
Discovering Structural Association of Semistructured DataKe WangSchool of Computing ScienceNational University of SingaporeSingapore 119260wangk@comp.nus.edu.sgandHuiqing LiuBioInformatics CentreNational University of SingaporeSingapore 119074huiqing@bic.nus.edu.sgApril 15, 1999AbstractMany semistructured objects are similarly, though not identically, structured. We study theproblem of discovering \typical" substructures of a collection of semistructured objects. Thediscovered structures can serve the following purposes: (a) the \table-of-contents" for gaininggeneral information of a source, (b) a road map for browsing and querying information sources,(c) a basis for clustering documents, (d) partial schemas for providing standard database accessmethods, (e) user/customer's interests and browsing patterns. The discovery task is impactedby structural features of semistructured data in a non-trivial way and traditional data miningframeworks are inapplicable. We de�ne this discovery problem and propose a solution.1 Introduction1.1 MotivationMany on-line documents, such as HTML, Latex, BibTex, SGML �les and those found in digitallibraries, are semistructured. Semistructured data arises when the source does not impose a rigidstructure (such as the Web) and when data is combined from several heterogeneous sources (such asdata warehousing). Unlike unstructured raw data (such as image and sound), semistructured datadoes have some structure. Figure 1 shows a segment of semistructured movie objects maintainedby IMDb (http://us.imdb.com). Each circle plus the text inside represents a subobject (e.g., aHTML �le) and its identi�er (e.g., URL). The links and their labels, identi�able by special tags ora grammar, represent subobject references and their roles. In this paper, the term structure refersto the hierarchy of such references and roles. The structure of an object gives a sense of whatsort of questions might be answered by a more intensive examination of the object and how the1
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BirthdayFigure 1: A segment of movie objectsinformation is represented. A recent review has revealed that nearly always, references to importantobjects are labeled rather than in the form of free-running text [HB97].Unlike structured data (such as relational or object-oriented databases), semistructured datahas no absolute schema or class �xed in advance, and each object contains its own \schema". Forexample, some movies have more actors than others; some �elds (e.g., Award) are missing forsome movies; some actors have birthday recorded and some do not; some have spouses and somedo not; etc. As a result, the structure of objects is irregular and a query over the structure isas important as query over the data. This structural irregularity, however, does not imply thatthere is no structural similarity among semistructured objects. On the contrary, it is common forsemistructured objects describing the same type of information to have similar structures. Forexample, every movie object has Title and Director labels; every Actor object has Name label;50% of Actor objects have a Nationality label, etc. Some examples of semistructured objectshaving similar structures are those about universities, countries, census data, branch informationwithin an organization, etc. The topic of this paper is discovering the structural similarity of acollection of semistructured objects. We �rst de�ne the problem and then discuss its applications.1.2 Main resultsWe consider the following discovery problem: given a collection of semistructured objects, �ndall \typical" (sub)structures that occur in a minimum number of objects speci�ed by the user.We formally de�ne this problem in Section 2. It is worth mentioning that though we refer to the\structure" of an object, it is up to the user to specify what the structure is. For example, if the userwants to �nd frequent co-occurrences of keywords in several text documents (thus, no structure inthe usual sense), he/she can specify keywords as labels, in which case a typical structure is a set ofkeywords that co-occur in some minimum number of text documents. In this view, our frameworkgeneralizes the classical association rule problem motivated in the supermarket environment [AIS93]where the core problem is �nding typical subsets of (supermarket) items that are contained in someminimum number of (supermarket) transactions. The generalization lies in that we consider generalstructures, instead of at sets, that have interesting features such as hierarchy, labeling, ordering,and cyclicity. 2



It should be pointed out that our work di�ers from those on extracting the structure of asingle individual object [Work97]. We consider a collection of graph structures, each representinga semistructured object, and discover substructures that appear in some minimum number ofgraph structures. In particular, we have to deal with the requirement on the minimum number ofoccurrences of substructures. Prior to the discovery task, the structure of each object should beextracted by removing unstructured data such as image and video that do not contribute to thestructure of the source. Often, a low-level representation (such as HTML) should be transformedto a conceptual model at a higher level of abstraction to hide away details not interesting to theuser. These could include links and layers that are not interesting to the user. Some sources provide\wrappers" or one can write a parser to do this [Work97]. We assume that such extraction has beendone. Another issue concerns with when the discovery is performed. Depending on applications.the discovery can be performed either o�-line where discovered structures are saved for futureretrievals, or on-line where the discovery is done for a speci�c request. Each discovered structurecan be associated with identi�ers (e.g., URL) of the objects that contain the structure. This willallow relevant objects to be retrieved and examined for further analysis.1.3 ApplicationThe following list gives a taste of applications of discovering typical structures of semistructuredobjects.� Road maps for querying/browsing information sources. One limitation of queryingand browsing semistructured data is the disorientation resulting in the infamous \lost-in-hyperspace" syndrome, due to the lack of external schema. To formulate any meaningfulquery, say in WebSQL [MMM96] or W3QS [KS95] for Web documents, that matches someof the source's structure, we �rst need to discover something about how the information isrepresented in the source. This subtask can be formulated as discovering typical structuresof objects. Some Web query languages allow speci�cation of a wild-card label in a query thatmatches any label. Discovering typical structures that may contain wild-cards is helpful forformulating such queries.� General information content. Very often a user may not be looking for anything speci�cat all but rather may wish to discover the general information content of a source. For suchusers, it is hard to formulate a query precisely and painful to browse all documents. A moreappropriate search mode would be examining the structure of the source, just like examiningthe table-of-contents if a reader likes to gain a gist of a book. This can be done by requestingthe display of the structure of each document if there are only a few documents, or thedisplay of some typical structures if there are many documents. Since such requests are likelyto be frequent, typical structures should be discovered o�-line and stored in a database thatis queried or browsed on demand. Based on the structures examined, the user may at anytime switch to a more focused search method, such as formulating a query or browsing somedocuments. 3



� A guideline for building indexes and views. To speed up information retrieval, it isdesirable to construct indexes and views on frequently retrieved, typically occurring struc-tures. Discovering typical structures can help this task. We quote [Abi97] for the motivationin this context: \one could envision the use of general purpose data mining tools to extractstructuring information. One can then use the information extracted from the �les to build astructured layer above the layer of more unformed data. This structured layer references thelower data layer and yields a exible and e�cient access to the information in the lower layerto provide the bene�ts of standard database access methods". For example, if Phone labelis typical of person objects and are often used to retrieve personal information, building anindex on Phone (e.g., by a B-tree, hash table, or inverted list) can speed up the retrieval.� Structure-based document clustering. The tree-like structure of subdocument referenceswithin a document is usually ignored by traditional clustering methods. In a semistructureddocument, each subdocument reference is labeled by its role, and the \topic" of a documentis represented by the tree-like structure of such roles rooted at the document. Consequently,the topic of a subdocument is relative to that of its superdocument. For example, nations'birthday and persons' birthday are considered as di�erent topics. If documents are clusteredbased on such topical structures, the search for nations' birthday information will not returnpersons' birthday information.� Discovering interests/access patterns. Detecting user's interests and browsing patternson the Web can help organize Web pages and attract more businesses. This can be modeled asdiscovering typical structures of a collection of semistructured objects. Each semistructuredobject consists of hyperlinked Web pages accessed in a single session. By labeling each pagewith either topic or site information, a typical structure captures user's interests or accesspatterns.This paper is organized as follows. Section 2 de�nes the problem of discovering typical struc-tures. Section 3 presents an algorithm. Section 4 evaluates the e�ciency of the algorithm. Section5 presents a case study using a real dataset. Section 6 reviews related work. Section 7 concludesthe paper.2 The ProblemWe �rst de�ne a representation of semistructured data. Then we de�ne the discovery problem.2.1 The object exchange modelWe adopt the Object Exchange Model (OEM) for representing semistructured data. For a detailedaccount of the OEM, the interested reader may refer to [Abi97, BDH96, PGMW95]. In OEM,every object o consists of an identi�er, denoted &o, and a value, denoted val(&o). The identi�er&o uniquely identi�es object o. The value val(&o) is either an atomic, such as an integer or astring; or a list < l1 : &o1; : : : ; lp : &op >, p > 0; or a bag fl1 : &o1; : : : ; lp : &opg, p > 0. &oi4



are identi�ers of subobjects oi. li are labels that describe the role of subobjects oi. There is norequirement that subobjects oi are uniformly lists or bags. As usual, the order in a bag does notmatter, but it does in a list. Repeating of subobjects &oi or labels li is allowed in a bag and a list.The original OEM considers only the bag semantics. We extend it to the list semantics to deal withordered subobject references. For example, actor subobjects of a movie object are usually listed inthe order of actors' credits; subroutine calls in a procedure are listed in the order of calls.OEM is conveniently represented by a labeled multi-graph. In the graph, each node representsan object identi�er &o and each edge (&o;&oi) labeled li represents a reference li : &oi in val(&o).The outgoing edges at node &o may or may not be ordered, depending on whether val(&o) is alist or a bag. We use a circled node to represent an identi�er &o of a bag value val(&o) and usea squared node to represent an identi�er &o of a list value val(&o). An OEM database is cyclic ifits graph is cyclic. Indeed, OEM graphs of many Web documents are cyclic. For example, Spouselinks are cyclic.For the discovery task (de�ned shortly), the user needs to specify a collection of objects inthe OEM graph for which typical structures are discovered. These objects are called transactionobjects. For example, if the user is interested in typical structures of a collection of movie objects,the nodes representing movie objects should be speci�ed as transaction objects; however, if theuser is interested in typical structures of actor objects, the nodes representing actor objects shouldbe speci�ed as transaction objects. (Note that transaction objects are not necessarily the rootnodes in the whole OEM graph.) The purpose of specifying transaction objects is analogous tothat of specifying transactions in the context of mining association rules [AIS93] where the userhas to decide, for example, whether to include data from shoe department, toy department, fooddepartment, for a particular discovery task. Typically, transaction objects should contain similartypes of information | it does not make sense to discover common structures of actor objects andcountry objects. To automate the speci�cation of transaction objects, one can quantify the sequenceof leading labels (thus, the role) of transaction objects in the OEM graph. For example, the sequenceof labels Movie : Director : Award speci�es all award objects of directors as transaction objects.More generally, the collection of transaction objects could be returned by a query for semistructureddata [MMM96, KS95]. Thus, in one case we could �nd common structures for movies in English,and in another case we could �nd common structures for movies in foreign-languages.2.2 Generalizing several objectsA key concept in our discovery problem is that of generalizing the structure of objects. Thisis done by partially expanding subobject references: if object &o contains subobject referencesl1 : &o1; : : : ; lp : &op, a partial structure of &o consists of some of these references and optionallytheir partial structures. The expansion is partial because it can ignore some references and canstop at any level. The signi�cance of partial structures lies in that several objects may share partialstructures even though they do not share the full structure. For the rest of the paper, symbol ?denotes the wild-card label that matches any label, and symbol ? denotes the nil structure thatcontains no label. A partial structure of &o is represented by a tree of labels, called tree-expressionsbelow. 5
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NameFigure 2: Some tree-expressions of movie objectsTree-expressions. First, we consider an acyclic OEM graph. For any label l, let l� denoteeither l or the wild-card label ?.1. The nil structure ? is a tree-expression of any object;2. Suppose that tei are tree-expressions of objects oi, 1 � i � p. If val(&o) = fl1 : &o1; : : : ; lp :&opg and fi1; : : : ; ikg is a subset of f1; : : : ; pg, k > 0, then fl�i1 : tei1 ; : : : ; l�ik : teikg is atree-expression of object o;3. Suppose that tei are tree-expressions of objects oi, 1 � i � p. If val(&o) =< l1 : &o1; : : : ; lp :&op > and < i1; : : : ; ik > is a subsequence of < 1; : : : ; p >, k > 0, then < l�i1 : tei1 ; : : : ; l�ik :teik > is a tree-expression of object o.One additional requirement is that ? should not appear as the \terminal" label on a label pathin a tree-expression. This follows from the intended use of wild-card label ?, i.e., to ignore anupper part of an object's structure in order to discover somethings common at a lower part. Thisrequirement can be phrased as: if teij is ?, l�ij must be lij . A tree-expression fli1 : tei1 ; : : : ; lik : teikgor < li1 : tei1 ; : : : ; lik : teik > has a natural tree representation: it consists of k subtrees teij , eachbeing labeled lij .Example 2.1 Consider Figure 1. By recursively applying construction 2 of tree-expressions,te1 = fDirector : fName : ?g; T itle : ?g is a tree-expression of &1. Similarly, te1 is a tree-expression of &2 and &3. If we replace Director with ? in te1, the result is still a tree-expression of&1;&2;&3. However, if we replace Name or Title with ? in te1, the result is not a tree-expressionbecause a \terminal" label cannot be the wild-card. te2 = fDirector : fName : ?; Nationaltiy :?g; T itle : ?g and te3 = fDirector : fName : ?; Nationaltiy : ?; Award : ?g; T itle : ?g aretree-expressions of &1 and &2, but not of &3. te4 = f? : fName : ?; Nationality : ?gg is atree-expression of &1;&2;&3. Figure 2 shows the tree representation for te1; te2; te3; te4. 2We like to mention that other choices of wild-card labels are possible. For example, a wild-cardlabel could match any label in a given set but not any label outside it. If such wild-card labelsare �xed, our framework can be easily modi�ed to discover tree-expressions that may contain suchwild-cards. However, if there is no �xed set of such wild-card labels, the complexity of the discovery6
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FavoriteFigure 3: Tree-expressions extended to represent cyclesproblem will be drastically increased because every wild-card de�ned by a superset containing labell is a generalization of l. To keep the problem manageable, we do not consider such wild-cards.For a cyclic OEM graph, tree-expressions de�ned above may be in�nitely large. To addressthis problem, we allow a leaf node in a tree-expression to be named by a special symbol ?i, i > 0.Essentially, a leaf node named ?i is the alias of the ancestor that is i nodes above the leaf node.This ancestor is called the ith ancestor. Figure 3 shows how a cycle (on the left) is represented in atree-expression (on the right). The \leaf" named ?3 is the alias of its third ancestor A. By treatingeach ?i node as a leaf node, we are able to deal with a tree-expression containing cyclic references(like the one on the left in Figure 3) as a tree (like the one on the right in Figure 3) without losinginformation. Therefore, all tree-expressions, cyclic or acyclic, are treated as trees.Sometimes, we are interested in the most \informative" partial structures. For example, inFigure 2, te3 is more informative than te2 which is more informative than te1. The \weaker than"relationship below compares the informativeness of tree-expressions.Weaker than. The nil structure ? is weaker than every tree-expression. ?i is weaker thanitself.� Tree-expression fl1 : te1; : : : ; lp : tepg is weaker than tree-expression fl01 : te01; : : : ; l0q : te0qg iffor 1 � i � p, tei is weaker than some te0ji , where either l0ji = li or li =?, and fj1; : : : ; jpg is asubset of f1; : : : ; qg;� Tree-expression < l1 : te1; : : : ; lp : tep > is weaker than tree-expression < l01 : te01; : : : ; l0q : te0q >if for 1 � i � p, tei is weaker than some te0ji , where either l0ji = li or li =?, and < j1; : : : ; jp >is a subsequence of < 1; : : : ; q >;� Tree-expression te is weaker than identi�er &o if te is weaker than val(&o).Intuitively, if tree-expression te is weaker than tree-expression te0, all structural information of te(about labeling, nesting, and ordering) are found in te0, starting at the root of te0.2.3 The discovery problemDe�nition 2.1 Consider a collection of transaction objects in an OEM graph and a minimumsupport MINISUP (in percentage). The support of a tree-expression te is the percentage of7



transaction objects t such that te is weaker than &t. te is frequent if the support of te is not lessthan MINISUP . te is maximally frequent if te is frequent and is not weaker than other frequenttree-expressions. The discovery problem is to �nd all frequent tree expressions. The maximaldiscovery problem is to �nd all maximally frequent tree-expressions. 2Example 2.2 In Figure 1, suppose that &1;&2;&3 are the user-speci�ed transaction objects,written in bold face. Refer to Figure 2 for tree-expressions te1; te2; te3; te4. The support of te1and te4 is 3/3, and the support of te2 and te3 is 2/3. te1; te2; te4 are weaker than te3. There-fore, if MINISUP = 2=3, te1; te2; te3; te4 are frequent, but only te3 is maximally frequent. IfMINISUP = 3=3, both te1 and te4 are maximally frequent. 2Using the discovered frequent tree-expressions, one can derive association rules about sub-structures of objects. An association rule has the form � ! �, where � and � are frequenttree-expressions such that � is weaker than �. Assume that a and b are supports of � and �.�! � says that a transaction object containing � will contain � at con�dence of b=a and supportof a. Interesting association rules � ! � must satisfy a minimum con�dence and minimum sup-port speci�ed by the user. Since constructing association rules from frequent tree-expressions isstraightforward, for the rest of the paper, we focus on the discovery problem and maximal discoveryproblem.Before ending this section, let us explain our choice of trees as substructures versus graphs.First of all, without changing the role of a subobject, an OEM graph can be equally represented bya tree through replicating shared subobjects. As such, our goal of discovering roles of subobjectsis not a�ected by using trees as substructures. There is indeed some information loss on sharingof subobjects by going from graphs to trees: it is no longer possible to tell if several references ina tree-expression are referring to a shared or di�erent subobjects. To obtain such information, theidentity of nodes involved (in addition to labels) needs to be kept in a tree-expression. This willdrastically increase the number of tree-expressions and blow up the search space. Our choice oftrees as substructures is a compromise between the completeness of information and the e�ciencyof implementation.3 The AlgorithmIn this section, we present an algorithm for the discovery problems in De�nition 2.1. The problem of�nding frequent subsets from a collection of supermarket baskets [AIS93] is related to our problemshere. However, [AIS93] is not directly applicable to objects having structures, in the form of labeledhierarchical subobject references. Also, the at representation in [AIS93] is not able to representpartially ordered references. In addition, our search space includes substructures containing thewild-card label that match any label. These new requirements justify to present a new miningalgorithm.We do not assume that the OEM graph G �ts in the memory. Each node in the graph isaccessed by its address, either on disk or in memory. To avoid repeatedly traversing subgraphs,due to multiple edges between two nodes in a multi-graph, we assume that there is at most one\physical" edge from one node to another and that a set of labels is associated with each edge.8



L(&w;&z) denotes the set of labels associated with edge (&w;&z), de�ned as the set of labelsfor &z in val(&w). The intended use of L(&w;&z) is as follows: each time a path &w1; : : : ;&wkis traversed, where &wi's are nodes, all paths &w1; l2;&w2; : : : ; lk;&wk are considered traversed,where (l2; : : : ; lk) is in the cross product L(&w1;&w2) � : : :� L(&wk�1;&wk). The informationstored at each node &w in G includes (a) the address and L(&w;&z) for every subnode &z, and(b) the positions in val(&w) for each label in L(&w;&z). For example, suppose that &o = fl1 :&o1; l2 : &o1; l1 : &o2g. Then L(&o;&o1) = fl1; l2g and L(&o;&o2) = fl1g. At node &o, thefollowing information are stored: (a) the addresses of &o1 and &o2, L(&o;&o1) and L(&o;&o2),and (b) &o1 is labeled l1 and l2 at positions 1 and 2, and &o2 is labeled l1 at position 3.An important property of our algorithm is traversing only simple paths of G in the depth-�rstorder (a path is simple if only the last node on it can repeat). Ideally, nodes of G should be storedin this depth-�rst order. However, since several supernodes may reference the same subnode, nodesadjacent in the depth-�rst order may not be necessarily on the same disk page. To reduce the diskaccess, frequently referenced nodes, i.e., those with a large in-degree and at lower levels, can bestored in memory and infrequently referenced nodes stored on the disk. This can be implementedby pinning the pages containing frequently referenced nodes in memory until they are not needed.However, the exact implementation on disk is transparent to the presentation of our algorithm.3.1 Representing tree-expressionsThe set of tree-expressions de�nes the search space of the discovery problem. Before presenting asearch algorithm, we need a convenient representation of tree-expressions.A k-tree-expression is a tree-expression containing exactly k leaf nodes (i.e., nodes for ? or?i). Each leaf node corresponds to a label path (path for short) of the form [>; l1; : : : ; ln;?], wheresymbol > represents a generic transaction object and li are labels on a simple path in G startingfrom a transaction object. As discussed in Section 2, ? is replaced with ?i if the last node on thepath repeats its ith ancestor. Each k-tree-expression can be constructed by a sequence of k paths(p1; : : : ; pk) of the above form, where no pi is a pre�x of another. (p1; : : : ; pk) is called a k-sequence.Intuitively, the tree-expression is the \pre�x tree" of k \strings" given by p1; : : : ; pk such that theleft-to-right order of these strings is preserved. To construct the \pre�x tree", initially, the > nodeof all paths pi form the root of the tree-expression. Recursively, under each node all paths sharingthe same next label li will go to a branch labeled li, provided that pi is the ith root-to-leaf pathfrom left to right in the �nal tree. The next example illustrates this construction.Example 3.1 Consider the transaction object t de�ned asval(&t) = fDirector : &d; Cast : &cg,val(&c) = fActor : &a1; Invited Actor : &a2; Actor : &a3g,val(&a2) = fOrg : &o1; Nationality : &o2g.and consider two tree-expressions of t:te1 = fCast : fInvited Actor : fOrg : ?; Nationality : ?g; Actor : ?gg,te2 = fCast : f? : fOrg : ?; Nationality : ?g; Actor : ?gg,te3 = fCast : fInvited Actor : fOrg : ?g; Actor : ?; Invited Actor : fNationality : ?ggg.9
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Invited_Actor Figure 4: Constructing tree-expressionsAs shown in Figure 4, te1 is constructed by the 3-sequence (p1; p2; p3) (the �rst tree), and te2 bythe 3-sequence (p4; p5; p3) (the second tree), and te3 by the 3-sequence (p1; p3; p2) (the third tree),where pi's are path-expressions:p1 = [>; Cast; Invited Actor; Org;?],p2 = [>; Cast; Invited Actor;Nationality;?],p3 = [>; Cast; Actor;?],p4 = [>; Cast; ?; Org;?],p5 = [>; Cast; ?; Nationality;?].Note that di�erent orders (p1; p2; p3) and (p1; p3; p2) represent di�erent tree-expressions, despitethe fact that all values val(&o) are bags. On the other hand, (p1; p2; p3) and (p2; p1; p3) representthe same tree-expression because the children of a bag node are not ordered. 2However, the above representation su�ers from two problems. The �rst problem is that somechildren with repeating labels cannot be constructed. For example, 2-tree-expression fCast :fActor : ?; Actor : ?gg, which says that the movie has two actors, cannot be constructed by usingpath [>; Cast; Actor;?] twice. This is because the construction does not know whether Actor labelsin the two paths are for same or di�erent actors. We can solve this problem by superscripting re-peating Actor label in val(&c): instead of generating only one path [>; Cast; Actor;?], we generatetwo paths [>; Cast; Actor1;?] and [>; Cast; Actor2;?], to represent the �rst and second actors inval(&c), respectively. In general, for each label l in val(&o), li represents the ith occurrence of l inval(&o). The maximal superscript i of l with respect to &o, denoted Occur(&o; l), is the numberof occurrences of l in val(&o). The second problem is that the wild-card label ? is not considered.To solve this problem, we add ? to L(&w;&z) for each edge (&w;&z). Occur(&o; ?) is de�ned asthe number of references to non-atomic objects in val(&o).With these modi�cations, a k-tree-expression can now be constructed by a k-sequence (p1; : : : ; pk),each pi of the form [>; lj11 ; : : : ; ljnn ;?] or [>; lj11 ; : : : ; ljnn ;?i], satisfying the following conditions:1. (l1; : : : ; ln) is in the cross product L(&t;&w1)� : : :� (L(&wn�1;&wn)�f?g) for some simplepath &t;&w1; : : : ;&wn in G starting at some transaction object &t;2. for 1 � i � n, superscript ji ranges from 1 to UPi, where UPi is the largest Occur(&wi�1; li)for all nodes &wi�1 in condition 1; 10



3. no pi is a pre�x of another;After the superscripting, we consider only k-tree-expressions in which superscripted labels ljiibranching out of a node are distinct. Paths pi's of the above form are called path-expressions.For the rest of the paper, the concatenation p1 : : : pk denotes the k-tree-expression constructed bythe k-sequence (p1; : : : ; pk).3.2 The overviewThe core of the algorithm is computing all k-sequences (p1; : : : ; pk) such that p1 : : : pk are frequenttree-expressions. This set of k-sequences is denoted by Fk . Note that several k-sequences mayconstruct the same tree-expression because the latter does not depend on superscripts of labels (asshown by (p1; p2) and (p1; p3) in Figure 9), and thus, that Fk may contain redundant k-sequences asfar as tree-expressions are concerned. We will deal with this problem in Section 3.5 by pruning thesearch space so that at most one k-sequence is generated for each frequent tree-expression. UntilSection 3.5, we focus on �nding all k-sequences (p1; : : : ; pk) such that p1 : : : pk are frequent, k � 1.Obviously, searching the entire space of k-sequences is prohibitive. Fortunately, we do not needto examine a k-sequence if some \substructure" of it is known to be infrequent. This observationforms the foundation of our algorithm, which is stated as follows.Theorem 3.1 (The downward closure property) Let pi denote a path-expression. If k-tree-expression p1 : : : pk is frequent, then any (k � 1)-tree-expression p1 : : : pi�1pi+1 : : : pk is frequent,where 1 � i � k; in particular, p1 : : : pk�2pk�1 and p1 : : : pk�2pk are frequent.Proof: This follows because the (k� 1)-tree-expressions are weaker than the k-tree-expression andbecause the weaker than relationship is transitive. 2Following Theorem 3.1, we compute Fk in the order of k in two phases. In Phase I, wemake one pass over transaction objects to �nd all path-expressions pi representing frequent 1-tree-expressions, i.e., F1. In Phase II, in the kth (k > 1) pass over transaction objects we generatea k-sequence (p1; : : : ; pk) only if (k � 1)-sequences (p1; : : : ; pk�2; pk�1) and (p1; : : : ; pk�2; pk) are inFk�1. (p1; : : : ; pk) is only a candidate k-sequence because p1 : : : pk may not be frequent. We �ndFk by computing the support of candidates in one scan of transaction objects. Phase II termi-nates when Fk is empty for some k. The search space can be pruned by ignoring the order ofthe children of a bag node. We will discuss this pruning in Section 3.5. For the maximal dis-covery problem, we need one additional phase, Phase III, to remove all non-maximally frequenttree-expressions. In general, non-maximally frequent tree-expressions, such as p1 : : : pi�1pi+1 : : : pkif p1 : : : pk is frequent, cannot be removed immediately because they are needed to generate maxi-mally frequent tree-expressions, such as p1 : : : pk. However, we will identify one special case wheresome non-maximally frequent tree-expressions can be removed before the end of Phase II.At this point, the above computation seems similar to Apriori in [AS94] that is based on thesubset property in [AS94]: an itemset fi1; : : : ; ikg is frequent only if both fi1; : : : ; ik�2; ik�1g andfi1; : : : ; ik�2; ikg are frequent. The reader may wonder why not simply map each tree-expressionp1 : : : pk to itemset fp1; : : : ; pkg, by considering each pi as an item, and apply Apriori to solvethe problem at hand. Unfortunately, this \reduction" does not work for the following reasons.11



compute the support:foreach transaction object &t doforeach simple path &t;&w1; : : : ;&wn doforeach label sequence (l1; : : : ; ln) inL(&t;&w1)� L(&w1;&w2)� : : :� (L(&wn�1;&wn)� f?g) doCase 1: &wn 6= &wi for all iif sup(l1; : : : ; ln;?) was not increased for &t then sup(l1; : : : ; ln;?) + +Case 2: &wn = &wi for some i < nif sup(l1; : : : ; ln;?i) was not increased for &t then sup(l1; : : : ; ln;?i) + +return frequent path-expressions:foreach sup(l1; : : : ; ln;?) or sup(l1; : : : ; ln;?i) not less than MINISUP dooutput path-expressions [>; lj11 ; : : : ; ljnn ;?] or [>; lj11 ; : : : ; ljnn ;?i], 1 � ji � UPiFigure 5: Computing F1First, p1 : : :pk is weaker than p01 : : :p0m does not imply fp1; : : : ; pkg is a subset of fp01; : : : ; p0mg;consequently, p1 : : : pk may be frequent, but itemset fp1; : : : ; pkg is not. For example, in Figure 4,p4p5p3 is weaker than p1p2p3, but fp4; p5; p3g is not contained in fp1; p2; p3g. This example alsoshows that it does not work either to map tree-expression p1 : : : pk to sequence (p1; : : : ; pk) of itemspi and replace the weaker than relationship with the subsequence containment. We use k-sequences(p1; : : : ; pk) only as a representation of tree-expressions; to decide if it generalizes an object, therepresented tree-expression and the weaker than relationship must be used.3.3 Phase I: Computing F1This phase �nds all 1-sequences pi representing frequent 1-tree-expressions in the form of path-expressions [>; lj11 ; : : : ; ljnn ;?] or [>; lj11 ; : : : ; ljnn ;?i]. These 1-sequences are later used to constructk-tree-expressions p1 : : :pk as discussed in Section 3.1. The �rst question is how to computethe support of a path-expression. It is important to note that all path-expressions that dif-fer only in superscripts of labels represent the same 1-tree-expression. Therefore, the supportof path-expression [>; lj11 ; : : : ; ljnn ;?] or [>; lj11 ; : : : ; ljnn ;?i] should be associated with the sequencel1; : : : ; ln;? or l1; : : : ; ln;?i. We denote this support by sup(l1; : : : ; ln;?) or sup(l1; : : : ; ln;?i),de�ned as the number of transaction objects from which there is a simple path labeled l1; : : : ; ln.Figure 5 gives the computation of F1. UPi is the largest Occur(&wi�1; li) for all simple paths&t;&w1; : : : ;&wn that are labeled l1; : : : ; ln, where &t is a transaction object. We have omittedthe computation of UPi for clarity.Example 3.2 For the rest of this section, we use the OEM graph in Figure 6 to illustrate thediscovery algorithm. Recall that a circled node denotes a bag and a squared node denotes a list.Suppose that &t1 and &t2 are transaction objects, containing information about two electronicshopping transactions. For example, &t1 consists of subtransaction &a followed by a purchase ofitem &o1 in cash. &a consists of two purchases of &o1 in any order, one by credit card and the12
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Figure 6: Example 3.2path-expressions tree-expressions representedp1 : [>; Cash1;?] < Cash : ? >p2 : [>; ?1; Credit1;?] <? : fCredit : ?g >p3 : [>; ?1; Cash1;?] <? : fCash : ?g >p4 : [>; ?1; Cash2;?] (pruned) <? : fCash : ?g >p5 : [>; Unused1; Credit1;?] < Unused : fCredit : ?g >p6 : [>; Unused1; Cash1;?] < Unused : fCash : ?g >p7 : [>; Unused1; Cash2;?] (pruned) < Unused : fCash : ?g >Table 1: F1 in Example 3.2other in cash. The de�nitions of &t1 and &t2 are given byval(&t1) =< Unused : &a; Cash : &o1 >val(&t2) =< Unused : &b; Cash : &o1 >val(&a) = fCredit : &o1; Cash : &o1gval(&b) = fCredit : &o1; Cash : &o1; Cash : &o2g.Occur(&b; Cash) = 2 because Cash occurs in val(&b) twice; Occur(&t1; ?) = Occur(&t2; ?) = 1because there is only one non-atomic object in val(&t1) and val(&t2). Suppose thatMINISUP =2=2. Path-expressions p1 through p7 are frequent, shown in Table 1. For example, sup(Unused; Cash;?) =2 because both transaction objects have a simple path labeled Unused; Cash. From this support,p6 and p7 are generated because among all paths of the form &ti; Unused; w1; Cash; w2, the largestOccur(&ti; Unused) is 1 and the largest Occur(&w1; Cash) is 2 (i.e., when &w1 = &b). The otherfrequent path-expressions are similarly generated. p4 and p7 will not be included in the �nal F1 bythe pruning strategies to be discussed in Section 3.5. 23.4 Phase II: Computing FkThe search space. Following Theorem 3.1, the storage structure of Fk�1 should facilitate e�cientretrieval of pairs (p1; : : : ; pk�2; pk�1) and (p1; : : : ; pk�2; pk) and in addition, dynamically grow fromFk�1 to Fk without reorganization. We propose the (k � 1)-candidate-trie, denoted �k�1, to meetthese requirements. �k�1 is a trie of maximal depth k � 1. (A trie is a tree in which each non-leafnode has at least one child.) In �k�1, each non-root node represents a path-expression pi in F1, and13



Level 1

Level 2

Level 3

2 3

2 3 3 1 1 2

3 2 1 3 2 1

1 Figure 7: �1;�2;�3foreach transaction object &t doforeach k-sequence (p1; : : : ; pk) in �k doif p1 : : : pk is weaker than &tthen increase the support for (p1; : : : ; pk)foreach k-sequence (p1; : : : ; pk) in �k doif the support for (p1; : : : ; pk) is less than MINISUPthen delete the leaf node for (p1; : : : ; pk) from �kFigure 8: Computing the support of k-sequenceseach path (root; p1; : : : ; pj) represents a j-sequence (p1; : : : ; pj) in Fj . Without confusion, we omitthe root node and use the j-sequence (p1; : : : ; pj) to refer to such paths in �k�1. Consequently, eachnon-root node in �k�1 represents two things: the path-expression at the node and the j-sequenceending at the node. We will freely speak of terms like \frequent j-sequences", \maximally frequentj-sequences", \the support of j-sequences", and \some j-sequences weaker than others", with theobvious understanding that these refer to the tree-expressions represented by the j-sequences. Thefollowing corollary follows from our representation of search space.Corollary 3.1 The pair p1 : : :pk�2pk�1 and p1 : : : pk�2pk in Theorem 3.1 is represented by two(k � 1)-sequences ending at sibling leaf nodes in �k�1.Generating candidates. Following Corollary 3.1, to generate �k from �k�1 we consider everypair of (k � 1)-sequences (p1; : : : ; pk�2; pk�1) and (p1; : : : ; pk�2; pk), ending at sibling leaf nodes land l0 in �k�1, and create a child under l to represent the k-sequence (p1; : : : ; pk�1; pk). We saythat l is extended by l0, or that (p1; : : : ; pk�2; pk�1) is extended by (p1; : : : ; pk�2; pk). We also saythat (p1; : : : ; pk�2; pk�1) and (p1; : : : ; pk�2; pk) are used in this extension. Figure 7 shows �1;�2;�3generated by three path-expressions p1; p2; p3 without any pruning. We will address the pruning ofsearch space shortly.Counting the support. Figure 8 shows a conceptual computation of the support of k-sequences in �k. For each transaction object t, we read the hierarchy of t, examine each k-sequenceand increase its support if it is weaker than &t. In implementation, we use �k to prune scansof k-sequences: we traverse �k in a depth-�rst manner, and if p1 : : : pj for the current j-sequence(p1; : : : ; pj) is not weaker than &t, further descending into the tree can be pruned. Since this14
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l l l l1 1 1 1Figure 9: Constructing natural by non-naturalimplementation is straightforward, we do not elaborate it further.3.5 Pruning of search spacePhase II described above faces two problems that seriously a�ect the e�ciency and scalability ofthe algorithm. First, the search space �k grows very fast, as illustrated in Figure 7. Second,all k-sequences representing the same frequent tree-expression are generated. For example, both(p1; p2) and (p1; p3) in Figure 9 will be generated, though both represent the same tree-expression,i.e., fl : fl : ?; l : ?gg. We now address these issues by pruning the search space. Recall that ak-tree-expression is constructed by k-sequence (p1; : : : ; pk), where each pi is a path-expression ofthe form [>; lj11 ; : : : ; ljnn ;?] or [>; lj11 ; : : : ; ljnn ;?i]. Superscripts ji's serve to create repeating labelsfor child nodes in a tree-expression; however, once the tree-expression is constructed, superscriptsare not useful anymore and can be ignored. As a result, several k-sequences could construct thesame k-tree-expression (up to ignoring the superscripts of labels), and it su�ces to consider onlyone of these k-sequences. What we need is a systematic method to refer to those k-sequences thatneed to be considered. The idea is to impose certain conditions on superscripts of labels in thetree-expressions constructed. This motivates the following de�nitions.Consider a tree-expression p1 : : : pk constructed by k-sequence (p1; : : : ; pk). A list node is mono-tone if all outgoing labels li for the same l are strictly ordered by i from left to right. A bag nodeis monotone if all outgoing labels li are strictly ordered by the lexicographic order of (l; i) fromleft to right. In other words, for a list node we order only repeating occurrences of labels, but fora bag node we order both labels and repeating occurrences. A (list or bag) node is natural if itis monotone and each outgoing label li is the ith occurrence of l from left to right. A k-sequence(p1; : : : ; pk) is natural (monotone, resp) if every non-leaf node in tree-expression p1 : : : pk is natu-ral (monotone, resp). For example, in Figure 9, (p1; p2) and (p1; p2; p3) are natural; (p1; p3) and(p1; p2; p4) are monotone but non-natural; (p3; p1) is non-monotone.Several observations are useful for the subsequent discussion.Observation I For every non-natural k-sequence, there is a natural k-sequence that representsthe same tree-expression. Consequently, a search is complete if all frequent natural k-sequences are generated.Observation II Every pre�x of a natural (monotone) k-sequence is natural (monotone).15



Observation III Every permutation of a natural (monotone) k-sequence is not natural (mono-tone). This implies that there are much more non-natural (non-monotone) k-sequences thannatural (monotone) ones. Therefore, if we can prune all non-natural or non-monotone k-sequences, the search space will be substantially reduced.However, simply pruning all non-natural k-sequences does not work if we use Theorem 3.1 togenerate candidate sequences. In fact, some non-natural (k � 1)-sequences (p1; : : : ; pk�2; pk) mustbe generated in order to generate natural k-sequences (p1; : : : ; pk�1; pk). For example, in Figure 9,to generate natural (p1; p2; p3), we �rst need to generate natural (p1; p2) and non-natural (p1; p3).On the other hand, from Observation II, extending a non-natural (k � 1)-sequence (p1; : : : ; pk�1)always generates a non-natural k-sequence (p1; : : : ; pk). For a similar reason, the result of such anextension cannot be used to generate a natural j-sequence, j > k. This gives us the �rst pruningstrategy, concerning what (k � 1)-sequences should be extended.Strategy I. In the kth pass, only natural (k � 1)-sequences should be extended. After allextensions in the kth pass, all non-natural (k � 1)-sequences can be pruned.Since there are a lot more non-natural (k � 1)-sequences than natural ones (Observation III),Strategy I prunes most extensions at each level. Next, we would like to characterize k-sequences(p1; : : : ; pk) that should be generated. First of all, all natural (p1; : : : ; pk) should be generated forthe completeness of search. Second, a non-natural (p1; : : : ; pk) should be generated if it is useful forextending a natural (k�1)-sequence. In this case, the pre�x (p1; : : : ; pk�1) must be natural becauseit is shared with a natural (k� 1)-sequence. Third, a non-natural (p1; : : : ; pk) should be generatedif it can be used to generate a natural j-sequence, in one or more extensions. From Observation II,such (p1; : : : ; pk) must be monotone. These three cases are summarized by the notion of near-naturalsequences: a k-sequence (p1; : : : ; pk) is near-natural if (p1; : : : ; pk) is monotone and (p1; : : : ; pk�1) isnatural. Every natural k-sequence is near-natural, but not vice versa. In Figure 9, all k-sequencesare near-natural; only (p1; p2) and (p1; p2; p3) are natural; any permutation of these sequences isnot nearly-natural (because not monotone). Now we have the second pruning strategy, concerningwhat k-sequences should be generated.Strategy II. Only near-natural k-sequences should be generated.Observation III implies that Strategy II prunes most extensions at a level because every non-monotone k-sequence is not near-natural. Strategies I and II together imply that the only type ofextensions that we need to consider is extending a natural sequence with a near-natural sequence.The next pruning strategy applies only to the maximal discovery problem. The idea is to prune anon-maximally frequent candidate if it is not useful in any later extension. Suppose that a frequentk-sequence (p1; : : : ; pk) is generated by extending (p1; : : : ; pk�2; pk�1) by (p1; : : : ; pk�2; pk). Sinceboth (p1; : : : ; pk�2; pk�1) and (p1; : : : ; pk�2; pk) are weaker than (p1; : : : ; pk), they are non-maximallyfrequent. Further, these (k � 1)-sequences will not be used in any extension after the kth pass.This gives us the following pruning strategy.Strategy III. For the maximal discovery problem, a (k � 1)-sequence that is used to generateat least one frequent k-sequence can be pruned.This strategy prunes all (k� 1)-sequences ending at non-leaf nodes because non-leaf nodes areused to generate their child nodes. It also prunes all (k�1)-sequences at leaf nodes that are used to16



generate k-sequences:foreach natural (k� 1)-sequence (p1; : : : ; pk�2; pk�1) in �k�1 do /* Strategy I */foreach (k � 1)-sequence (p1; : : : ; pk�2; pk) in �k1 doif pk�1 and pk are not a pre�x of each other andk-sequence (p1; : : : ; pk�1; pk) is near-natural /* Strategy II */then extend (p1; : : : ; pk�2; pk�1) by (p1; : : : ; pk�2; pk);delete all leaf nodes representing non-natural (k� 1)-sequences; /* Strategy I */compute the support of k-sequences:foreach transaction object &t doforeach k-sequence (p1; : : : ; pk) in �k doif p1 : : : pk is weaker than &t then increase the support for (p1; : : : ; pk)foreach k-sequence (p1; : : : ; pk) doif the support for (p1; : : : ; pk) is less than MINISUPthen delete the leaf node representing (p1; : : : ; pk) from �kelse mark (p1; : : : ; pk�2; pk�1) and (p1; : : : ; pk�2; pk) as used; /* Strategy III */Figure 10: Generating �k from �k�1extend their sibling nodes. In Section 4, we will experimentally verify the e�ectiveness of StrategiesI, II, III. Figure 10 summarizes the generation of �k from �k�1. The following theorem followsfrom the above discussion.Theorem 3.2 Assume that �k is the candidate-trie at the end of Phase II and that 1 � j � k.� Let Fj be the set of j-sequences in �k that are not pruned by Strategies II and III. Then Fjcontains exactly the j-tree-expressions for the discovery problem.� Let Fj be the set of j-sequences in �k that are not pruned by Strategies I, II, III. Then Fjcontains all (possibly more) j-tree-expressions for the maximal discovery problem.We now show that each j-sequence in Fj computed in Theorem 3.2 represents a unique tree-expression. Importantly, this implies that no tree-expression is generated more than once.Theorem 3.3 For any two distinct j-sequences (p1; : : : ; pj) and (p01; : : : ; p0j) in Fj computed inTheorem 3.2, tree-expressions p1 : : : pj and p01 : : :p0j are distinct.Proof: First, observe that all j-sequences in Fj are natural because non-natural ones are prunedby Strategy I. Suppose that j-sequences (p1; : : : ; pj) and (p01; : : : ; p0j) in Fj represent the same tree-expression (after ignoring superscripts of labels). Consider corresponding nodes u and u0 in p1 : : : pjand p01 : : : p0j . Let lj11 ; : : : ; ljnn , from left to right, be the outgoing labels at u and l0j011 ; : : : ; l0j0nn be theoutgoing labels at u0. Clearly, li = l0i, for 1 � i � n. Since both (p1; : : : ; pj) and (p01; : : : ; p0j) arenatural, there is only one \natural" superscripting of labels, so ji = j 0i, for 1 � i � n. This impliesthat path-expressions pi and p0i are identical for 1 � i � n, contradicting the assumption that(p1; : : : ; pj) and (p01; : : : ; p0j) are distinct. 2 17



root

P
1 F

F

F

1

2

3

P2 P3 P4 P5 P6 P7

P1 P1 P2

P1

P1 P1 P5

P1

(pruned)(pruned)(a) �1;�2;�3sequences tree-expressions F2p2p1 <? : fCredit : ?g; Cash : ? >p3p1 <? : fCash : ?g; Cash : ? >p3p2 <? : fCash : ?; Credit : ?g >p5p1 < Unused : fCredit : ?g; Cash : ?g >p6p1 < Unused : fCash : ?g; Cash : ?g >p6p5 < Unused : fCash : ?; Credit : ?g >F3p3p2p1 <? : fCash : ?; Credit : ?g; Cash : ? >p6p5p1 < Unused : fCash : ?; Credit : ?g; Cash : ? >(b) F2 and F3
T TT

T

?
?

?

?

Cash Cash

Cash

Credit CreditCashCash

CreditCash

T

Cash

Credit

Unused

T

CashUnused

Cash

T

CreditCash

Unused

T

Cash

CreditCash

Unused

p2p1 p3p1 p3p2

p5p1 p6p1 p6p5

p3p2p1 p6p5p1

1 1
1 1

11
11

1 1 1 1 1

1 1
1 1

1 1 1 1

1 1 1 1

1

(c) Tree representationFigure 11: Example 3.318



Example 3.3 Continue with Example 3.2 whereMINISUP = 2=2. Figure 11(a) shows �1;�2;�3,corresponding to the portion above levels 1, 2, and 3, respectively. Please refer to Table 1 for fre-quent 1-sequences pi, 1 � i � 7. Here is the generation of �2 from �1.� Extensions of p1: p1 is not extended because all its extensions are not frequent. In fact, Cashdoes not appear on the left side of any label in either val(&t1) or val(&t2).� Extensions of p2: (p2; p1) is generated. (p2; p3) and (p2; p4) are not generated because theyare non-monotone (Strategy II). (p2; p5), (p2; p6), and (p2; p7) are not frequent.� Extensions of p3: (p3; p1) and (p3; p2) are generated. (p3; p4), (p3; p5), (p3; p6), and (p3; p7)are not frequent.� Extensions of p4: p4 is not extended because it is non-natural (Strategy I).� Extensions of p5: (p5; p1) is generated. (p5; p2), (p5; p3), and (p5; p4) are not frequent; (p5; p6)and (p5; p7) are non-monotone (Strategy II).� Extensions of p6: (p6; p1) and (p6; p5) are generated. (p6; p2), (p6; p3), (p6; p4), (p6; p7) are notfrequent.� Extensions of p7: p7 is not extended because it is non-natural (Strategy I).After 2-sequences are generated, non-natural p4 and p7 are pruned from �2 by Strategy I.The generation of �3 from �2 follows as:� Extensions of (p3; p1): (p3; p1; p2) is not frequent (nor near-natural).� Extensions of (p3; p2): (p3; p2; p1) is generated.� Extensions of (p6; p1): (p6; p1; p5) is not frequent (nor near-natural).� (p6; p5): (p6; p5; p1) is generated.Figure 11(b) shows F2 and F3 and the tree-expressions represented. Figure 11(c) shows their treerepresentations. At this stage, F1; F2; F3 are returned for the discovery problem.For the maximal discovery problem, F1 is empty because each 1-sequence is either pruned byStrategy I (i.e., p4 and p7) or marked as used (i.e., p1, p2, p3, p5, p6). F2 contains only (p2; p1) and(p5; p1) because (p3; p1), (p3; p2), (p6; p1), (p6; p5) are marked as used. F3 contains (p3; p2; p1) and(p6; p5; p1). 23.6 Phase III: The maximal phaseFor the maximal discovery problem, we must remove remaining non-maximally frequent sequences.One observation is that, for i > j, no i-sequence can be weaker than a j-sequence. This suggeststhe following pruning. For each 1 � j � k, we �nd j-sequences in Fj that are maximally frequentwith respect to Fj . Let this result be Mj . Then for j from k to 1 in that order, we add a j-sequenceinMj to the �nal result only if it is not weaker than any sequence already in the �nal result. Figure12 shows this computation. 19



foreach j from k to 1 dolet Mj be Fjforeach sequence s in Mj doif s is weaker than some sequence in Mj then remove s from Mjforeach j from k to 1 doforeach sequence s in Mj doif s is not weaker than any sequence already output then output sFigure 12: The maximal phaseExample 3.4 Continue with Example 3.3. From that example, F1 is empty, F2 contains (p2; p1)and (p5; p1), F3 contains (p3; p2; p1) and (p6; p5; p1). After removing non-maximally frequent se-quences in Fj , M1 is empty, M2 contains (p5; p1), and M3 contains (p6; p5; p1). Since (p5; p1) isweaker than (p6; p5; p1), tree-expression < Unused : fCash : ?; Credit : ?g; Cash : ? >, repre-sented by (p6; p5; p1), is the answer to the maximal discovery problem. 23.7 Testing \weaker than"It remains to see how to test whether a tree-expression te1 is weaker than a tree-expression te2 (asde�ned in Section 2). Basically, we need to search for a \match" of the tree te1 inside the tree te2,such that the root of te1 matches the root of te2. Recursively, a match is found for a non-leaf nodev in te1 if matches are found for the label of v (ignoring superscripts) and for all subnodes of v. Anadditional requirement is that a node matches only a node of the same type (i.e., list or bag). Fora bag node in te1, a complete bipartite match in te2 is required, whereas for a list node in te1, asublist match in te2 is required. Since algorithms for �nding subtree matches are well known [R77],we omit the detail. Assume that te1 has n nodes and te2 has m nodes. The time complexity oftesting whether te1 is weaker than te2 is O(nm1:5) or better, depending on how good an algorithmone has for a complete bipartite matching [R77]. This complexity, however, does not a�ect the I/Ocost because the testing is done im memory.4 E�ciencyWe now study the e�ciency of the algorithm. The e�ciency depends not only on database size,but also on factors such as minimum support and pruning strategies. Therefore, it is di�cult toderive a closed, tight bound on the computational cost. On the other hand, the worst-case analysisassuming that nearly everything is frequent is far from typical cases, thus, of little value. We takea more practical approach by analyzing the I/O scan of the database and studying experimentallyother factors of the cost for various data characteristics. These factors include size of search spaceexpanded, execution time, e�ectiveness of pruning strategies, and scalability for large databases.20



notation meaningLi number of level-i labelsNi number of level-i identi�ersTi average size of val(&o) for level-i identi�ers &oIi average size of potentially large sets in �iPi number of potentially large sets in �im maximal nesting levelTable 2: Parameters4.1 I/O scanTo analyze the I/O scan, we assume that the OEM graph (i.e., the database) is stored on disk andthat the candidate-trie �k is stored in memory. The choice of storing �k in memory is based onthe following reasons. The minimum support that de�nes a \typical" substructures is speci�ed bythe user and is often highly e�ective in restricting the search space. In the case of a \very small"minimum support, many substructures could become frequent. But this is also the case where theuser should question the usefulness of such a large amount of \typical" substructures. Our view isthat any substructures that cannot �t in a modern computer memory will not be comprehensibleto a human user. If this happens, the user should rise the minimum support to reduce the numberof typical substructures.In Phase I, the hierarchy of each transaction object is read once. Similarly, in each pass ofPhase II, the hierarchy of each transaction object is read to compute the support of candidates.Phase III does not read transaction objects. Assuming that k is the number of passes in Phase II,there are k+1 scans of hierarchies of transaction objects. Our experiments show that k is typicallysmall, i.e., 3 or 4. Therefore, our algorithm has a linear I/O cost. To reduce the number of pageaccesses, we can store frequently accessed nodes, called hot-spots, in memory and leave infrequentlyaccessed nodes on disk. This can be implemented by pinning the \hot-spots" in memory so thatthey are not selected for page replacement by the bu�er manager. Hot-spots usually have largein-degrees and/or are buried at lower levels in the graph. Another heuristic is to store nodes in anorder \close" to the depth-�rst order in which nodes are traversed in our algorithm, so as to ensurethat one page access can bring in several nodes that will be needed subsequently.4.2 Experimental studyTo have a feel of the real performance of the algorithm, we have conducted many experiments forvarious data characteristics and minimum supports. We focus on four indicators of e�ciency: size ofsearch space, e�ectiveness of pruning strategies, execution time, and scalability for large databases.We consider data characteristics such as similarity of objects, number of objects, number of labels,depth of nesting, and size of datasets.Dataset generation. We consider only acyclic datasets because only simple paths of a cyclicOEM graph are traversed. To model similarities of objects, we borrow from [AS94] the concept ofpotentially large sets. Informally, potentially large sets are itemsets that are more likely to contain21



common items than a random case. This property is attained by choosing items in a potentiallylarge set in a controlled manner. For more details, please refer to [AS94]. However, we have to dealwith nesting, labeling, and bag and list types of objects, all having impacts on the data miningproblem. The idea is to treat subobject references as supermarket items and construct objectsat higher levels using bags or lists of such items. At �rst, all atomic objects are at level 1. Anobject o is at level l+ 1 if l is the maximal level of subobjects of o. Let m be the maximal level ofnon-transaction objects. All transaction objects are at level m+ 1.Documents are generated in a bottom-up manner, from level 1 to level m + 1. At level i, wetreat each subobject reference l : &o at level i�1 as an item and construct a level-i object as a bagor list (half-half in our case) of such items, as in [AS94]. This is done by picking several potentiallylarge sets from the pool �1[: : :[�i�1, at least one from �i�1, where �j is the set of potentially largesets for level j. Refer to Table 2 for notation of parameters. As in [AS94], overlapping of objectsis controlled by parameters Ii and Pi. Each level-i object constructed is assigned a new identi�er.Subobject references l : &o at level i are created by assigning each label l to some number of level-iidenti�ers &o, determined from the Poisson distribution with mean Ni=Li. We then construct theset of potentially large sets �i for level i. The above processing is repeated until transaction objectsat level m+ 1 are constructed.We use the following convention to represent a dataset:(L1; N1)(L2; N2; T2; I2; P2) : : :(Lm; Nm; Tm; Im; Pm)(Nm+1; Tm+1; Im+1; Pm+1).The �rst group (L1; N1) are parameters for level-1 labels and atomic objects. The last group(Nm+1; Tm+1; Im+1; Pm+1) are parameters for transaction objects. Lm+1 is not used because trans-action objects have no label. (Li; Ni; Ti; Ii; Pi), 2 � i � m, are parameters for level i. We restrict todatasets in which the setting of (Li; Ni; Ti; Ii; Pi) is the same for all 2 � i �m. The default valuesof maximal nesting level m and number of transaction object Nm+1 are 4 and 100K, respectively.k(Li; Ni; Ti; Ii; Pi) denotes k repetitions of (Li; Ni; Ti; Ii; Pi). In Table 3,� @ denotes the default setting (Li = 1K;Ni = 10K; Ti = 20; Ii = 8; Pi = 200), 2 � i � m.� & denotes the default setting (Nm+1 = 100K; Tm+1 = 20; Im+1 = 8; Pm+1 = 200).For example, dataset II=(1K,10K)3@& in Table 3(a) refers to the dataset(1K; 10K)(1K; 10K; 20; 8; 200)(1K; 10K; 20; 8; 200)(1K; 10K; 20; 8; 200)(100K; 20; 8; 200).Let us explain our choices of these default values. For the average number Ti of subobjectreferences in an object, we choose the default value 20 on the basis that a Web page usuallycontains a small number of links. For example, the top level of Yahoo! has 13 categories. Inorder to have non-trivial sharing of low-level objects, we choose the number of level-i objects Ni(i � m) to be much smaller than the number of transaction objects Nm+1. Indeed, in manyapplications there are more transaction objects than non-transaction objects. For example, thereare more research papers (i.e., transaction objects) than active authors, their organizations, andresearch topics (i.e., non-transaction objects); there are more movies than active actors, directors,categories, types of awards; there are more students than available courses and professors; etc. Wehave also tried (Section 4.2.1) larger Ni (and larger Li as well), but our experiments show thatdoing so only reduces the search space, rather than increases it. This is expected because more22



objects at lower levels usually means less sharing of subobjects, thus, less sharing of substructures.For example, as the number of available courses is increased, the probability that two students takethe same course will be reduced (assuming that the number of courses a student takes does notchange).Our experiment environment is a Sun Ultral-1 workstation with CPU rate of 167 MHz andmemory size of 128 MB. In all experiments, the OEM graph G is stored in a unix �le. The nodesare stored in the depth-�rst order in which nodes are visited in our algorithm. If a node has alreadybeen stored, any later reference to the node is made through its location, rather than storing anothercopy of the node. For nodes that are frequently accessed, usually those at lower levels, we allow to\pin" them in the memory after they are read for the �rst time. A hash table can map the locationin the �le to the location in memory for pinned nodes. For the rest of this section, we examineseveral factors of e�ciency.4.2.1 Size of search spaceIn this group of experiments, we study how the search space is a�ected by various data character-istics and minimum supports. We use the number of leaf nodes in �k to estimate the size of searchspace.a. E�ect of sharing of subobjects. Larger Tm+1 and Im+1 lead to more sharing of subob-jects. For datasets I, II, and III in Table 3(a), we set (Tm+1 = 10; Im+1 = 4), (Tm+1 = 20; Im+1 = 8),(Tm+1 = 30; Im+1 = 16), respectively. Table 3(a) shows the number of leaf nodes in �k. For exam-ple, for dataset II at MINISUP = 2%, there are 145, 32, and 3 leaf nodes in levels 1, 2, and 3,respectively, and there are 4 maximally frequent tree-expressions, indicated in the pattern column.Other entries are interpreted similarly. Comparison of datasets I, II, III shows that the search spacegrows as more subobjects are shared. A similar e�ect is observed for lower levels i � m.b. E�ect of number of labels. In Table 3(b), we set the number of labels Li at 500, 1K,2K for datasets I, II, and III, respectively, with other parameters unchanged. Table 3(b) shows thenumber of leaf nodes. As expected, a smaller Li implies a larger search space, due to more sharingof labels.c. E�ect of number of objects. In Table 3(c), we set the number of object identi�ers Niat 5K, 10K, 20K in datasets I, II, and III. Table 3(c) shows that the number of object identi�ershas an e�ect similar to the number of labels in b above: a smaller Ni implies a larger search space.Importantly, these trends show that simply having more labels and objects (without increasing thesharing of subobjects) only decreases the search space. For this reason we did not experiment withlarger Li and Ni.d. E�ect of number of levels. In Table 3(d), we set the maximal level m at 2, 4, and 6 indatasets I, II, and III, while �xing other parameters. Table 3(d) shows that as m increases, so doesthe size of search space. 23



4.2.2 Pruning strategiesIn Table 3(e), we compare the number of leaf nodes generated with and without pruning StrategiesI, II, III. We have shown the result for the default dataset (1K,10K)3@&; other datasets havesimilar trends. The comparison shows that these pruning strategies lead to a quick drop in the sizeof search space. This con�rms our expectation about the e�ectiveness of pruning strategies.4.2.3 Execution timeThe �gures a1, b1, c1, d1 and e1 in Figure 13 show the execution time for the �ve experiments inTable 3. Two general trends can be observed: (i) As the minimum support decreases, the executiontime increases; with a maximum of 500 seconds in all cases. (ii) The execution time is consistentwith the size of search space in Table 3.4.2.4 Scale upFor each experiment on the left side of Figure 13, we scale up the number of transaction objectsNm+1 from 100K to 1000K, with other parameters unchanged. The right side of Figure 13 showsthe relative time with respect to the time for the corresponding experiment with Nm+1 = 100Kon the left side. The time is averaged over the di�erent minimum supports used. All cases show aclear linear growth with the number of transaction objects.We now summarize these experiments as follows.� The search space is increased when more subobjects are shared and when the minimumsupport is reduced (Section 4.2.1a). Simply increasing the number of objects and labelsdoes not intensify the computation, unless the sharing of subobjects and labels are increased(4.2.1b and 4.2.1c).� There is a clear indication that pruning Strategies I, II, and III are e�ective. All experimentsshow a quick drop in the number of level-k leaf nodes as k increases. The small search spacejusti�es the choice of storing �k in memory. Note that we have used small minimum supports,ranging from 2% to 10%, which generally require a larger search space than large minimumsupports do.� No more than 500 seconds are needed for 100K transaction objects in tested data character-istics. Experiments show that the algorithm scales linearly for larger datasets.� The number of frequent tree-expressions can be large, especially for a small minimum sup-port. The number of maximally frequent tree-expressions is usually very smaller, at most8 in all cases studied. Unlike frequent tree-expressions, reducing the minimum support canadd a maximally frequent tree-expression that makes several previous maximally frequenttree-expressions no longer maximally frequent. This explains why the number of maximallyfrequent tree-expressions sometimes is decreased as the minimum support is reduced.24



NIMISUP I=(1K,10K)3@(100K,10,4,200) II=(1K,10K)3@& III=(1K,10K)3@(100K,30,16,200)(%) �1=�2= : : : =�k pattern �1=�2= : : : =�k pattern �1=�2= : : : =�k pattern10 10 2 38 3 47/1 38 19 4 57/4 4 77/3 56 32 5 82/11/1 5 101/39/1 44 47/5 3 102/22/2 4 135/53/2 42 63/12 6 145/32/3 4 196/73/42/4 6(a)MINISUP I=(500,10K)3(500,10K,20,8,200)/& II=(1K,10K)3@& III=(2K,10K)3(2K,10K,20,8,200)/&(%) �1=�2= : : : =�k pattern �1=�2= : : : =�k patter n �1=�2= : : : =�k pattern10 48 5 38 3 13 28 77/4 4 57/4 4 22 46 93/26/3 5 82/11/1 5 40 54 132/46/5 7 102/22/2 4 63/2 32 199/52/30/3 7 145/32/3 4 88/25/1 4(b)MINISUP I=(1K,5K)3(1K,5K,20,8,200)& II=(1K,10K)3@& III=(1K,20K)3(1K,20K,20,8,200)&(%) �1=�2= : : : =�k pattern �1=�2= : : : =�k pattern �1=�2= : : : =�k pattern10 61/4 5 38 3 19 38 70/21/1 5 57/4 4 30 46 111/39/2 7 82/11/1 5 42 44 162/50/17/4 8 102/22/2 4 66/3 52 215/76/38/5 8 145/32/3 4 93/4 7(c)MINISUP I=(1K,10K)@& II=(1K,10K)3@& III=(1K,10K)5@&(%) �1=�2= : : : =�k pattern �1=�2= : : : =�k pattern �1=�2= : : : =�k pattern10 28 2 38 3 30/1 38 41 3 57/4 4 62/3 56 59/4 5 82/11/1 5 85/30/4 64 86/29/3 5 102/22/2 4 119/40/5 72 6 114/37/3 145/32/3 4 179/59/16/2 7(d)MINISUP w/o pruning pruning(%) �1=�2= : : : =�k pattern �1=�2= : : : =�k pattern10 38 3 38 38 57/39 4 57/4 46 82/78/41 5 82/11/1 54 102/134/85 4 102/22/2 42 145/199/113 4 145/32/3 4(e)Table 3: Size of �k25
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Director
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Figure 14: A segment of the \Star Wars" movie document5 The Movie DatasetWe applies the algorithm to the Internet Movies Database (IMDb) at http://us.imdb.com to dis-cover typical structures of movies documents. As of June 1998, IMDb covers more than 150,000movies, over 2,250,000 �lmography entries, and over 560,000 people. All information is organizedinto HTML documents. Figure 14 shows a segment of the movie document for \Star Wars" athttp://us.imdb.com/Title?Star+Wars+(1977). The reader can take a quick tour of the source athttp://us.imdb.com/tour. After randomly inspecting some movie titles, we found that some movieshave very little information documented, especially those that are very old or from non-Englishspeaking countries. To get movie titles that are su�ciently documented, we ran a query using con-dition (1950 � Released Y ear � 1998)^ (Country = USA) at http://us.imdb.com/list. In return,we got more than 20,000 movie titles. In the next step, we extracted important �elds from thesemovie documents and build the OEM graph. This requires a large number of automated requestsfrom a remote site. We selected only the �rst 5,000 of returned movie titles for our experiment.We wrote a pro�le to tell the extraction program what to extract in a particular context. This isnecessary because certain labels can appear in di�erent contexts and at di�erent levels and we donot want all of them. For example, Title of movies appears at level 1 as well as within each actorobjects, and if we are not interested in the movies in which an actor acts, we can ignore Title labelswithin actor objects. A movie usually has many actors, but we restricted to only \active" actors,which we de�ned as the top 5 actors in each movie (by the way, actors are listed in the order ofcredits in the source). We ignored certain links such as Costume Design, Sound Mix, Languageand all links to images. The top part of Figure 15 shows the full structure of a movie documentfrom the perspective of our experiment.We set MINISUP to 50% and �nd the two maximally frequent tree-expressions in Figure 1527



(? is omitted for simplicity). In Pattern 1, none ofDirector, Producer,Writer, Editor, Composer,Cinematographer individually has enough support for the substructureBio : fBorn Y ear; Born Whereg.In Pattern 2, the wild-card label ? matches any of these labels, thus, this substructure is found.There are many non-maximally frequent tree-expressions and such tree-expressions usually havemuch higher supports. For example, every movie document has labels Title, Released Y ear,Country, and Director, thus fTitle; Released Y ear; Country;Directorg has 100% support. Dis-covered tree-expressions can be stored and retrieved through a query interface. One can retrievesuch information to gain the general information content of the movie source, or to discover thevocabulary and structure of the source, or to �nd out statistics of missing or known information(such as Born Y ear and Bore Where of actors). Often, it is useful to keep track of the identi�ersof movie documents that support each typical structure, i.e., URL addresses in this case. This canbe easily incorporated into our algorithm when counting the support of each candidate.6 Related WorkOur work is related to mining association rules from a collection of baskets of items (called trans-actions) [AIS93, AS94]. An example of association rules is \if a customer buys diapers, he/she alsobuys beer with 80% con�dence". The core of the association rule problem is �nding all itemsetsthat are contained in at least some number of baskets. A larger candidate itemset is constructedby joining two smaller frequent itemsets and the support is computed by testing containment ofthe candidate in baskets. Our work has some important di�erences. Unlike a at basket, subobjectreferences in an object can be hierarchical, labeled, ordered, and cyclic; and unlike an itemset, atree-expression has a tree-like structure, and constructing tree-expressions and counting supportrequire more than joining at sets and testing set containment. Also, the rich data in our frame-work requires new pruning strategies. Finally, the use of the wild-card label makes our problemvery di�erent from the association rule problem.There are some works on discovering structural information from semistructured data. [NAM97]discovered the type of objects (i.e., sets of labels) based on the relative importance of labels ina larger set and constructs the type hierarchy. The type hierarchy is a lattice organization ofdiscovered types ordered by the standard set containment, therefore, very di�erent from a tree-expression that generalizes the subobject relationship in the original data. [NUWC97] extractedthe schema in a single graph structure. We considered \schemas" that are repeated in a number ofgraph structures. Consequently, we have to deal with the interestingness of substructures such ascon�dence and support. [SLLL97] derived a uniform object-oriented database schema for multipleobjects. They �rst �nd the hierarchy for each object and merge them into a global schema. Wedo not construct any global schema. Instead, we discover \typical" substructures of objects. Mostinformation extraction systems treat an object as a collection of keywords. We treat an object asa structure of labels, like those found on the Web. Preliminary versions of our work were reportedin [WL97, WL98]. Beyond [WL97, WL98], we have shown that each tree-expression is generatedonly once (Theorem 3.3), and we have included the full version of the experimental results.28



The full structure:{Title,Country,Released_Year,Award,Production,Genre:{Keyword},Director:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},Cast:{Actor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},Actor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},Actor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},Actor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},Actor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}}},Writer:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},Cinematographer:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},Producer:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},Editor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}},Distributor:{Category,Bio:{Born_Year,Born_Where,Award,Spouse}}}Pattern 1 (support = 61.7%):{Title, Released_Year,Country,Genre:{Keyword},Director:{Category},Cast:{Actor:{Bio:{Born_Year,Born_Where,Spouse},Category},Actor:{Bio:{Born_Year,Born_Where},Category},Actor:{Category},Actor:{Category},Actor},Producer:{Category}}.Pattern 2 (support = 50.2%):{Title, Released_Year,Country,Genre:{Keyword},Cast:{Actor:{Bio:{Born_Year,Born_Where,Spouse},Category},Actor:{Bio:{Born_Year,Born_Where},Category},Actor:{Category},Actor:{Category},Actor},?:{Bio:{Born_Year,Born_Where},Category}}.Figure 15: The full structure and maximally frequent tree-expressions29



7 ConclusionAs the amount of data available on-line grows rapidly, most references to important �elds arelabeled and hierarchical (sometimes also ordered and cyclic). The label of a reference tells the roleof the �eld and the hierarchy of references tells how the information is structured in the source.Traditional data mining methods have treated an object (such as a document) as either a set or alist of items and have not explored internal structures of objects. Our treatment of structures isbased on the observation that many objects containing the same type of information are similarlystructured, though not identically structured. Typical (sub)structures shared by a large numberof objects reveal general information content and representation of the source, and discoveringsuch structures is important for both the end user and the source builder. We have de�ned thediscovery problem and proposed a solution based on a new representation of search space. Thee�ciency and e�ectiveness were evaluated on both synthetic datasets and real datasets. Traditionalinformation access tends to emphasize the narrowly speci�ed querying and the largely dis-orientedbrowsing approaches. The approach of mining typical structures of objects provides an alternativeto information access.Acknowledgement. The authors would like to thank the anonymous referees for providingmany useful comments.References[Abi97] S. Abiteboul, \Querying semi-structured data", ICDE 1997 (http://www-db.stanford.edu/pub/papers/icdt97.semistructured.ps)[AIS93] R. Agrawal, T. Imielinski, A. Swami, \Mining association rules between sets of itemsin large databases", SIGMOD 1993, 207-216[AS94] R. Agrawal and R. Srikant, \Fast algorithms for mining association rules", VLDB1994, 487-499[BDH96] P. Buneman, S. Davidson, G. Hillebrand, D. Suciu, \A query language and optimiza-tion techniques for unstructured data", SIGMOD 1996, 505-516[KS95] D. Konopnicki, O. Shmueli, \W3QS: A query system for the World-Wide Web",VLDB 1995, 54-65[HB97] S.B. Hu�man, C. Baudin, \Toward structured retrieval in semi-structured informationspaces", IJCAI 1997, 751-756[MMM96] A.O. Mendelzon, G.A. Mihaila, T. Milo, \Querying the World Wide Web", PDIS1996 (ftp://ftp.db.toronto.edu/pub/papers/pdis96.ps.gz)[NAM97] S. Nestorov, S. Abiteboul, R. Motwani, \Inferring structure in semistructured data",Proceeding of the Workshop on Management of Semistructured Data, Tucson, May1997, 42-48. See [Work97] 30
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