniques typically focus on per-

formance and control-flow issues. However, event logs typically also log the performer, e.g.,

the person initiating or completing some activity. This paper focuses on mining social net-

works using this information. For example, it is possible to build a social network based on the

hand-over of work from one performer to the next. By combining concepts from workflow

management and social network analysis, it is possible to discover and analyze social net-

works. This paper defines metrics, presents a tool, and applies these to a real event log within

the setting of a large Dutch organization.

Key words: business process management, data mining, Petri nets, process mining, social

network analysis, workflow management

1. Introduction

This paper builds on concepts from business process management (workflow

management in particular) and sociometry (social network analysis in

particular).

Business process management is concerned with process-aware information

systems, i.e., systems supporting the design, analysis, and enactment of

operational business processes. Typical examples of such process-aware

systems are workflow management systems where the process is driven by an

explicit process model (Jablonski and Bussler, 1996; Leymann and Roller,

1999; Aalst and Hee, 2002). However, in many other process-aware infor-

mation systems the process model is less explicit and users can deviate from

the ‘‘normal flow’’, i.e., these systems allow for more flexibility.

Sociometry, also referred to as sociography, refers to methods presenting

data on interpersonal relationships in graph or matrix form (Burt and Minor,

1983; Scott, 1992; Wasserman and Faust, 1994). The term sociometry was

coined by Jacob Levy Moreno who conducted the first long-range socio-

metric study from 1932 to 1938 at the New York State Training School for
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Girls in Hudson, New York (Moreno, 1934). As part of this study, Moreno

used sociometric techniques to assign residents to various residential cot-

tages. He found that assignments on the basis of sociometry substantially

reduced the number of runaways from the facility. Many more sociometric

studies have been conducted since then by Moreno and others. In most

applications of sociometry, the assessment is based on surveys (also referred

to as sociometric tests). With the availability of more electronic data, new

ways of gathering data are enabled (Feldman, 1987). By analyzing the history

of a user’s e-mail interactions, personal networks can be extracted. One of the

first social-networked tools developed for this purpose is ContactMap (Nardi

et al., 2002). BuddyGraph (http://www.buddygraph.com) and MetaSight

(http://www.metasight.co.uk) are other examples. By using logs on e-mail

traffic as a starting point, meaningful organizational patterns can be distin-

guished (see e.g., Ogata et al., 2001; Nardi et al., 2002; Begole et al., 2002;

Farnham et al., 2004a, b; Fisher and Dourish, 2004). Similarly, information

on the Web can be used for the analysis of social networks (Culotta et al.,

2004). For example, Usenet data has been used to characterize the

‘‘authority’’ of individuals based on posting patterns (Smith, 1999).

For the analysis of social networks around business processes such ap-

proaches are less useful, since they are based on unstructured information.

For example, when analyzing e-mail it is difficult, but also crucial, to dis-

tinguish between e-mails corresponding to particular activities within a

business process (e.g., the decision with respect to a loan request) and e-mails

representing less relevant operational details (e.g., scheduling a meeting).

Fortunately, many enterprise information systems store relevant events in a

more structured form. For example, workflow management systems typically

register the enabling, start and completion of activities (Jablonski and

Bussler, 1996; Leymann and Roller, 1999; Fischer, 2001; Aalst and Hee,

2002). ERP systems like SAP log all transactions, e.g., users filling out forms,

changing documents, etc. Business-to-business (B2B) systems log the ex-

change of messages with other parties. Call center packages but also general-

purpose CRM systems log interactions with customers. These examples show

that many systems have some kind of event log often referred to as ‘‘history’’,

‘‘audit trail’’, ‘‘transaction file’’, etc. (Agrawal et al., 1998; Grigori et al.,

2001; Sayal et al., 2002; Aalst et al., 2003).

When people are involved in events, logs will typically contain information

on the person executing or initiating the event. We only consider events both

referring to an activity and a case (Aalst et al., 2003). The case (also named

process instance) is the ‘‘thing’’ which is being handled, e.g., a customer

order, a job application, an insurance claim, a building permit, etc. The

activity (also named task, operation, action, or work-item) is some operation

on the case, e.g., ‘‘contact customer’’. An event may be denoted by (c, a, p)

where c is the case, a is the activity, and p is the person. Events are ordered in
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time allowing the inference of causal relations between activities and the

corresponding social interaction. For example, if (c, a1, p1) is directly fol-

lowed by (c, a2, p2), there is some handover of work from p1 to p2 (note that

both events refer to the same case). If this pattern (i.e., there is some hand-

over of work from p1 to p2) occurs frequently but there is never a handover of

work from p1 to p3 although p2 and p3 have identical roles in the organiza-

tion, then this may indicate that the relation between p1 and p2 is stronger

than the relation between p1 and p3. Using such information it is possible to

build a social network expressed in terms of a graph (‘‘sociogram’’) or matrix.

Social Network Analysis (SNA) refers to the collection of methods, tech-

niques and tools in sociometry aiming at the analysis of social networks (Burt

and Minor, 1983; Scott, 1992; Wasserman and Faust, 1994). There is an

abundance of tools allowing for the visualization of such networks and their

analysis. A social network may be dense or not, the ‘‘social distances’’ be-

tween individuals may be short or long, etc. An individual may be a so-called

‘‘star’’ (directly linked to many other individuals) or an ‘‘isolate’’ (not linked

to others). However, also more subtle notions are possible, e.g., an individual

who is only linked to people having many relationships is considered to be a

more powerful node in the network than an individual having many con-

nections to less connected individuals.

The work presented in this paper applies the results from sociometry, and

SNA in particular, to events logs in today’s enterprise information systems.

The main challenge is to derive social networks from this type of data. This

paper presents the approach, the various metrics that can be used to build a

social network, our tool MiSoN (Mining Social Networks),1 and a case

study. The paper extends the results presented in (Aalst and Song, 2004) by

providing concrete metrics and demonstrating these using a case study.

The case study, used to demonstrate the applicability of our approach, has

been conducted within a Dutch national public works department employing

about 1000 civil servants. Based on the particular process of handling in-

voices, we constructed several social networks using the various metrics de-

fined in this paper. As a starting point we used an event log with about 5000

cases and more than 33,000 events. One of the metrics we applied was the

handover of work mentioned before, i.e., the strength of the link from person

p1 to person p2 is calculated based on the number of times one activity by p1 is

followed by an activity by p2 for the case (e.g., an invoice). The resulting

social networks were analyzed using a variety of SNA techniques and the

outcomes were discussed with the management of the Dutch national public

works department.

The paper is organized as follows. Section 2 introduces the concept of

process mining. Section 3 focuses on the mining of organizational relations,

introducing concepts from SNA but also showing which relations can be

derived from event logs. Section 4 defines the metrics we propose for mining
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organizational relations. We propose metrics based on (possible) causality,

metrics based on joint cases, metrics based on joint activities, and metrics

based on special event types (e.g., delegation). Then we present our tool

MiSoN. Section 6 discusses the case study. Section 7 presents related work.

Finally, Section 8 concludes the paper.

2. Process mining: An overview

The goal of process mining is to extract information about processes from

transaction logs (Aalst et al., 2003). We assume that it is possible to record

events such that (i) each event refers to an activity (i.e., a well-defined step in

the process), (ii) each event refers to a case (i.e., a process instance), (iii) each

event refers to a performer (the person executing or initiating the activity), and

(iv) events are totally ordered. An event log is a collection of events. Any kind

of transactional information system, e.g., ERP, CRM, or workflow manage-

ment systems, will offer this information in some form (Jablonski and Bussler,

1996; Leymann and Roller, 1999; Fischer, 2001; Aalst and Hee, 2002).

To clarify notions such as activity, case, performer, and event log, let us

consider some examples.

– Consider the cancer treatment process in a hospital. Each case in this

process refers to a patient having cancer. Examples of activities that

may take place are visits of the patient to the hospital for chemother-

apy, consultation of a specialist, a bone marrow transplant, etc. The

performers are all kinds of health-care professionals, e.g., doctors, spe-

cialists, nurses, surgeons, oncologists, radiologists, etc. An event may

be the administration of chemotherapy to a patient by a nurse at a gi-

ven point in time. The event log for the cancer treatment process will

contain all events relevant for this process.

– Another example is the processing of job applications. Each case refers

to a job application. Possible activities are confirming the application,

inviting the applicant for an interview, reimbursing the travel costs,

making a decision, doing a medical test, etc. The performers in the pro-

cess include the personnel officers, department managers, doctors, etc.

An example of an event is the invitation of an applicant for an inter-

view by a personnel officer. The event log for the job application pro-

cess will contain more such events ordered in time.

– The last example comes from the scientific domain. Consider the

reviewing process for a journal. The cases are papers that are submitted

to the journal. Examples of activities are the reviewing of a paper, the

acceptance of a paper, and the notification of authors. Among the per-

formers in this process are reviewers, area editors, editors in chief,

authors, and editorial assistants. An example of an event is the notifica-

tion of the corresponding author by an editorial assistant.
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A more abstract example of an event log is shown in Table I. Each row

refers to a single event, e.g., the last row refers to the execution of activity D

by Pete for the 4th case.

Many information systems offer the information shown in Table I in some

form. Any workflow management system will provide the information shown

in Table I (and more). Note that we do not assume the presence of a

workflow management system. The only assumption we make, is that it is

possible to collect logs with event data. For example, ERP systems, CRM

systems, HRM systems, hospital information systems, reviewing systems, etc.

offer this information in some form. Nevertheless, it may take some efforts to

extract this information in the right form.

Event logs, such as the one shown in Table I, can be used to construct

models that explain some aspect of the behavior registered. The term process

mining refers to methods for distilling a structured process description from a

set of real executions (Agrawal et al., 1998; Grigori et al., 2001; Sayal et al.,

2002; Aalst et al., 2003). The term ‘‘structured process description’’ may be

interpreted in various ways, ranging from a control-flow model expressed in

terms of a classical Petri net to a model incorporating organizational, tem-

poral, informational, and social aspects. In Section 7, references to the state-

of-the-art using these interpretations are given. In this paper, however, we

focus on the social aspect of mining event logs.

Table I. An event log

Case identifier Activity identifier Performer

Case 1 Activity A John

Case 2 Activity A John

Case 3 Activity A Sue

Case 3 Activity B Carol

Case 1 Activity B Mike

Case 1 Activity C John

Case 2 Activity C Mike

Case 4 Activity A Sue

Case 2 Activity B John

Case 2 Activity D Pete

Case 5 Activity A Sue

Case 4 Activity C Carol

Case 1 Activity D Pete

Case 3 Activity C Sue

Case 3 Activity D Pete

Case 4 Activity B Sue

Case 5 Activity E Clare

Case 5 Activity D Clare

Case 4 Activity D Pete
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2.1. DISCOVERING SOCIAL NETWORKS

When distilling a process model from an event log, the focus is on the various

process activities and their dependencies. When deriving roles and other

organizational entities, the focus is on the relation between people or groups

of people and the process. Another perspective is to focus on the relations

among individuals (or groups of individuals) acting in the process, in other

words: the social network. Consider for example the event log of Table I.

Although Carol and Mike can execute the same activities (B and C), Mike is

always working with John (cases 1 and 2) and Carol is always working with

Sue (cases 3 and 4). Probably Carol andMike have the same role but based on

the small sample shown in Table I it seems that John is not working with

Carol and Sue is not working with Carol.2 These examples show that an event

log can be used to derive relations between performers of activities, thus

resulting in a sociogram. For example, it is possible to generate a sociogram

based on the transfers of work from one individual to another as is shown in

Figure 1. Each node represents one of the six performers and each arc rep-

resents that there has been a transfer of work from one individual to another.

The definition of ‘‘transfer of work from A to B’’ is based on whether for the

same case an activity executed by A is directly followed by an activity executed

by B. For example, both in case 1 and 2 there is a transfer from John to Mike.

Figure 1 does not show frequencies. However, for analysis proposes these

frequencies can be added. The arc from John to Mike would then have weight

2. Typically, we do not use absolute frequencies but weighted frequencies to

get relative values between 0 and 1. Figure 1 shows that work is transferred to

Pete but not vice versa. Mike only interacts with John, Carol only interacts

with Sue. Clare is the only person transferring work to herself.

For a simple network with just a few cases and performers the results may

seem trivial. However, for larger organizations with many cases it may be

possible to discover interesting structures. Sociograms as shown in Figure 1

can be used as input for SNA tools that can visualize the network in various

ways, compute metrics like the density of the network, analyze the role of an

individual in the network (for example the ‘‘centrality’’ or ‘‘power’’ of a

performer), and identify cliques (groups of connected individuals). Section 3

John Sue

Mike

CarolPete

Clare

Figure 1. The sociogram based on the event log shown in Table I.
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will discuss this aspect in more detail and Section 4 will provide concrete

metrics to derive sociograms from event logs.

2.2. OTHER TYPES OF MINING

Table I contains the minimal information we assume to be present in an event

log. Using the information one can also discover other models (i.e., not just

sociograms). For example, we have developed techniques and tools to dis-

cover the process model. Figure 2 shows the resulting Petri net model after

applying our a-algorithm (Aalst et al., 2004) to Table I. The model shows

that the process always starts with A and ends with D. In between these tasks

either B and C are executed or E alone. B and C are concurrent, i.e., they can

be executed in any order. Given the focus of this paper, we will not elaborate

further on process discovery. See Section 7 for pointers to related work.

In many applications, the event log contains a time stamp for each event and

this information can be used to extract additional causality information. In

addition, a typical log also contains information about the type of event, e.g., a

start event (a person selecting an activity from a worklist), a complete event

(the completion of a activity), a withdraw event (a scheduled activity is re-

moved), etc. Moreover, we are also interested in the relation between attri-

butes of the case and the actual route taken by a particular case or allocation

of work to workers. For example, when handling traffic violations: Is the

make of a car relevant for the routing of the corresponding traffic violation?

(e.g., People driving a Ferrari always pay their fines in time.) Another example

directly related to SNA would be to see whether the sociograms for different

types of cases (e.g., private and corporate customers) differ.

The presence of timing information and information on cases/activities

allows for more advanced forms of process mining, e.g., methods trying to

explain the performance indicators like flow times in term of the attributes/

performers of cases. Another interesting application of process mining is

A

B

C

DE

Figure 2. A process model based on the event log shown in Table I discovered by the

a-algorithm.
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fraud detection, i.e., detecting suspicions patterns that may indicate security

violations (cf. four eyes principle (Aalst and Hee, 2002)).

2.3. COMPLETENESS AND NOISE

For this simple example treated so far (i.e., Table I), it is quite easy to gen-

erate the process model shown in Figure 2 or the sociogram shown in

Figure 1. For more realistic situations there are however a number of com-

plicating factors:

– Completeness. For larger workflow models and models exhibiting alter-

native and parallel routing, the workflow log will typically not contain

all possible routes. Consider 10 activities which can be executed in par-

allel. The total number of interleavings is 10! = 3628800. It is not real-

istic that each interleaving is present in a log. Moreover, certain paths

through the process model may have a low probability and therefore

remain undetected. Similar remarks hold for the organizational model

and social network. For example, a person has a role but just by coinci-

dence did not execute some or all activities corresponding to that role.

Another example is that two individuals work together frequently but

during the data collection period one of them was on a sabbatical

leave. As a result the log is not complete in the sense that it captures

possible and/or typical behavior.

– Noise. Parts of the log may be incorrect, incomplete, or refer to excep-

tions. Events can be logged incorrectly because of human or technical

errors. Events can be missing in the log if some of the activities are

manual or handled by another system/organizational unit. Events can

also refer to rare or undesired events. Consider for example the work-

flow in a hospital. If due to time pressure the order of two events (e.g.,

make X-ray and remove drain) is reversed, this does not imply that this

would be part of the regular medical protocol and should be supported

by the hospital’s workflow system. Also two causally unrelated events

(e.g., take blood sample and death of patient) may happen next to each

other without implying a causal relation (i.e., taking a sample did not

result in the death of the patient; it was sheer coincidence). Clearly,

exceptions which are recorded only once should not automatically be-

come part of the regular workflow.

2.4. LEGAL ISSUES AND ETHICAL ISSUES

To conclude this section, we point out legal issues relevant when mining event

logs. Clearly, event logs can be used to systematically measure the perfor-

mance of employees. The legislation with respect to issues such as privacy and

protection of personal data differs from country to country. For example,
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Dutch companies are bound by the Personal Data Protection Act (Wet

Bescherming Persoonsgegevens) which is based on a directive from the

European Union. The practical implications of this for the Dutch situation

are described in (CBP n.d.; Hulsman and Ippel, 1994; Sauerwein and

Linnemann, 2001). Event logs are not restricted by these laws as long as the

information in the log cannot be traced back to individuals. If information in

the log can be traced back to a specific employee, it is important that the

employee is aware of the fact that her/his activities are logged and the fact that

this logging is used to monitor her/his performance. Note that in a log we can

deliberately abstract from information about the workers executing activities

and still mine the process, organizational, and social structures (simply hide

identities).3 Therefore, it is possible to avoid collecting information on the

productivity of individual workers and legislation such as the Personal Data

Protection Act does not apply. Nevertheless, the logs of most workflow sys-

tems contain information about individual workers, and therefore, this issue

should be considered carefully. Moreover, to use social network analysis as an

operational tool to improve work processes, employees should approve and it

is vital not to misuse the information gathered.

3. Mining organizational relations

In the previous section, we provided an overview of process mining. In this

section, we focus on the main topic of this paper: mining organizational

relations as described in Section 2.1. The goal is to generate a sociogram that

can be used as input for standard software in the SNA (Social Network

Analysis) domain.

The motivation for doing this is twofold. First of all, existing systems

record information about human activity. This information can be structured

in the form of a sociogram. Second, there is a wide variety of mature tech-

niques and tools to analyze such sociograms. Therefore, it is both interesting

and feasible to use this as a starting point for investigating the social context

of work processes. A better understanding of this social context may reveal a

mis-alignment between the information system and its users and may provide

insights that can be used to increase the efficiency and effectively of processes

and organizations.

In this section, we first introduce the fundamentals of SNA and then focus

on the question how to derive sociograms from event logs.

3.1. SOCIAL NETWORK ANALYSIS

Applications of SNA range from the analysis of small social networks to

large networks. For example, the tool InFlow (http://www.orgnet.com) has

been used to analyze terrorist network surrounding the September 11th 2001
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events. However, such tools could also be used to analyze the social network

in a classroom. In literature, researchers distinguish between sociocentric

(whole) and egocentric (personal) approaches. Sociocentric approaches con-

sider interactions within a defined group and consider the group as a whole.

Egocentric approaches consider the network of an individual, e.g., relations

among the friends of a given person. From a mathematical point of view both

approaches are quite similar. In both cases the starting point for analysis is a

graph where nodes represent people and the arcs/edges represent relations.

Although this information can also be represented as a matrix, we use the

graph notation. The graph can be undirected or directed, e.g., A may like B

but not vice versa. Moreover, the relations may be binary (they are there or

not) or weighted (e.g., ‘‘+’’ or ‘‘)’’, or a real number). The weight is used to

qualify the relation. The resulting graph is named a sociogram (Scott, 1992;

Wasserman and Faust, 1994). Note that Figure 1 shows an example of

sociogram with directed links which are not weighted.

In a mathematical sense a sociogram is a graph (P, R) where P is the set of

individuals (in the context of process mining referred to as performers) and

R � P� P (Scott, 1992; Wasserman and Faust, 1994). If the graph is undi-

rected, R is symmetric. If the graph is weighted, there is an additional function

W assigning a value to all elements ofR. When looking at the graph as a whole

there are notions like density, i.e., the number of elements in R divided by the

maximal number of elements. For example the density of the graph shown in

Figure 1 is 8/(6 * 6)=0.22. Another metric based on weighted graphs is the

maximal geodesic distance in a graph. The geodesic distance of two nodes is

the distance of the shortest path in the graph based on R and W.

When looking at one specific individual (i.e., a node in the graph), many

notions can be defined (Scott, 1992; Wasserman and Faust, 1994). If all other

individuals are in short distance to a given node and all geodesic paths (i.e.,

shorted path in the graph) visit this node, clearly the node is very central (like a

spider in the web). There are different metrics for this intuitive notion of

centrality. The Bavelas–Leavitt index of centrality is a well-known example

that is based on the geodesic paths in the graph (Bavelas, 1948). Let i be an

individual (i.e., i2P) and Dj,k the geodesic distance from an individual j

to an individual k. The Bavelas–Leavitt index of centrality is defined as

BLðiÞ ¼ ð
P

j;k Dj;kÞ=ð
P

j;k Dj;i þDi;kÞ. Note that the index divides the sum of

all geodesic distances by the sum of all geodesic distances from and to a given

resource. Other related metrics are closeness (1 divided by the sum of all

geodesic distances to a given resource) and betweenness (a ratio based on the

number of geodesic paths visiting a given node) (Freeman, 1977; Freeman,

1979; Burt and Minor, 1983; Scott, 1992; Wasserman and Faust, 1994). Other

notions include the emission of a resource (i.e.,
P

j Wi, j), the reception of a

resource (i.e.,
P

j Wj,i), and the determination degree (i.e.,
P

j Wj,i ) Wi, j)

(Burt and Minor, 1983; Scott, 1992; Wasserman and Faust, 1994). Another
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interesting metric is the sociometric status which is determined by the sum of

input and output relations, i.e.,
P

jDj,i+Di, j. All metrics can be normalized by

taking the size of the social network into account (e.g., divide by the number

of resources). Using these metrics and a visual representation of the network

one can analyze various aspects of the social structure of an organization. For

example, one can search for densely connected clusters of resources and

structural holes (i.e., areas with few connections), cf. (Burt and Minor, 1983;

Scott, 1992; Wasserman and Faust, 1994).

Let us apply some of these notions to the sociogram shown in Figure 1

where the arcs indicate (unweighted) frequencies. The sociometric status of

Clare is 3 (if we include self-links, otherwise 1), the sociometric status of Pete

is 2, the emission of John is 2, the emission of Pete is 0, the reception of Pete

is 2, the reception of Sue is 1, the determination degree of Mike is 0, etc. The

Bavelas–Leavitt index of centrality of John is 4.33 while the same index for

Sue is 3.25. The numbers are unweighted and in most cases these are made

relative to allow for easy comparison. Tools like AGNA, Egonet, InFlow,

KliqueFinder, MetaSight, NetForm, NetMiner, NetVis, StOCNET, UCI-

NET, and Visone are just some of the many SNA tools available. For more

information on SNA we refer to (Burt and Minor, 1983; Bernard et al., 1990;

Scott, 1992; Wasserman and Faust, 1994).

3.2. DERIVING RELATIONS FROM EVENT LOGS

After showing the potential of SNA and the availability of techniques and

tools, the main question is: How to derive meaningful sociograms from event

logs? To address this question we identify different metrics. Each metric as-

signs a weight Wi, j to the relationship between individuals i and j. If Wi, j is

above a certain threshold s, it will be included in R (i.e., (i, j)2R if and only if

Wi, j > s for any i, j2P). This way we get a weighted graph (P, R, W) that

can be used by tools such as AGNA and NetMiner. In this paper, we will

focus on four types of metrics that can be derived from event logs: (1) metrics

based on (possible) causality, (2) metrics based on joint cases, (3) metrics

based on joint activities, and (4) metrics based on special event types.

Metrics based on (possible) causalitymonitor for individual cases how work

moves among performers. One of the examples of such a metric is handover of

work. Within a case (i.e., process instance) there is a handover of work from

individual i to individual j if there are two subsequent activities where the first

is completed by i and the second by j. This notion can be refined in various

ways. For example, knowledge of the process structure can be used to detect

whether there is really a causal dependency between both activities. It is also

possible to not only consider direct succession but also indirect succession

using a ‘‘causality fall factor’’ b, i.e., if there are three activities in-between an

activity completed by i and an activity completed by j, the causality fall factor
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is b3. A related metric is subcontracting where the main idea is to count the

number of times individual j executed an activity in-between two activities

executed by individual i. This may indicate that work was subcontracted

from i to j. Again all kinds of refinements are possible.

Metrics based on joint cases ignore causal dependencies but simply count

how frequently two individuals are performing activities for the same case. If

individuals work together on cases, they will have a stronger relation than

individuals rarely working together.

Metrics based on joint activities do not consider how individuals work to-

gether on shared cases but focus on the activities they perform. The

assumption here is that people doing similar things have stronger relations

than people doing completely different things. Each individual has a ‘‘profile’’

based on how frequent they conduct specific activities. There are many ways

to measure the ‘‘distance’’ between two profiles thus enabling many metrics.

Metrics based on special event types consider the type of event. Thus far we

assumed that events correspond to the execution of activities. However, there

are also events like reassigning an activity from one individual to another. For

example, if i frequently delegates work to j but not vice versa it is likely that i is

in a hierarchical relation with j. From an SNA point of view these observa-

tions are particularly interesting since they represent explicit power relations.

The sociogram shown in Figure 1 is based on the causality metric hand-

over of work. In the next section, we will define the metrics in more detail.

4. Metrics

In this section, we define the metrics we have developed to establish rela-

tionships between individuals from event logs. We address all four types

introduced in Section 3.2. Recall that each metric will assign a weight Wi, j to

the relationship between individuals i and j. Before we define the various

metrics in detail, we introduce a convenient notation for event logs.

Definition 4.1 (Event log). Let A be a set of activities (i.e., atomic workflow/

process objects, also referred to as tasks) and P a set of performers (i.e.,

resources, individuals, or workers). E=A · P is the set of (possible) events,

i.e., combinations of an activity and a performer (e.g., (a, p) denotes the

execution of activity a by performer p). C=E* is the set of possible event

sequences (traces describing a case). L 2 BðCÞ is an event log. Note that BðCÞ
is the set of all bags (multi-sets) over C.

Note that this definition of an event slightly differs from the informal

notions used before. First of all, we abstract from additional information

such as time stamps, data, etc. Secondly, we do not consider the ordering of

events corresponding to different cases. For convenience, we define two

operations on events: pa(e)=a and pp(e)=p for some event e=(a, p).
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4.1. METRICS BASED ON (POSSIBLE) CAUSALITY

Metrics based on causality take into account both handover of work and

subcontracting. The basic idea is that performers are related if there is a

causal relation through the passing of a case from one performer to another.

For both situations, three kinds of refinements are applied. First of all, one

can differentiate with respect to the degree of causality, e.g., the length of

handover. It means that we can consider not only direct succession but also

indirect succession. Second, we can ignore multiple transfers within one in-

stance or not. Third, we can consider arbitrary transfers of work or only

consider those where there is a causal dependency (for the latter we need to

know or be able to derive the process model). Based on these refinements, we

derive 23=8 variants for both the handover of work and subcontracting

metrics. These variants are all based on the same event log. Before defining

the metrics, some of the basic notions that can be applied to a single case

c=(c0, c1, . . .) are specified.

Definition 4.2. (.; .) Let L be a log. Assume that �! denotes some causality

relation derived from the process model. For a1, a22 A, p1, p22P, c=(c0,

c1,. . .)2L, and n 2 N:

� p1 .
n
c p2 ¼ 90�i<jcj�nppðciÞ ¼ p1 ^ ppðciþnÞ ¼ p2

� jp1 .
n
c p2j ¼

X

0�i<jcj�n

1 if ppðciÞ ¼ p1 ^ ppðciþnÞ ¼ p2

0 otherwise

�

� p1 .
n
c p2 ¼ 90�i<jcj�nppðciÞ ¼ p1 ^ ppðciþnÞ ¼ p2 ^ paðciÞ ! paðciþnÞ

� jp1 .
n
c p2j ¼

X

0�i<jcj�n

1 if ppðciÞ ¼ p1 ^ ppðciþnÞ ¼ p2^ paðciÞ ! paðciþnÞ

0 otherwise

�

p1 .
n
c p2 denotes the function which returns true if within the context of case c

performers p1 and p2 both executed some activity such that the distance

between these two activities is n. For example, for case 1 shown in Table I,

John .1c Mike equals 1 (i.e., true) and John .3c Pete equals 1 (i.e., true). In this

definition, if the value of n equals 1, it refers to direct succession. If n is

greater than 1, it refers to indirect succession. However, it ignores both

multiple transfers within one instance and causal dependencies. jp1 .
n
c p2j

denotes the function which returns the number of times p1 .
n
c p2 in the case c.

In other words, it considers multiple transfers within one instance. p1 .
n
c p2

and jp1 .
n
c p2j are similar to p1 .

n
c p2 and jp1 .

n
c p2j but in addition they take

into account whether there is a real causal dependency. For example, con-

sider case 1 shown in Table I. The order of events is: A (John), B (Mike), C

(John), and D (Pete). If we calculate the relationships among activity B, C,

and D, Mike .1c John equals 1 and Mike .1c Pete equals 0. However, Mike .1c
John equals 0, i.e., although an activity conducted by Mike is followed by an
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activity conducted by John there is not a causal dependency between B and C

because both activities are in parallel. However, there is causal dependency

between activity B and D (see Figure 2) and, therefore, Mike .2c Pete equals
1. The information on causality can be added if the process model is known.

If necessary, this information can also be derived from the log by using for

example the a-algorithm (Aalst et al., 2004).

Using such relations, we define handover of work metrics. Based on three

kinds of refinements mentioned before, eight variants are derived as follows.

Definition 4.3 (Handover of work metrics). Let L be a log. For p1, p22P and

some b (0 < b < 1):

� p1 .L p2 ¼
X

c2L

jp1 .
1
c p2j

 !

=
X

c2L

jcj � 1

 !

� p1 _.L p2 ¼
X

c2L^p1 .1c p2

1

0

@

1

A=jLj

� p1 .
b
L p2 ¼

X

c2L

X

1�n<jcj

bn�1jp1 .
n
c p2j

0

@

1

A=
X

c2L

X

1�n<jcj

bn�1ðjcj � nÞ

0

@

1

A

� p1 _.
b
L p2 ¼

X

c2L

X

1�n<jcj^p1 .nc p2

bn�1

0

@

1

A=
X

c2L

X

1�n<jcj

bn�1

0

@

1

A

� p1 .L p2 ¼
X

c2L

jp1 .
1
c p2j

 !

=
X

c2L

jcj � 1

 !

� p1 _.L p2 ¼
X

c2L^p1 .1c p2

1

0

@

1

A=jLj

� p1 .
b
L p2 ¼

X

c2L

X

1�n<jcj

bn�1jp1 .
n
c p2j

0

@

1

A=
X

c2L

X

1�n<jcj

bn�1ðjcj � nÞ

0

@

1

A

� p1 _.
b
L p2 ¼

X

c2L

X

1�n<jcj^p1 .nc p2

bn�1

0

@

1

A=
X

c2L

X

1�n<jcj

bn�1

0

@

1

A

p1 .L p2 means dividing the total number of direct successions from p1 to p2 in

a process log by the maximum number of possible direct successions in the

log. p1 _.L p2 ignores multiple transfers within one instance (i.e., case). For

example, in Table I, John .L Mike equals 2/14 and John _.L Mike equals 2/5.

Note that metric .L defines a weight function W, i.e., p1 .L p2 ¼ Wp1;p2 is the

weight of the link from p1 to p2 in the corresponding sociogram. As indicated

before, a threshold may be used to remove links from the sociogram.

p1 .
b
L p2 and p1 _.bL p2 deal with indirect succession by introducing a ‘‘cau-

sality fall factor’’ b in this notation. If within the context of a case there are n
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events in-between two performers, the causality fall factor is bn: p1 .bL p2
considers all possible successions, while p1 _.bL p2 ignores multiple transfers

within one case. For example, in Table II, if b equals 0.5, then John .L Pete

equals 2.5/19.5 and John _.L Pete equals 2.5/8.5. If we use a b close to 1, the

effect of the distance between performers decreased. For example, suppose

that only case 1 exists in Table I, we calculate the handover of metrics from

John in Activity A to Mike, John in Activity B, and Pete, according to

various values of b. Table II shows the results. If the value b increases in

value, the variance of resulting values decreases.

The remaining four metrics p1 .L p2; p1 _.L p2; p1 .
b
L p2, and p1 _.

b
L p2 are

similar to the previous four kinds of metrics, but take into account real causal

dependencies. For example, p1 .L p2 means that the total number of direct

successions from p1 to p2 in a log is divided by the maximum number of

possible direct successions in the log when p1 and p2 are causally related.

Note that each of the eighth metrics defines a different weight functionW and

implicitly another sociogram.

From above definitions, we derive general formulations of the metrics. The

eight metrics mentioned can be merged into the following four metrics.

Definition 4.4 (General forms of handover of work metrics). Let L be a log.

For p1, p22P, some b (0 < b £ 1) and k 2 N.

�p1.
b;k
L p2¼

X

c2L

X

1�n�minðjcj�1;kÞ

bn�1jp1.
n
c p2j

0

@

1

A

,

X

c2L

X

1�n�minðjcj�1;kÞ

bn�1ðjcj�nÞ

0

@

1

A

�p1 _.
b;k
L p2¼

X

c2L

X

1�n�minðjcj�1;kÞ^p1.ncp2

bn�1

0

@

1

A

,

X

c2L

X

1�n�minðjcj�1;kÞ

bn�1

0

@

1

A

�p1.
b;k
L p2¼

X

c2L

X

1�n�minðjcj�1;kÞ

bn�1jp1.
n
c p2j

0

@

1

A

,

X

c2L

X

1�n�minðjcj�1;kÞ

bn�1ðjcj�nÞ

0

@

1

A

�p1 _.
b;k
L p2¼

X

c2L

X

1�n�minðjcj�1;kÞ^p1.ncp2

bn�1

0

@

1

A

,

X

c2L

X

1�n�minðjcj�1;kÞ

bn�1

0

@

1

A

Table II. Handover of work metrics according to the causality fall factor b

Beta John .bL Mike John .bL John John .bL pete

0.1 0.3116 (1/3.21) 0.0312 (0.1/3.21) 0.0031 (0.01/3.21)

0.5 0.2352 (1/4.25) 0.1176 (0.5/4.25) 0.0588 (0.25/4.25)

0.9 0.1783 (1/5.61) 0.1604 (0.9/5.61) 0.1444 (0.81/5.61)
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In these alternative formulations, we introduce a ‘‘calculation depth factor’’

k. When we calculate metrics, k specifies maximum degree of causality. For

example, if k equals 3, it considers the case of direct succession, one event in

between two performers, and two events in-between two performers. Note

that if b=1, k=1, then p1 .1;1L p2 ¼ p1 .L p2, and if k > max(|c|), then

p1 .
b;k
L p2 ¼ p1 .

b
L p2. This rule is also applied to the other three metrics.

Further, when we calculate the metrics, a suitable value for k is important for

the efficiency of calculation. Logs are typically very large. Therefore con-

sidering all possible successions may be inefficient.

After defining metrics for handover of work we now consider another class

of metrics based on (possible) causality: subcontracting metrics. In the case of

subcontracting, the three refinements mentioned before can also be applied.

However the concept of direct and indirect succession is changed. Direct

succession means there is only one activity in-between two activities executed

by one performer. While indirect succession means, there are multiple

activities in-between two activities executed by one performer. We also

introduce causality fall factor b for indirect succession. For example, assume

that there are four activities. Both the first and the fourth activity are exe-

cuted by a performer i, while the second and third activity are executed by

performer j and k respectively. In this situation, we can derive two relations

which are from a performer i to a performer j and from a performer i to a

performer k. Again we use a causality fall factor b. The second and third

refinements are the same as for handover of work. Before defining metrics,

the basic notions applied to a single case c=(c0, c1, . . .) are specified.

Definition 4.5. (�; �) Let L be a log. Assume that fi denotes some cau-

sality relation. In the context of L and fi , we define a number of relations.

For a1; a2 2 A; p1; p2 2 P; c ¼ ðc0; c1; . . .Þ 2 L; jcj > 2; n 2 N, and n > 1:

�p1�n
c p2 ¼ 90�i<j<iþn<jcjppðciÞ ¼ p1 ^ ppðcjÞ ¼ p2 ^ ppðciþnÞ ¼ p1

�jp1 �n
c p2j ¼

X

0� i< jcj�n

X

i< j< iþ n

1 if ppðciÞ ¼ p1 ^ ppðcjÞ ¼ p2 ^ ppðciþnÞ ¼ p1
0 otherwise

�

�p1�n
c p2 ¼ 90< j< iþn< jcjppðciÞ ¼ p1 ^ppðcjÞ ¼ p2 ^ppðciþnÞ ¼ p1 ^paðciÞ! paðcjÞ! paðciþnÞ

�jp1 �n
c p2j ¼

X

0�i<jcj�n

X

i<j<iþn

1 if ppðciÞ ¼ p1 ^ ppðcjÞ ¼ p2 ^ ppðciþnÞ ¼ p1
^ paðciÞ ! paðcjÞ ! paðciþnÞ

0 otherwise

8

<

:

p1�n
c p2 denotes the function which returns true if performer p2 executed an

activity in-between two activities executed by performer p1 and distance be-

tween these two activities executed by performer p1 is n. For example, for

case 1 shown in Table I, John �2
c Mike equals 1. However, it ignores both
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multiple transfers within one instance and causal dependencies. |p1 � c
n p2|

denotes the function which returns the number of times p1 �c
n p2 in the case

c. In other words, it considers multiple transfers within one instance. p1�n
c p2

and jp1�n
c p2j are similar to p1 �c

n p2 and |p1�c
n p2| but in addition they take

into account whether there is a real causal dependency. For example, con-

sider case 1 shown in Table I. John �n
c Mike equals 0, because activity B and

C do not have a causal dependency.

Using such relations, we define subcontracting metrics. Again eight

variants are identified.

Definition 4.6 (In-between metrics). Let L be a log. For p1, p22P, c=(c0,

c1,. . .)2L, |c| > 2, and some b (0 < b < 1):

� p1 �L p2 ¼

�

X

c2L

jp1 �2
c p2j

��

X

c2L

ðjcj � 2Þ

�

� p1 _�L p2 ¼

�

X

c2L^p1 �2
c p2

1

�

=jLj

� p1 �b
L p2 ¼

�

P

c2L

P

2�n<jcj

bn�2jp1�n
c p2j

���

P

c2L

P

2�n<jcj

bn�2ðjcj � nÞðn� 1Þ

�

� p1 _�b
L p2 ¼

�

X

c2L

X

2�n<jcj^p1 �n
c p2

bn�2

���

X

c2L

X

2�n<jcj

bn�2

�

� p1 �L p2 ¼

�

X

c2L

jp1 �2
c p2j

���

X

c2L

ðjcj � 2Þ

�

� p1 _�L p2 ¼

�

X

c2L^r1 �2
c p2

1

�

=jLj

� p1 �b
L p2 ¼

�

P

c2L

P

2�n<jcj

bn�2jp1�n
c p2j

���

P

c2L

P

2�n<jcj

bn�2ðjcj � nÞðn� 1Þ

�

� p1 _�b
L p2 ¼

�

X

c2L

X

2�n<jcj^p1 �n
c p2

bn�2

���

X

c2L

X

2�n<jcj

bn�2

�

p1�L p2means dividing the total number of direct subcontracting occurrences

between p1 and p2 in a process log by the maximum number of possible direct

subcontracting occurrences in the log. p1 _�L p2 ignores multiple subcon-

tracting occurrences within one instance (i.e., case). For example, in Table I,

John�L Mike equals 2/9 and John _�L Mike equals 2/5. p1 �L
b p2 and p1 _�b

L p2
deal with the situation where the distance between these two activities exe-

cuted by performer p1 is greater than 2. Again we introduce a ‘‘causality fall

factor’’ b in a fashion similar to the handover of work metrics. If within the

context of a case there are n events in-between two activities executed by the

same performer, the causality fall factor is bn. p1 �b
L p2 considers all possible

subcontracting occurrences, while p1 _�b
L p2 ignores multiple subcontracting

within one case. For example, in Table II, if b equals 0.5, then John �L Mike

equals 2/13 and John _.L Mike equals 2/7. Again p1�L p2; p1
_�L p2; p1�b

L p2,

and p1 _�b

L p2 are similar but take into account real causal dependencies. For
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example, p1�L p2 means that the total number of direct subcontracting from

p1 to p2 in a process log is divided by the maximum number of possible direct

subcontracting in the log when p1 and p2 are causally related.

As before we can derive more general formulations for the metrics. The

eight metrics mentioned above can be merged into four metrics as shown in

the following definition.

Definition 4.7 (General forms of in-between metrics). Let L be a log. For p1,

p22P, some b (0 < b £ 1) and k 2 Nðk > 1Þ

�p1�b;k
L p2¼

�

P

c2L

P

2�n�minðjcj�1;kÞ

bn�2jp1�n
cp2j

�

=

�

P

c2L

P

2�n�minðjcj�1;kÞ

bn�2ðjcj�nÞðn�1Þ

�

�p1 _�b;k
L p2¼

�

P

c2L

P

2�n�minðjcj�1;kÞ^p1�n
c p2

bn�2

�

=

�

P

c2L

P

2�n�minðjcj�1;kÞ

bn�2

�

�p1�b;k
L p2¼

�

P

c2L

P

2�n�minðjcj�1;kÞ

bn�2jp1�n
cp2j

�

=

�

P

c2L

P

2�n�minðjcj�1;kÞ

bn�2ðjcj�nÞðn�1Þ

�

�p1 _�
b;k

L p2¼

�

P

c2L

P

2�n�minðjcj�1;kÞ^p1�n
cp2

bn�2

�

=

�

P

c2L

P

2�n�minðjcj�1;kÞ

bn�2

�

Again we also introduce a ‘‘calculation depth factor’’ k. When calculating the

metrics, k specifies maximum distance between two activities executed by one

performer. For example, if k equals 3, it considers the case of one activity in

between two activities executed by one performer and two activities in be-

tween two activities executed by one performer. Note that if b=1, k=2, then

p1 �1,2
L p2=p1 �L p2, and if k > max(|c|), then p1 �b,k

L p2=p1 �b
L p2.

4.2. METRICS BASED ON JOINT CASES

For this type of metrics we ignore causal dependencies and simply count how

often two individuals are performing activities for the same case.

Definition 4.8 (Working together metrics). Let L be a log. For

p1; p2 2 P : p1 fflL p2 ¼
P

c2L p1 fflc p2=
P

c2L gðc; p1Þ if
P

c2L g(c, p1) „ 0,

otherwise p1 fflL p2 ¼ 0, where for c ¼ ðc0; c1; . . .Þ 2 L : p1 fflc p2 ¼ 1 if

90�i; j<jcj^i6¼jppðciÞ ¼ p1 ^ ppðcjÞ ¼ p2, otherwise p1 fflc p2 ¼ 0 : gðc; p1Þ ¼ 1 if

90�i<jcjppðciÞ ¼ p1, otherwise g(c, p1)=0

Note that in this definition we divide the number of joint cases by the

number of cases in which p1 appeared. It is important to use a relative

notation. For example, suppose that p1 participates in three cases, p2 partic-

ipates in six cases, and they work together three times. In this situation, p1
always work together with p2, but p2 does not. Thus, the value for p1 fflL p2

wil m. p. van der aalst et al.566



has to be larger than the value for p2 fflL p1. Let us apply this metric to analyze

the relationship between John and Pete based in the log shown in Table I. In

the log, John appeared in two cases, Pete in four cases, and they work together

on two cases. Thus, John fflL Pete = 2/2 and Pete fflL John = 2/4.

Moreover, alternative metrics can be composed by taking the distance

between activities into account, e.g., use variants like ðp1B
b
L p2 þ p2 B

b
L p1Þ=2

or ðp1 _B
b
L p2 þ p2 _B

b
L p1Þ=2.

4.3. METRICS BASED ON JOINT ACTIVITIES

To calculate the metrics based on joint activities, first we make a ‘‘profile’’

based on how frequent individuals conduct specific activities. In this paper,

we use a performer by activity matrix to represent these profiles. This matrix

simply records how frequent each performer executes specific activities.

Definition 4.9. (n) Let L be a log. For p12P, a12A, and c=(c0, c1,. . .)2L:

�p14ca1 ¼
X

0�i<jcj

1 if paðciÞ ¼ a1 ^ ppðciÞ ¼ p1

0 otherwise

�

�p14La1 ¼
X

c2L

p14ca1

Note that n defines a matrix with rows P and columns A. Table III shows

the performer by activity matrix derived from Table I.

After creating the matrix, we measure the distance between two performers

by comparing the corresponding row vectors. A simple distance measure is

Minkowski distance which can be seen as a generalization of the Euclidean

distance. But the Minkowski distance only gives good results if performers

execute comparable volumes of work. Therefore, we also use the Hamming

distance which does not consider the absolute frequency but only whether it is

0 or not. Another metric is Pearson’s correlation coefficient which is fre-

quently used to find the relationship among cases.

Table III. The performer by activity matrix

Performer Activity A Activity B Activity C Activity D Activity E

John 2 1 1 0 0

Sue 3 1 1 0 0

Mike 0 1 1 0 0

Carol 0 1 1 0 0

Pete 0 0 0 4 0

Clare 0 0 0 1 1
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Definition 4.10. ð4MD;n
L ;4HD

L ;4PC
L Þ Let L be a log and nL be a performer

by activity matrix. For p1, p22P, n2 {1,2,3,. . .}:

� p14
MD;n
L p2 ¼

�

X

a2A

jðp14LaÞ � ðp24LaÞj
n

�1=n

� p14
HD
L p2 ¼

�

X

a2A

dðp14La; p24LaÞ

�

=jAj

where dðx; yÞ ¼
0 if ðx > 0 ^ y > 0Þ _ ðx ¼ y ¼ 0Þ

1 otherwise

�

� p14
PC
L p2 ¼

P

a2Aðððp14LaÞ � �XÞððp24LaÞ � �YÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

a2Aððp14LaÞ � �XÞ
P

a2Aððp24LaÞ � �YÞ
q

where �X ¼
X

a2A

ðp14LaÞ=jAj; �Y ¼
X

a2A

ðp24LaÞ=jAj

The Minkowski distance n
MD,n
L has a parameter n: n = 1 is the Rectilinear

distance also referred to as Manhattan distance, n=2 is the Euclidean

distance, and for large values of n the metric approximates the Chebyshev

distance. The Hamming distance n
HD
L does not have a parameter but could

be extended with some threshold value. In the case of Pearson’s correlation

coefficient, the result ranges from +1 to )1. A correlation of +1 means that

there is a perfect positive linear relationship between variables. A correlation

of )1 means that there is a maximal negative linear relationship between

variables. In other words, if the distance between performers is small, the

correlation is closer to 1, if it is large, the correlation is closer to )1.

To illustrate the limitations of simple metrics like the Minkowski distance

we consider Table III. Clearly, from an intuitive point of view the distance

between Sue and Carol should be smaller than the distance between Carol

and Clare because Carol and Clare have no activities in common. The

Minkowski distance (n=1) between Sue and Carol equals 3 and the distance

between Carol and Clare equals 4. However, if Sue would have executed

activity B and activity C also three times, the distance between Sue and Carol

would be 7 and thus incorrectly suggest that Carol is closer to Clare than to

Sue. The Hamming distance is more robust and would indicate in both cases

that Carol is closer to Sue: Sue n
HD
L Carol equals 1/5 and Carol nHD

L Clare

equals 4/5. If we calculate the Pearson’s correlation coefficient, SuenPC
L Carol

equals 0.2182 and Carol n
PC
L Clare equals )0.6667. Hence, the result of

Pearson’s correlation leads to the same conclusion as the Hamming distance.

Note that if the volume of work varies significantly, the metrics are not

suitable. For example, it is difficult to compare the profile of a part-timeworker

with a full-time worker. Thus, in some cases we first apply the logk (X+1)

function on the values of the performer by activity matrix, i.e., use a loga-

rithmic scale fornL. Note that we need to add ‘‘+1’’ to avoid negative values.
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4.4. METRICS BASED ON SPECIAL EVENT TYPES

The types of metrics mentioned in previous subsections do not consider event

types. They more or less assume that all events correspond to the completion

of an activity. But events can contain various event types such as schedule,

assign, withdraw, reassign, start, suspend, resume, pi_abort, ate_ abort, com-

plete, autoskip, manualskip, and unknown.4 For example, schedule refers to the

enabling of a task for a specific case, assign refers to the allocation of such an

enabled task to a user, start refers to the actual start of a task, and complete

refers to the completion of a task. Event types such as withdraw, reassign,

suspend, resume, pi_abort, and ate_abort may refer to exceptions which are

interesting from the viewpoint of SNA. See (Aalst et al., 2003) for some more

information on the various event types.

In this subsection, we take into account metrics based on special event

types. In particular, we concentrate on the reassign event type. To define

metrics based on special event types, we suppose that log lines have an event

type. For convenience, we define an operation on events: pet(e) = event type

for some event e=(a, p). Note that Definition 4.1 could be extended to

capture event types such as used by commercial systems. In the next section

we define an XML format to capture this information.

Before defining metrics, the basic notations used for a single case

c=(c0,c1,. . .) are specified as follows.

Definition 4.11 ( follow;5). Let L be a log. For p1, p22P, c=(c0, c1,

. . .)2L, and some event type event type:

�followðc; i; jÞ ¼ paðciÞ ¼ paðcjÞ ^ 8i<k<jpaðckÞ 6¼ paðciÞ; for 0 � i < j < jcj

� p1 5
event type
c p2 ¼

9o�i<j<jcj followðc; i; jÞ ^ ppðciÞ ¼ p1^

petðciÞ ¼ event type ^ ppðcjÞ ¼ p2

� jp1 5
event type
c p2j ¼

X

0�i<jcj

1 if 9i<j<jcjfollowðc; i; jÞ ^ ppðciÞ ¼ p1

^petðciÞ ¼ event type ^ ppðcjÞ ¼ p2

0 otherwise

8

>

<

>

:

In a log, there may be several events that correspond to the same activity. If

the activity a is reassigned from a performer p1 to a performer p2, we can find

two events ci and cj such that ci=(a, p1), pet(ci)=�reassign�, cj =(a, p2), and

pet(cj) is some event type. Thus, we need follow to find a next event which is

related to ci. p1 5
event type
c p2 denotes the function which returns true if within

the context of the case c performers p1 and p2 both executed the same activity

and p1 was responsible for a specific type of event and p2 is the first performer

of some event for the same activity. jp1 5
event type
c p2j denotes the function

which returns the number of times p1 5
event type
c p2 in the case c. Using such

relations, we define reassignment metrics. Recall that reassign is a special

event type corresponding to the delegation from one performer to another.
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Definition 4.12 (Reassignment metrics). Let L be a log. For p1, p22P:

�p1 5
‘reassign’
L p2 ¼ ð

P

c2L

jp1 5
‘reassign’
c p2jÞ=ð

P

c2L

ðjcj � 1ÞÞ

�p1 _5‘reassign’
L p2 ¼ ð

P

c2L^p15
‘reassign’
c p2

1Þ=jLj

p1 5
‘reassign’
L p2 is obtained by dividing the total number of reassignments from

p1 to p2 in the event log by the maximum number of reassignments in the log.

For example, if there are 10 events in a log and John has reassigned an

activity to Mike once, John 5‘reassign’
L Mike equals 1/9. p1 _5‘reassign’p2 ignores

multiple reassignment within one instance.

In this section, we formalized the metrics introduced in Section 3.2. It is

important to note that each of the metrics is derived from some log L and the

result can be represented in terms of a weighted graph (P,R,W), where P is

the set of performers, R is the set of relations, and W is a function indicating

the weight of each relation (see Section 3.1). For example, the basic hand-

over of work metric .L defines R ¼ fðp1; p2Þ 2 P� Pjp1 .L p2 6¼ 0g

andWðp1; p2Þ ¼ p1 .L p2. For the Hamming distance R={(p1, p2)2P · P | p1

n
HD
L p2 „ 1} and W(p1, p2)=1 ) (p1 n

HD
L p2). For the Pearson’s correlation

coefficient R={(p1, p2)2P · P | p1 n
PC
L p2 ‡ a} (where a is some threshold

value between )1 and 1) and W(p1, p2)=(1+(p1 n
PC
L p2))/2. In other words,

given an event log L each metric results in a sociogram that can be analyzed

using existing SNA tools.

Staffware

InConcert

MQSeries

.

.

.

event log

(XML format)

event log manager

mining manager

GUI

AGNA

NetMiner

UCINET

.

.

.
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matrix translators

(product specific translators)
log translators

(product specific translators)

relationship

matrix

enterprise

information

systems
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log information

mining

policies
mining result

user

Figure 3. The architecture of MiSoN.
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5. MiSoN

This section introduces our toolMiSoN(MiningSocialNetworks).MiSoNhas

been developed to discover relationships between individuals from a range of

enterprise information systems including workflow management systems such

as Staffware, InConcert, and MQSeries, ERP systems, and CRM systems.

Based on the event logs extracted from these systems MiSoN constructs soci-

ograms that can be used as a starting point for SNA. The derived relationships

can be exported in a matrix format and used by most SNA tools. With such

tools, we can apply several techniques to analyze social networks, e.g., find

interaction patterns, evaluate the role of an individual in an organization, etc.

MiSoN has been developed using Java including XML-based libraries such

as JAXB and JDOM, and provides an easy-to-use graphical user interface.

Figure 3 shows the architecture of MiSoN. The mining starts from a tool-

independent XML format which includes information about processes, cases,

activities, event times, and performers. From enterprise information systems

recording event logs, we can export to this XML format.

Figure 4 shows the XML schema describing this format. It is an extension

of the DTD suggested in (Aalst et al., 2003). The schema has the Work-

flowLog element as a root element. It has Data, Source, and Process elements.

The Source element contains the information about software or system that

was used to record the log (e.g., Staffware). The Process element represents

the process where the process log belongs. Note that there may be multiple

Process elements in a log. Each Process element may hold multiple Process

Instance elements that correspond to cases. The AuditTrailEntry element

represents a log line, i.e., a single event. It contains WorkflowModelElement,

EventType, Timestamp, and Originator elements. For SNA, the Workflow-

ModelElement, EventType, and Originator elements are most important. The

WorkflowModelElement refers to the activity (or subprocess) the event cor-

responds to. The EventType specifies the type of the event, e.g., schedule (i.e.,

a task becomes enabled for a specific instance), assign (i.e., a task instance is

assigned to a user), start (the beginning of a task instance), complete (the

Figure 4. MiSoN workflow mining format (XML schema).
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completion of a task instance), and reassign (as discussed in Section 4.4). In

total, we identify 12 events. Last but not least the Originator element refers to

the performer. To make the format more expressive, we define the Data

element and other elements have it as a sub tags. If users want to specify more

information than the basic elements, they can record the additional infor-

mation using the Data element. Such information can be used for other types

of process mining such as performance analysis, process knowledge extrac-

tion, etc.

After reading an event log that conforms to the XML schema, MiSoN

provides functionalities for displaying user statistics and event log statistics.

Using the metrics defined in Section 4, MiSoN constructs relationships be-

tween individuals. When calculating the relationships, the user can select

suitable metrics and set relevant options. The result can be displayed using a

matrix representation and a graph representation, but it can also be exported

to SNA tools. Exported data contains the number of performers, names of

performers, and a relationship matrix.

To illustrate MiSoN we have used an event log as generated with Staff-

ware, which was converted to the XML format. For this log, we only con-

sider the ‘‘released by’’ event type to make sociograms. This event

corresponds to the complete event type in our XML format. We have tested

MiSoN with several metrics mentioned in the previous section. Figure 5

Figure 5. MiSoN screenshot showing a sociogram based on a Staffware log.
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shows a screenshot of MiSoN when displaying the mining result of handover

of work metrics.

MiSoN can export the mining result using the AGNA-translator (but also

other tools like UCINET and NetMiner). AGNA (cf. http://www.geoci-

ties.com/imbenta/agna/) is an SNA tool that allows for a wide variety of

sociometric analysis techniques. For example, AGNA supports various no-

tions of centrality including the Bavelas–Leavitt index described in Section

3.1. John and Sue have the highest Bavelas–Leavitt index (the value is 4.2),

while Clare has the smallest value (2.8). Figure 6 shows the analysis using the

tool AGNA. It also shows the network structure of result.

MiSoN can also export the mining result to other SNA tools like UCINET

(cf. http://www.analytictech.com) and NetMiner (cf. http://www.netmin-

er.com). In fact, in the case study described in the next section we will mainly

use NetMiner to analyze the social network.

Figure 6. Screenshot of AGNA when analyzing the input from MiSoN.
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6. Case study

6.1. CONTEXT

To demonstrate how our metrics can be applied to real workflow logs and

what kinds of analysis can be performed, we employed real workflow log

data and carried out a case study. The case study we describe here involved

one of the twelve provincial offices of the Dutch national public works

department, employing about 1000 civil servants. For reasons of confiden-

tiality, we cannot disclose the name of this specific office.

The office’s primary responsibility is the construction and maintenance of

the road and water infrastructure within its provincial borders. For this

purpose, it subcontracts various parties such as road construction companies,

cleaning companies, and environmental agencies. Also, the provincial office

purchases services and products to support its construction and maintenance

activities on the one hand (e.g., mechanical tools, fuel, and traffic signs) and

its administrative activities on the other (e.g., office supplies).

The process we dealt with concerns the handling of invoices, as received by

the provincial office in question. In general, the handling of an invoice in-

volves several validation steps and, if the invoice is approved, it is completed

by payment. On a yearly basis, the provincial office processes some 20,000

invoices from its various subcontractors and suppliers.

The provincial office has implemented its own proprietary workflow

management system to support the processing of invoices. This system re-

cords transaction information between activities. We extracted a process log

and analyzed it. Since the extracted data are also stored in a relational

database, we first developed a translator which converts the process log in the

database to an XML file using the format described in the previous section.

The process consists of 17 real activities, aside from logistic steps and splits.

The log data contains 4,988 cases. The number of total log lines (i.e., events)

is 33,603 and 43 employees participated in the process execution. The log

holds no information about reassignments. Hence, we cannot apply the

reassignment metrics presented in Section 4.4. However, all other metrics we

discussed in Section 4 have been applied in this case study.

6.2. METRICS APPLICATION

We applied our metrics to the log data and derived several social networks.

Moreover, by applying several SNA techniques, we tried to find the char-

acteristics of the social network.

Figure 7 shows a social network which was derived by applying the

handover of work metrics. The network represents how cases are transferred

among performers. As indicated in Section 4, there are three refinements

possible for the handover of work metrics. To generate this network, we take
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into account direct succession and multiple transfers in a case, but we ignore

the real process structure, i.e., we use the metric BL introduced in Definition

4.3. The network has 43 nodes and 406 links. The density of the network is

0.225 and it has no isolated nodes.

Figure 7. Social network based on the handover of work metric BL.

Table IV. Performers having high values for (1) betweenness, (2) in-closeness, (3) outclose-

ness, and (4) power when analyzing the social network shown in Figure 7

Ranking Name Betweenness Name In-closeness Name Out-closeness Name Power

1 user1 0.152 user1 0.792 user23 0.678 user4 4.102

2 user4 0.141 user4 0.792 user1 0.667 user1 2.424

3 user23 0.085 user16 0.75 user4 0.656 user30 1.964

4 user5 0.079 user23 0.689 user5 0.635 user17 1.957

5 user16 0.065 user2 0.667 user13 0.625 user7 1.774

6 user13 0.057 user15 0.618 user18 0.616 user8 1.394

7 user18 0.052 user5 0.609 user2 0.606 user2 1.347

8 user2 0.049 user7 0.592 user16 0.58 user23 1.098

9 user7 0.04 user13 0.568 user7 0.572 user16 1.058

10 user31 0.029 user18 0.568 user17 0.556 user18 0.581

DISCOVERING SOCIAL NETWORKS FROM EVENT LOGS 575



In order to find people who are located in the center of the network, we

calculate several centrality values such as betweenness, in and out closeness,

and power (Bonacich, 1987) of each node. Normally, the nodes which are the

most central have a powerful position in the network. Table IV shows the top

10 ranked performers among the people involved based on (1) betweenness

(i.e., the extent to which a node lies between all other pair of nodes on their

geodesic paths), (2) in-closeness (i.e., the inverse of the sum of distances from

all the other nodes to a given node, which is then normalized by multiplying

it by the number of nodes minus 1), (3) out-closeness (i.e., the normalized

inverse of the sum of distances from a node to all the other nodes), and (4)

power (i.e., Bonacich’s metric based on the principle that nodes connected to

Table V. Summary of arc weights for various values of b

Beta Sum Average Standard deviation Minimum value Maximum value

0.1 1.000025 0.000541 0.003269 0 0.086734

0.3 1.000091 0.000541 0.002895 0 0.074274

0.5 1.000001 0.000541 0.002631 0 0.065751

0.7 1.000011 0.000541 0.002522 0 0.063232

0.9 0.999979 0.000541 0.002586 0 0.067214

Figure 8. Social network based on subcontracting metric.
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powerful nodes are also powerful (Bonacich, 1987)). In this table, we find

that user 1 and user 4 have larger values than others in most measurements.5

When generating a social network related to the handover of metrics, we

can also consider indirect succession using a ‘‘causality fall factor’’ b. By

applying various values of b, we generate several social networks. Despite the

value of b, the derived networks have the same structure except the weight of

arcs. Table V shows the sum, average, standard deviation, minimum value,

and maximum value of the arc weights based on different values of b. If we

use a small b, the value of arcs between performers who have the relationship

Table VI. A list of people having a high degree of in-/out-closeness based on the subcon-

tracting network shown in Figure 8

Ranking Name In-closeness Name Out-closeness

1 user4 0.262 user4 0.262

2 user1 0.214 user1 0.214

3 user16 0.214 user7 0.167

4 user18 0.19 user13 0.143

5 user5 0.167 user5 0.167

6 user7 0.167 user16 0.214

7 user13 0.143 user18 0.19

8 user19 0.143 user14 0.095

9 user10 0.119 user23 0.119

10 user17 0.119 user27 0.119

Figure 9. Social network based on the working together metric (left) and the ego net-

work of user41 (right).
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of direct succession is larger than between others. However, if we use a large

value of b, these differences decrease.

To find subcontracting relationships between people, we apply in-between

metrics. Figure 8 shows the resulting social network. The network has 43

nodes and 146 links. The density of the network is 0.081 and eight nodes are

isolated from the network. In this network, the direction of arcs is important.

The start node of an arc represents a contractor, while the end node of an arc

represents a subcontractor. Table VI shows the ten people of highest in-

degree and out-degree of centrality (based on the in-closeness and out-

closeness calculated by NetMiner).

Figure 9 shows the social network derived by applying the working to-

gether metrics and the ego network (Mitchell, 1969) corresponding to user41.

In the ego network, the nodes represent the people working together with

user41 according to this metric. Note that user41 works together with user1,

user4, user23, user26, and user31. The average size of ego network of the

generated network is 24.698 and the standard deviation of this value is 9.709.

Figure 10. Social network derived from Pearson’s correlation coefficient (threshold

value 0.75).
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This means that the social network suggests that an employee on average

works with 24 people.

Applying the metrics based on joint activities, we calculate the distance

between people. Figure 10 shows the social network which is derived by

applying Pearson’s correlation coefficient. From the performer by task ma-

trix, we first apply log10(x+1), then calculate the distances between people.

We get 5 clusters and two isolated nodes. The nodes in the same cluster play

the same role. In this case, the bridge node can be interpreted as a person who

has multiple roles. In the network, user8, user28, user37, and user43 have

multiple roles.

Finally, we explore how cases are transferred among groups. To calculate

case transfers among groups, we combine the handover of work metrics with a

role model. In this case study, we use the results of correspondence analysis

(Clausen, 1998) as a role model of performers. (Of course, we can also use the

results of the metrics based on joint activities.) Correspondence analysis is

frequently used in biological science to analyze ecological systems based on

species scores for specific locations (Gauch, 1982). In this paper, we apply

correspondence analysis to find relationships between activities and per-

formers. We first make a performer by activity matrix from the workflow logs.

Then, by applying correspondence analysis to the matrix, we derive the

relationship between activities, between performers, and between activities

and performers. Figure 11 shows the graphical result of applying corre-

spondence analysis. In the figure, boxes represent activities and circles rep-

Figure 11. Graphical result of correspondence analysis.
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resents performers. Closely positioned nodes indicate a strong correspondence

from a work handover perspective between the respective users and/or tasks.

(Although the distance between user nodes and task nodes should not be

interpreted as an absolute measure.) From this figure, performers and activ-

ities are classified into five groups. Table VII shows the results. In the

remainder we will use these five groups as a role model.

Figure 12(a) shows the social network of handover of work metrics con-

sidering the role model given in Table VII. By putting the nodes in the same

group closely, we have reconstructed the original network. And by summing

Table VII. The result of correspondence analysis: users are clustered into five groups

Group Performers Activities

group1 user1, user2, user4, user16, user23, user30, user35 task2, task3, task15,

task21, task22

group2 user3, user24, user25, user40

group3 user5, user13, user32, user43 task8, task19

group4 user6, user8, user9,user12, user15, user22, user31,

user39, user41

task18

group5 user7, user10, user11, user14, user17, user18, user19,

user20, user21, user26, user27, user28, user29, user33,

user34, user36, user37, user38, user42

task5, task7, task11,

task13, task16,

task17, task20

Figure 12. Social network based on handover of work metric using the five groups

shown in Table VII.
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up the weight of arcs between groups we derive the aggregated network

shown in Figure 12(b).

Table VIII shows the information flow of the network according to the

role model. It is also derived by summing up the weight of arcs between

groups. For example, the value form group1 to group2 is calculated by adding

up the weights of the arcs from nodes in group1 to nodes in group2. Based on

Table VIII we can make some observations. First, the highest value (1.330) is

in the cell from group1 to group1. It means that the handover of work within

group1 happened most frequently. Second the values from group1 to group5

(0.895), from group4 to group1 (0.620), and from group5 to group4 (0.529)

have the highest values. It represents that more handover of work happened

between these groups.

The goal of this subsection is not to provide a comprehensive overview of

all the diagrams we developed or to provide very specific information about

the studied process or organization in question. Its main purpose is to

illustrate the various types of analysis possible. In the next section, we will

reflect on the relevance of the different types of analysis for the organization

in question.

6.3. ORGANIZATIONAL RELEVANCE

Prior to our analysis, the involved management did not express any specific

needs or questions about the invoice handling process. And yet, they indi-

cated that the handling of invoices is in the center of their attention. There

are two main reasons for this. First of all, it is the single most distributed

process under the responsibility of the public works department. For

example, if invoices are related to some particular public works project, its

project leader must personally certify that delivery has taken place before

payment may happen. Project leaders, however, may reside at any location

within the provincial borders (in contrast to the performers working at the

administrative head office). The distributed nature of the process increases

the probability of hand-over errors and work getting lost.

Table VIII. Information flow between groups

From To

group1 group2 group3 group4 group5 Sum

group1 1.330 0.058 0.002 0.002 0.895 2.287

group2 0.143 0.014 0.020 0.005 0.028 0.211

group3 0.014 0.005 0.002 0.104 0.030 0.154

group4 0.620 0.000 0.002 0.005 0.004 0.630

group5 0.132 0.135 0.134 0.526 0.617 1.545

Sum 2.239 0.212 0.160 0.642 1.574 4.827
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The second reason for the attention for the invoice process is the recent

Dutch law about penalty interests. Parties that send invoices to public

organizations and receive their rightful payment after more than 30 days are

entitled to a compensation proportional to the invoice amount. Due to the

current interest rate, this compensation exceeds commercial rates. Sluggish

settlement of invoices directly affects the public works department’s financial

position.

Both issues have contributed to the decision to introduce workflow tech-

nology to support the invoice handling process, as this is expected to increase

quality and decrease process lead time. Management expressed a general

interest in results from SNA to learn about process execution, behavior of the

involved parties, and potential opportunities for improvement.

After we applied our metrics to the log data and derived the social net-

works as shown, we presented the managers of the three most involved

departments our analysis results in a joint session. Roughly speaking, the

three departments are, respectively, responsible for the administrative, con-

tractual, and financial aspects of the invoice handling. The goal of this

meeting from a research perspective was threefold:

1. To validate our understanding of the process.

2. To generate feedback on our analyses.

3. To identify further analysis opportunities.

To determine whether we properly understood the process, we discussed

the process model of the invoice handling process and the involved parties for

each of the various steps. This led to no surprising new insights. We will

reflect on the other two aims of the meeting in more detail.

Feedback on analyses. After we explained the various SNA notions we

presented the results from our analyses as presented for a large part in

Section 6.2. We started with discussing the top 5 and bottom 5 of the lists of

performers as ordered on their scores on betweenness, in and out closeness,

and power in, respectively, the social networks of handover, subcontracting,

and working together metrics. Note that we used the lists that included the

real names of the actors to facilitate meaningful feedback.

From the responses, we learned that, typically, performers with high scores

(e.g. user1 and user4 in Table IV) work for the administrative department in

supportive functions. This confirms a general insight that highly connected

people often are assistants. Because the administrative department is

responsible for both the preparation and completion of the handling of each

invoice, its staff is involved in the handling of each case, giving them strong

ties with other performers. The managers indicated, however, that not all of

the people in these positions were present in the top of the lists, indicating

that having a supportive function is not sufficient in itself to become highly

connected.
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Performers with low scores could be categorized as follows. First of all,

project leaders were highly represented in the bottom of the lists (e.g. user9).

As stated before, they play an isolated role in the handling of invoices, being

solely responsible for certifying that goods have been delivered (and only if an

invoice is related to a project at all). Other performers with limited formal

verification responsibilities were identified as well (e.g. user22). The second

category of relatively unconnected performers could be traced back to aux-

iliary logins (e.g. user30), used by system administrators and management to

deal with exceptional circumstances. An example of an exceptional situation is

an invoice that is being withdrawn while its processing has already started.

The isolated ‘‘participation’’ of this category of users is therefore not very

surprising. It did, however, make the managers conscious of the visibility of

this type of irregular interference. One manager remarked: ‘‘So, auditors can

derive this type of information too’’. The third category turned out to be more

surprising, as it involved senior positions in the contractual and financial

departments (e.g. user41). At least nominally, they are expected to be actively

involved in the process. Their low position could indicate that a large amount

of work being executed with workflow technology is delegated to their juniors.

Also, one of these performers would retire in a couple of weeks.

After the discussion of the lists of performers, we presented the social

network indicating the distance between people (see Figure 10). The relations

between users were readily recognized by the involved managers. For

example, the subgraph of user1, user2, user4 and user23 concerned the group

of highly-connected assistants at the administrative office we encountered

earlier. Then, we took a closer look at the two isolated nodes. One of them –

rather characteristically – turned out to be the system administrator (user19).

The isolated position of the other node, user16, led to some excitement. At

first, the isolation of this performer was not understood, as she was con-

sidered to perform an explicit role in the contractual handling of invoices.

Then it occurred to one of the managers that the involved person was in-

cluded in another cluster under a different user name as well (user32). The

existence of such a situation was a complete surprise to the managers and

considered highly undesirable for compliancy reasons.

The final result we obtained feedback on, involved the correspondence

analysis, such as presented in Table VII and Figure 11. Managers readily

recognized group1, group3, and group5. At the same time, they indicated that

they did not differentiate themselves between most of the performers in

group2 and group4. This is in line with the observation that some performers

from these groups are closely positioned to each other in Figure 10. For

example, the positions of user25 from group2 and user31 from group4 nearly

coincide. And yet, the strong correspondence between group4 and task18

indicates that a degree of performer specialization has taken place with re-
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spect to this specific invoice check that had gone unnoticed with the con-

cerned managers.

Further analyses. Aside from the various surprising aspects of the invoice

handling process, the managers of the provincial office were most intrigued

by the subcontracting analysis. After some discussion, they expressed their

suspicion about three parts of the process where a similar yet undesirable

‘‘back-and-forth’’ behavior may take place. Specifically, they meant that a

performer (the contractor) routes a work package to another performer (the

subcontractor), who subsequently routes it back to the contractor or one of

the contractor’s close colleagues, because the subcontractor feels the invoice

is received in error. This, for example, takes place when an invoice related to

a project is sent for verification to the wrong project leader. Each occurrence

of this pattern is highly undesirable, as it slows down the processing of the

invoice without making any progress. From an organizational perspective, it

is just as unwelcome when the work package is routed back to the original

contractor as to a colleague with a similar organizational role.

Our initial analysis did not cover this more general kind of subcontracting

pattern, because it focused on the identity of the original contractor only (see

Definition 4.6) . To investigate the expressed suspicions we analyzed the

mining log in various ways, using other than SNA techniques as well.

Therefore, in the context of this paper, we will be brief about this additional

analysis. It turned out that in the handling of over 17% of all invoices, at

least once an undesired subcontracting takes place at either of the three

identified places in the process. The exact distribution is shown in Figure 13.

As can be seen, there are cases where 10 or more erroneous routings take

place.

0%

2%

4%

6%

8%

10%

12%

Percentage of

total invoices

1 2 3 4 5 6 7 8 9 >10

Number of undesired subcontracting occurences within the handling of a 

single invoice

Figure 13. The distribution of undesired generalized subcontracting within the han-

dling of invoices.
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As a result of the additional analysis we carried out and discussed again,

management of the provincial office re-enforced the existing procedure that

staff, when in doubt, should contact the intended next performer by phone

first. Especially in cases where hand-overs take place between performers at

the head and regional offices, management felt that people acted too timidly

with respect to this procedure.

7. Discussion

In this section, we demonstrated how our metrics can be applied to a real

workflow log of a Dutch organization. Based on the metrics defined in

Section 4, we derived various sociograms, some of which have been shown in

this paper. Using the sociograms we applied SNA techniques such as

betweenness, closeness, power, ego network, etc. We also showed the pos-

sibility of applying other analysis techniques such as correspondence analysis

to compare users based on their ‘‘profile’’.

Next we discussed the organizational relevance of our analyses. As we

indicated, many of our findings corresponded with existing insights of the

involved management, supporting the correctness of our analyses. At various

points, our analyses came as a surprise. These particularly concerned senior

performers who did not seem very connected, the clear visibility of the ac-

tions of irregular performers, and a degree of unnoticed performer special-

ization that had taken place. In addition, we found it interesting to observe

how our analysis results triggered the management to identify and define

additional questions. This, in our eyes, strongly supports the relevance and

viability of process mining in an organizational context, even though our

additional analyses extended beyond SNA.

As discussed in Section 2.4, ethical and legal issues play an important role

in the practical application of process mining in general and SNA analysis in

particular. One concern we certainly felt is that the validation and discussion

of our analysis results required us to disclose the identity of the involved

performers. Our tools can anonymize the sociograms without any problems

and we can also aggregate them at a group level. However, in our discussions

with the involved management, it was helpful to be able to refer to specific

people. We informed the management that it is illegal to perform actions

towards individuals based on the presented results. Because of the clear value

of this type of analysis, the managers expressed their intent to ask for the

consent of their employees for the use of future analyses. Note that the re-

enforced policy that resulted from our additional analysis was neither based

on information obtained on individual performers, nor did it affect any

individual more than others.
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8. Related work

Related work can be divided in two categories: process mining and SNA.

However, before discussing the directly related work in detail, we would like

to position this work in the broader Computer Supported Cooperative Work

(CSCW) domain. The work presented in this paper may contribute to the

ongoing discussions in the CSCW domain on ‘‘technology push’’ (i.e., ‘‘What

is possible?’’) versus ‘‘social pull’’ (i.e., ‘‘What is desirable from a sociological

point of view?’’). There exist many definitions of the term CSCW: some

emphasize the support of work processes while other emphasize the fact that

people work in groups (Ellis et al., 1991; Ellis, 2000). Within the CSCW

domain there has been a constant struggle between more technological-ori-

ented views and more sociological-oriented views. A nice illustration is the

so-called ‘‘Winograd- Suchman debate’’ in the early nineties (Winograd and

Flores, 1986; Suchman, 1994; Winograd, 1994; Malone, 1995). Winograd

and Flores advocated the use of a system called the ‘‘coordinator’’, a system

based on Speech Act theory (i.e., the language/action perspective) in-between

e-mail and workflow technology (Winograd and Flores, 1986; Winograd,

1994). People like Suchman and others argued that such systems are unde-

sirable as they ‘‘carry an agenda of discipline and control over an organi-

zation’s members’’ (Suchman, 1994). Clearly, process mining and discovering

social networks based on event logs add another dimension to this discussion.

We would like to emphasize that the goal of process mining is not to control

people. However, it can be used to monitor and analyze the behavior of

people and organizations. Clearly, such technology triggers ethical questions

as discussed in Section 2.4. Although it is important to balance between both

views, our approach can be seen as a ‘‘technology push’’ approach triggered

by the event logs present in contemporary information systems.

8.1. RELATED WORK ON PROCESS MINING

The idea of process mining is not new (Agrawal et al., 1998; Cook and Wolf,

1998; Aalst et al., 2003) but has been mainly aiming at the control-flow per-

spective. The idea of applying process mining in the context of workflow

management was first introduced in Agrawal et al. (1998). This work is based

on workflow graphs, which are inspired by workflow products such as IBM

MQSeries Workflow (formerly known as Flowmark). Cook and Wolf have

investigated similar issues in the context of software engineering processes. In

Cook and Wolf (1998) they describe three methods for process discovery: one

using neural networks, one using a purely algorithmic approach, and one

Markovian approach. Schimm (2000) has developed a mining tool suitable for

discovering hierarchically structured workflow processes. Herbst and Kara-

giannis also address the issue of process mining in the context of workflow
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management using an inductive approach (Herbst, 2000, 2001). They use

stochastic task graphs as an intermediate representation and generate a

workflow model described in the ADONIS modeling language. Most of the

approaches have problems dealing with parallelism and noise. Our work in

Aalst and Dongen (2002) and Aalst et al. (2004) is characterized by the focus

on workflow processes with concurrent behavior (rather than adding ad-hoc

mechanisms to capture parallelism). In Weijters and Aalst (2003) a heuristic

approach using rather simple metrics is used to construct so-called ‘‘depen-

dency/frequency tables’’ and ‘‘dependency/frequency graphs’’. These are then

used to tackle the problem of noise. The approaches described in Aalst and

Dongen (2002), Aalst et al. (2004) and Weijters and Aalst (2003) are based on

the a algorithm.

Process mining in a broader sense can be seen as a tool in the context of

Business Process Intelligence (BPI). In Grigori et al. (2001) and Sayal et al.

(2002), a BPI toolset on top of HP’s Process Manager is described. The BPI

toolset includes a so-called ‘‘BPI Process Mining Engine’’. However, this

engine does not provide any techniques as discussed before. Instead it uses

generic mining tools such as SAS Enterprise Miner for the generation of

decision trees relating attributes of cases to information about execution

paths (e.g., duration). In order to do workflow mining it is convenient to have

a so-called ‘‘process data warehouse’’ to store audit trails. Such a data

warehouse simplifies and speeds up the queries needed to derive causal

relations. In Mühlen and Rosemann (2000), Zur Muehlen describes the PISA

tool which can be used to extract performance metrics from workflow logs.

Similar diagnostics are provided by the ARIS Process Performance Manager

(PPM) (IDS Scheer, 2002). The latter tool is commercially available and

integrates some of our ideas. A customized version of PPM is the Staffware

Process Monitor (SPM) (Staffware, 2002) which is tailored towards mining

Staffware logs. Note that none of the latter tools is extracting models, i.e., the

results do not include control-flow, organizational or social network related

diagnostics. The focus is exclusively on performance metrics.

For more information on process mining we refer to a special issue of

Computers in Industry on process mining (Aalst and Weijters, 2004) and the

survey paper (Aalst et al., 2003). Note that although quite somework has been

done on process mining from event logs none of the approaches known to the

authors have incorporated the social dimension as discussed in this paper.

8.2. RELATED WORK ON SNA

Since the early work of Moreno (1934), sociometry, and SNA in particular,

have been active research domains. There is a vast amount of textbooks,

research papers, and tools available in this domain (Moreno, 1934; Bavelas,

1948; Feldman, 1977, 1979, 1987; Burt and Minor, 1983; Bernard et al., 1990;
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Scott, 1992; Wasserman and Faust, 1994; Nemati and Barko, 2003). There

have been many studies analyzing organizational activity based on insights

from social network analysis. However, some of these studies typically have

an adhoc character and sociograms are typically constructed based on

questionnaires rather than using a structured and automated approach as

described in this paper. More structured approaches are often based on the

analysis of e-mail interaction and additional electronic sources. Several

studies have generated sociograms from email logs in organization (Ogata

et al., 2001; Nardi et al., 2002; Farnham et al., 2004a, b; Fisher and Dourish,

2004) to analyze the communication structure. Such studies have resulted in

the identification of relevant, recurrent aspects of interaction in organiza-

tional contexts (Begole et al., 2002; Fisher and Dourish, 2004). However,

these studies are unable to relate the derived social networks to a particular

workflow process, as the analyzed data does not reveal to what activity or

case it applies.

Most tools in the SNA domain take sociograms as input. MiSoN is one of

the few tools that generate sociograms as output. The only comparable tools

are tools to analyze e-mail traffic, cf. BuddyGraph (http://www.buddy-

graph.com), MetaSight (http://www.metasight.co.uk/), and ContactMap

(Nardi et al., 2002). However, these tools monitor unstructured messages and

cannot distinguish between different activities (e.g., work-related interaction

versus social interaction).

As indicated in the introduction, this paper extends the results presented in

Aalst and Song (2004). Unlike Aalst and Song (2004), this paper provides

concrete metrics, a more elaborate description of MiSoN, and a case study

illustrating the applicability of the approach.

9. Conclusions

This paper presents an approach, concrete metrics, and a tool to extract

information from event logs and construct a sociogram which can be used to

analyze interpersonal relationships in an organization. Today many infor-

mation systems are ‘‘process aware’’ and log events in some structured way.

As indicated in the introduction, workflow management systems register the

start and completion of activities, ERP systems log all transactions (e.g.,

users filling out forms), call center and CRM systems log interactions with

customers, etc. These examples have in common that there is some kind of

event log. Unfortunately, the information in these logs is rarely used to derive

information about the process, the organization, and the social network. In

this paper, we focus on the latter aspect and present an approach to discover

sociograms. These sociograms are based on the observed behavior and may

use events like the transfer of work or delegation from one individual to

another. MiSoN can interface with commercial systems such as Staffware
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and standard SNA tools like AGNA, UCINET and NetMiner, thus allowing

for the application of the ideas presented in this paper.

The approach presented in this paper has a number of obvious limitations.

First of all, we can only monitor the events that are actually logged. This

implies that some interactions may not be visible. Moreover, people may find

ways to work around the system. Second, the system may enforce certain

interaction patterns. If workers are completely controlled by the system, the

discovered sociograms reflect the system rather than the organization. For-

tunately, most systems offer a lot of flexibility when it comes to the selection

and ordering of work-items. Even workflow management systems allow for a

pull mechanism where workers select work-items from a shared pool in

any order. Moreover, other types of process-aware information systems (e.g.,

ERP, CRM, PDM systems) tend to allow for even more flexibility. In

addition to the two limitations mentioned, it is important to note that the

sociogram and its analysis are just a starting point for a deeper investigation.

Besides an approach and tool to derive sociograms from event logs, the

paper also presents a case study conducted within a Dutch national public

works department. The case study shows that the event logs in real organi-

zations allow for social network analysis. Moreover, in this particular case

the analysis results provide relevant, surprising organizational information.

The established results and resulting discussions have formed the basis for

additional process mining to deal with managerial concerns, resulting in the

re-enforcement of organizational policies. In the future, we plan to repeat our

analysis within the public works department and apply our approach in

many other organizations as well. It would be interesting to compare the

results we obtain on the basis of event logs to results of the analysis of other

communication means usage e.g., e-mail. This would provide an even richer

view on organizational interaction and process improvement opportunities.

We also investigate extensions of the approach using filtering techniques

and more advanced forms of clustering. For example, we now abstract from

the results of activities. If activities or cases can be classified as successful or

unsuccessful, important or unimportant, standard or special, etc., this

information could be used when building sociograms.

Recently, MiSoN has been integrated in the ProM framework.6 The ProM

framework allows for various types of process mining, i.e., given a log it is

possible to not only derive sociograms but also process models. The ProM

framework also provides an LTL checker that can check properties expressed

in Linear Temporal Logic (LTL) (Manna and Pnueli, 1991). This allows for

all kinds of questions, e.g., checking the 4-eyes principle (two tasks for the

same case need to be executed by different people to avoid fraud). This LTL

checker can be used to answer more detailed questions based in insights

generated from the SNA analysis. In the context of the ProM framework also

a prototype of an e-mail analysis tool has been developed. Based on a user’s
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Inbox located on some Exchange server, the prototype can translate the

e-mails to the XML format described in this paper. However, since e-mails

may refer to different processes and there are no explicit pointers to tasks and

cases, and heuristics and/or conventions need to be used. Therefore, we only

consider this as a means to provide more context to the SNA analysis based

on true event logs.
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Notes

1. Note that MiSoN has been embedded in the ProM framework and can be downloaded

from http://www.processmining.org.
2. Clearly the number of events in Table I is too small to establish these assumptions accu-

rately. However, for the sake of argument we assume that the things that did not hap-

pen will never happen, cf. Section 2.3.
3. In the context of the ProM framework (http://www.processmining.org), we offer a tool

that can assign randomly generated names to workers before starting the analysis.
4. These are the event types used by ProM and MinSoN, for more information see http://

www.processmining.org.
5. Note that the real user names are changed into anonymous identifiers like user1. Al-

though during our analysis and interaction with the organization real user names were

used, we abstract from the real user names in this paper to ensure privacy and confiden-

tiality.
6. See http://www.processmining.org for more information and to download the tools used

in this paper.
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