
Discovering symbolic policies with deep reinforcement learning

Mikel Landajuela * 1 Brenden K. Petersen * 1 Sookyung Kim * 1 Claudio P. Santiago 1 Ruben Glatt 1

T. Nathan Mundhenk 1 Jacob F. Pettit 1 Daniel M. Faissol 1

Abstract

Deep reinforcement learning (DRL) has proven

successful for many difficult control problems by

learning policies represented by neural networks.

However, the complexity of neural network-based

policies—involving thousands of composed non-

linear operators—can render them problematic to

understand, trust, and deploy. In contrast, simple

policies comprising short symbolic expressions

can facilitate human understanding, while also

being transparent and exhibiting predictable be-

havior. To this end, we propose deep symbolic

policy, a novel approach to directly search the

space of symbolic policies. We use an autoregres-

sive recurrent neural network to generate control

policies represented by tractable mathematical

expressions, employing a risk-seeking policy gra-

dient to maximize performance of the generated

policies. To scale to environments with multi-

dimensional action spaces, we propose an “an-

choring” algorithm that distills pre-trained neural

network-based policies into fully symbolic poli-

cies, one action dimension at a time. We also

introduce two novel methods to improve explo-

ration in DRL-based combinatorial optimization,

building on ideas of entropy regularization and

distribution initialization. Despite their dramat-

ically reduced complexity, we demonstrate that

discovered symbolic policies outperform seven

state-of-the-art DRL algorithms in terms of aver-

age rank and average normalized episodic reward

across eight benchmark environments.

1. Introduction

Deep reinforcement learning (DRL) has shown remarkable

success in the last few years in solving a wide-range of

*Equal contribution 1Lawrence Livermore National Labora-
tory, Livermore, California, USA. Correspondence to: Brenden K.
Petersen <bp@llnl.gov>.

Proceedings of the 38
th International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1: Algorithm overview. (Top) The Policy Generator

samples an example expression. (Middle) The current policy

is a construct of previously learned symbolic policies, the

current sample, and an anchor model. (Bottom) The Policy

Evaluator applies the policy to the environment, and the

reward is used to train the Policy Generator. The algorithm

learns actions sequentially until all n actions are symbolic

and the anchor model is discarded.

difficult control problems (Collins et al., 2005; Mnih et al.,

2015; 2016; Pettit et al., 2019; Glatt et al., 2020). DRL

owes much of its success to recent advances in training deep

neural networks (NNs), which are commonly employed as

function approximators for an RL policy (Rumelhart et al.,

1985; Hinton et al., 2012; LeCun et al., 2015). However,

NN-based policies exhibit complex functional forms, in-

volving thousands of nested non-linear operators and affine

transformations. This complexity poses a significant barrier

to deployment of DRL policies in real-world settings due

to the difficulty to understand, verify, trust, and predict the

behavior of the RL agent. These challenges are particu-

larly relevant for medical domains, in which “black-box”

Discovering symbolic policies with deep reinforcement learning

NN-based models are unacceptable (Tu, 1996; Dayhoff &

DeLeo, 2001; London, 2019).

In contrast, traditional approaches in mathematical physics

and control theory often yield simple controllers with com-

pact functional forms. Such controllers can be remarkably

effective, perhaps because they leverage the “unreasonable

effectiveness of mathematics;” that is, their use of symbolic

operators captures the regularities and general principles

found in nature (Wigner, 1995). From the learning per-

spective, the use of symbolic operators can be regarded as

enforcing a strong form of regularization, one that constrains

the model to be expressed in a succinct symbolic form.

In light of this, we propose a learning framework called

Deep Symbolic Policy (DSP) in which we directly search

the space of tractable mathematical expressions to be used

as control policies for RL environments with continuous

action spaces. Learning policies represented by tractable

mathematical expressions affords several desirable features:

(1) Interpretability. Insights from concise mathematical

expressions can often be gleaned by inspection. Further,

we demonstrate that when transition dynamics are known,

formal stability analysis can be conducted. (2) Generaliz-

ability. As we will demonstrate, symbolic policies can be

effective at generalizing to continuous-time settings, even

when trained in discretized, simulated environments. (3)

Deployability. Symbolic policies are “small and fast”; that

is, they are easily deployable in real-world settings where

the need for specialized hardware, the memory footprint of

the policy, and latency in executing the policy can be cru-

cial limiting factors. (4) Transparency and Verifiability.

In contrast to neural network-based policies, which can be

difficult to reproduce, symbolic policy performance is easily

verifiable using just a few lines of code, and the policy ex-

hibits readily predictable behavior. (5) Performance. One

might expect a notable reduction in performance when using

symbolic policies compared to highly complex NN-based

policies. However, we demonstrate that symbolic policies

exhibit surprisingly robust performance, competitive with

NN-based policies.

As depicted in Figure 1, our approach involves a Policy

Generator that creates mathematical expressions to be used

directly as control policies, and a Policy Evaluator that

evaluates the policies by running episodes in the simulated

environment. The reward from the environment (inner RL

loop) is then used as a learning signal to train the Policy

Generator via policy gradients (outer RL loop). To scale the

approach to problems with multiple actions, we develop a

novel model distillation technique that leverages pre-trained

DRL policies to “anchor” the symbolic policy being learned.

The NN-based anchor model serves as a temporary surrogate

that is removed one dimension at a time; the final product is

a fully symbolic policy without any NN-based dimension.

We demonstrate our approach on a series of continuous con-

trol benchmark environments. Despite being dramatically

less complex than NN-based DRL policies, the discovered

symbolic policies achieve the highest normalized episodic

reward, highest average rank, and lowest worst-case rank

across eight benchmark environments compared to seven

DRL algorithms. We summarize our contributions as:

• A gradient-based approach that searches the space of

symbolic control policies directly within the RL loop.

• A novel model distillation algorithm to scale to envi-

ronments with multidimensional action spaces.

• Two novel exploration techniques applicable to using

DRL for combinatorial optimization: a hierarchical

entropy regularizer to avoid premature convergence on

the first few tokens, and a soft length prior to promote

exploration over sequence lengths.

• Discovering symbolic policies that outperform stan-

dard DRL algorithms in terms of average normalized

episodic reward across benchmark environments.

• Provably stable symbolic policies (with respect to vari-

ations in initial conditions) for the three environments

in which transition dynamics are known.

2. Related Work

Interpretability in RL. Recently, a number of works have

been proposed to address interpretability in RL via symbolic

representation of policies. Several studies learn policies rep-

resented by decision trees (Ernst et al., 2005; Gupta et al.,

2015; Liu et al., 2018; Bastani et al., 2018; Coppens et al.,

2019; Roth et al., 2019). A common approach for this is

model compression, or distilling a DRL model into a deci-

sion tree policy (Gupta et al., 2015; Liu et al., 2018; Bastani

et al., 2018; Coppens et al., 2019). Decision tree-based ap-

proaches apply to control environments with discrete action

spaces.

Several works have been proposed to use symbolic regres-

sion as a means of obtaining symbolic policies (Kubalı́k

et al., 2017; Hein et al., 2018). Kubalı́k et al. (2017) use

genetic programming to symbolically approximate a pol-

icy obtained via classical control methods. However, this

approach requires access to the underlying dynamics equa-

tions. This limitation is removed in Hein et al. (2018), where

the authors proposed to learn a world model and use it to

guide a symbolic regression algorithm based on genetic pro-

gramming. In their results, the discovered symbolic polices

suffered from a decrease in performance when compared

to a NN policy trained using a single RL algorithm. Re-

cently, Verma et al. (2018) use program synthesis to learn

explainable policies, relying on model distillation from a

Discovering symbolic policies with deep reinforcement learning

pre-trained DRL policy. In (Wilson et al., 2018), the authors

evolve effective programs for Atari game playing using

Cartesian Genetic Programming. While their strategies are

fully interpretable, they might end up in local optima and

avoid more complex strategies.

The model distillation and regression-based approaches dis-

cussed above share a common issue: there is an objective

mismatch between the training objective and the evaluation

metric. Namely, training uses some form of supervised

learning—using data sampled from a pre-trained model—to

“mimic” a pre-trained “oracle” policy. However, the final

evaluation metric is the RL objective: obtaining high re-

ward when executed in the environment. We demonstrate

that regression-based approaches often lead to catastrophic

failure. In contrast, DSP is trained directly by the reward

coming from the environment; thus, there is no objective

mismatch. While DSP includes an “anchor” model for envi-

ronments with multidimensional action spaces, the learning

signal is still always directly tied to to the symbolic policy’s

performance in the environment.

AutoML. DSP also has parallels to automated machine

learning (AutoML) and structure optimization methods, in

which an autoregressive RNN is used to define a distribu-

tion over discrete objects, followed by RL to optimize this

distribution under a black-box performance metric (Zoph

& Le, 2016; Bello et al., 2017; Ramachandran et al., 2017;

Abolafia et al., 2018; Pham et al., 2018). More recently,

Petersen et al. (2021) proposed an RNN-based approach for

symbolic regression and a risk-seeking policy gradient that

optimizes for best-case performance. Here, we build upon

these combinatorial optimization frameworks by introduc-

ing two novel methods to improve exploration. Further, our

anchoring algorithm allows us to jointly optimize multiple

dependent discrete objects (i.e. multiple action dimensions),

whereas works described above are limited to single-object

tasks.

3. Deep Symbolic Policy

As illustrated in Figure 1, our overall approach involves two

main components: 1) the Policy Generator, which creates

mathematical expressions (represented as a sequence of to-

kens) to be used as control policies in an RL environment,

and 2) the Policy Evaluator, which examines the perfor-

mance of the generated policy by playing multiple episodes

of the environment and outputting the average episodic re-

ward. The output from the Policy Evaluator is then used as

a reward signal to train the Policy Generator using a risk-

seeking policy gradient (Petersen et al., 2021). Repeating

this process, the Policy Generator is iteratively trained to

generate better-performing policies.

Pseudocode for DSP with the anchoring algorithm is

provided in the Appendix. Source code is made available at

https://www.github.com/brendenpetersen/

deep-symbolic-optimization.

Policy Generator. The Policy Generator models a distri-

bution over mathematical expressions. Expressions can be

sampled and directly used as control policies for an RL envi-

ronment. Each sampled expression is a function f : S → R,

where S is the environment’s observation space. Before

we describe the generative process for f , we first note that

expressions can be represented as symbolic expression trees,

a type of binary tree in which internal nodes are mathe-

matical operators and terminal nodes are input variables or

constants. Operators may be unary (i.e. one argument, such

as sine) or binary (i.e. two arguments, such as multiply).

Further, we can represent an expression tree as a sequence

of nodes by using its pre-order traversal (i.e. by visiting

each node depth-first, then left-to-right). This allows us to

generate an expression tree sequentially while still main-

taining a one-to-one correspondence between the tree and

its traversal. Thus, we define our search space as a discrete

sequence of “tokens” representing operators, input variables,

and constants. Tokens are selected from a library L, e.g.

{+,×, sin, s1, s2, 0.1, 5.0}, where si corresponds to the ith
dimension of an environment’s observation space. We de-

note the sequence of tokens as τ , whereas its instantiation

as an expression is denoted f .

Now that the search is reduced to a discrete sequence, we

leverage an idea from AutoML works that optimize distri-

butions over sequences using an autoregressive recurrent

neural network (RNN) (Zoph & Le, 2016; Ramachandran

et al., 2017; Bello et al., 2017; Pham et al., 2018; Petersen

et al., 2021). The sampling process begins with an empty

tree. The RNN emits a categorical distribution over the

tokens in L, a token is sampled, and it is added to the ex-

pression tree. Typically, the next input to the RNN would be

a representation of the previously sampled token. To better

capture the hierarchical nature of the expression tree, we

instead feed a representation of the parent and sibling token

as the next input to the RNN (an “empty” token is used for

nodes without a parent or sibling). This process repeats until

the expression tree is complete (i.e. all tree branches reach

terminal nodes).

Thus, each token is sampled from a categorical distribution

(i.e. the RNN emission) that is conditionally independent

given the previous tokens (i.e. RNN inputs and cell state).

The likelihood for the ith token of the traversal τi is given by:

p(τi|τ1:(i−1); θ) = ψ
(i)
L(τi)

, where θ are the RNN parameters,

ψ(i) is the ith emission of the RNN (corresponding to the

probabilities over tokens), and L(τi) is the index in L corre-

sponding to token τi. The likelihood of the entire sampled

expression τ (used in the policy gradient during training)

is computed using the chain rule of conditional probabil-

https://www.github.com/brendenpetersen/deep-symbolic-optimization
https://www.github.com/brendenpetersen/deep-symbolic-optimization

Discovering symbolic policies with deep reinforcement learning

ity: p(τ |θ) =
∏|τ |
i=1 p(τi|τ1:(i−1); θ) =

∏|τ |
i=1 ψ

(i)
L(τi)

. An

example of the sampling process is shown in Figure 1(Top).

In situ constraints. A benefit to autoregressive sampling

is the ability to efficiently encode domain knowledge by

imposing constraints directly on the search space. Specifi-

cally, we can introduce a broad class of in situ constraints in

which one only has to be able to determine which tokens are

disallowed at any point along the traversal. This is done by

simply zeroing out the probability of selecting a token that

would violate a constraint before sampling. This process

ensures that all samples adhere to all constraints in situ (con-

currently with sampling), without the need to reject samples

post hoc. To improve the interpretability of the obtained ex-

pressions, we impose several constraints: (1) The length of

each expression is constrained to fall between a pre-defined

minimum and maximum length. (2) We prohibit the child of

an unary operator to be the inverse of that operator, such as

log(exp(·)). (3) For simplicity, we prohibit nested trigono-

metric operators, such as sin(1 + cos(·)). (4) To prevent

trivial policies, we ensure each expression includes at least

one input variable.

Policy Evaluator. Given a sequence τ from the Policy

Generator, we instantiate the corresponding mathematical

expression f . We then employ f directly as the control pol-

icy for a reinforcement learning environment: a = f(s) (we

address multi-action environments later). To evaluate the

quality of the policy, we run multiple episodes of the envi-

ronment (inner RL loop) and compute the average episodic

reward inside the environment. This result is then used as

the reward signal to train the Policy Generator using RL

(outer RL loop). The Policy Generator’s reward function is

given by:

R(τ) =
1

N

N
∑

i=1

T (i)
∑

t=1

r
(i)
t ,

where T (i) is the length of episode i, N is the number of

episodes, and r
(i)
t is the instantaneous reward of episode i at

time step t when using the symbolic policy corresponding

to τ .

Training with risk-seeking policy gradients. The reward

function from the Policy Evaluator is non-differentiable, as

it comes from the control environment. Thus, we turn to RL

to optimize the Policy Generator. Typically, autoregressive

models with black-box reward functions use the standard

REINFORCE policy gradient (Williams, 1992; Zoph & Le,

2016; Ramachandran et al., 2017; Bello et al., 2017), which

optimizes the objective given by:

J(θ) = Eτ∼p(τ |θ) [R(τ)] . (1)

Notably, optimizing J(θ) maximizes expected reward un-

der the distribution. However, as in most AutoML tasks,

we seek the single or few best performing samples from

the distribution. That is, in the end, we seek the single

best-performing symbolic policy sampled from our Policy

Generator. Thus, we adopt the risk-seeking policy gradi-

ent by Petersen et al. (2021), a modified policy gradient

that optimizes for best-case performance. Specifically, the

objective function is given by:

Jrisk(θ; ǫ) = Eτ∼p(τ |θ) [R(τ) | R(τ) ≥ Rǫ(θ)] , (2)

where ǫ is a hyperparameter controlling the degree of risk-

seeking andRǫ(θ) is the (1−ǫ) quantile of rewards. Similar

to the standard REINFORCE policy gradient, the gradient

of this objective can be approximated using a simple Monte

Carlo estimate (see Petersen et al. (2021) for details).

Constant optimization. The library L includes pre-

specified real-valued constants as tokens (specifically, 0.1,

1.0, and 5.0). The Policy Generator can compose these

tokens using various operators to generate new values; how-

ever, it is unlikely to find locally optimal constant values. To

further optimize the learned symbolic policies, we fine-tune

the real-valued constants (see the Appendix for details). We

perform constant optimization only once per environment

on the best-performing symbolic policy.

4. Scaling Up to Multiple Action Dimensions

So far, we have discussed DSP in the context of RL environ-

ments with a single-dimensional action space, i.e. A ∈ R.

However, many environments exhibit n-dimensional action

spaces, i.e. A ∈ R
n. One possible solution to scale to

multi-dimensional action spaces would be to use the Policy

Generator to generate n expressions sequentially. A sin-

gle sample would then correspond to {f1, . . . , fn}, where

the ith action ai is given by ai = fi(s). However, this

approach scales very poorly with n. Consider a library L
of size |L|, a maximum sequence length (per expression)

of k, and an environment with A ∈ R
n. The size of this

combinatorial action space is upper-bounded by O(|L|nk),
i.e. it scales exponentially with n for a problem that already

scales exponentially with k.

To circumvent this combinatorial explosion, we propose a

novel model distillation approach that reduces the search to

n sub-problems each with size O(|L|k). We leverage an ex-

isting pre-trained policy model (e.g. a neural-network based

policy trained using an existing DRL algorithm) which we

refer to as an anchor model Ψ : S → A. The proposed pro-

cess for learning a purely symbolic policy in an environment

with A ∈ R
n then involves n sequential—but dependent—

rounds of DSP. In the first round, DSP learns a “sub-policy”

f1 : S → R, which is used to determine the value of the

first action: a1 = f1(s). In the Policy Evaluator, actions

for the remaining actions are determined using the anchor

model: ai = Ψ(s)i∀ i ∈ {2, . . . , n}, where Ψ(s)i repre-

Discovering symbolic policies with deep reinforcement learning

sents the ith element of the vector Ψ(s). The final result of

this first round of DSP training is f⋆1 , the best expression

found during training. For the next round of DSP, we treat

f⋆1 as fixed, which we emphasize using the notation f̄1.

In the second round of DSP, the sub-policy f2 (used to com-

pute a2) becomes the learning target; f̄1 is used to compute

a1, and the anchor model is used to compute the remaining

actions a3, . . . , an. This process continues until the policy

is fully symbolic. In general, for round i of DSP, the first

i − 1 actions are computed using fixed symbolic policies

f̄1, . . . , f̄i−1, the learning target fi is used to compute ai,
and the anchor model is used to compute the remaining

actions ai+1, . . . , an. Thus, in the final round of DSP (just

as in the only round of DSP for single-dimensional action

spaces), the anchor model is not used at all. In essence, the

anchor model acts like a “ladder”: each “rung” (i.e. action

dimension) is discarded after the algorithm has climbed it;

by the end of the algorithm, the entire ladder is removed.

Pseudocode for DSP including the anchoring algorithm is

provided in the Appendix. The intuition behind the anchor-

ing process is that it allows DSP to focus learning on a single

action dimension at a time, while still “grounding” or “an-

choring” the learning process for all other action dimensions

using Ψ and/or f̄i.

5. Improving Exploration

The RNN-based policy gradient setup described above is

a powerful way to search in the combinatorial space of ex-

pression trees (Bello et al., 2017). However, we show that

it can suffer from an early commitment phenomenon and

from initialization bias, both of which limit exploration. To

address these issues, we present two novel exploration tech-

niques for RNN-based neural-guided search: hierarchical

entropy regularizer and soft length prior.

We demonstrate the efficacy of each of these two contribu-

tions by performing ablation experiments (see Appendix).

Hierarchical entropy regularizer. Policy gradient meth-

ods typically include a “bonus” to the loss function propor-

tional to the entropy at each step of autoregressive sampling

(Haarnoja et al., 2018; Abolafia et al., 2018). More precisely,

the term

H(θ) = η Eτ∼p(τ |θ)





|τ |
∑

i=1

H[p(τi|τ1:(i−1); θ)



 (3)

is added to (1) or (2), where H[p(X)] =
−
∑

x∈X p(x) log p(x) is the entropy and η is a hy-

perparameter controlling the importance of the entropy

term. The entropy regularizer (3) promotes exploration and

helps prevent the RNN from converging prematurely to a

local optimum. Notably, (3) is simply a sum across time

0 200 400 600 800 1000
0

1

2

3

Em
pi

ric
al

 e
nt

ro
py

Standard entropy
i = 1
i = 2

i = 3
i = 4

i = 5
i = 6

0 200 400 600 800 1000
Training step

0

1

2

3

Em
pi

ric
al

 e
nt

ro
py

Hierarchical entropy

Figure 2: Evolution of the empirical entropy of the set

{τ
(j)
i }Mj=1 for 1 ≤ i ≤ 6 with standard H (top) and hierar-

chical Hγ (bottom) entropy regularizer on InvertedPendu-

lumSwingup with η = 0.02. Results are averaged over 10

independent runs.

Figure 3: Initial distributions over expression lengths under

the Policy Generator without (top) or with (bottom) the soft

length prior (λ = 10, σ2 = 20).

steps i; thus, all time steps contribute equally.

When optimizing discrete sequences (or navigating RL en-

vironments with deterministic transition dynamics), each

sequence can be viewed as a path through an underlying

search tree. Due to the hierarchical nature of this tree, it

is much easier to achieve high entropy at later time steps,

which are far less explored. This causes the sum in (3) to

be concentrated in the later terms, while the earliest terms

can quickly approach zero entropy. When this happens,

the RNN stops exploring early tokens entirely and thus en-

tire branches of the search space, which can greatly hinder

performance. This phenomenon, which we refer to as the

“early commitment problem,” can be observed empirically,

as shown in Figure 2 (top). Note that the entropy of the first

token of the sequence drops to zero early on in training.

Discovering symbolic policies with deep reinforcement learning

Table 1: Best discovered symbolic policies before (DSP) and after (DSPo) optimizing constants.

Environment DSP DSPo

CartPole a1 = 10s3 + s4 a1 = 10.03s3 + 0.45s4

MountainCar a1 = − 0.62
log(s2)

a1 = − 0.601
log(s2)

Pendulum a1 = −2s2 −
8s2+2s3

s1
a1 = −7.08s2 −

13.39s2+3.12s3
s1

+ 0.27

InvDoublePend a1 = −12.2s8 a1 = −12.23s8

InvPendSwingup
a1 = s1 + 5s4 + s5 + s6 + sin (s2) a1 = s1 + 5s4 + s5 + s6 + sin (s2)

+ sin (s2 + s4 + s5) + 0.19 + sin (s2 + s4 + s5) + 0.21

LunarLander
a1 = −10s2 + sin(s3)− 14s4 − 1.99 a1 = −5.99s2 + 0.76 sin(s3)− 9.80s4 − 1.35

a2 = −5.79 s4
s6−s3

a2 = −3.49 s4
s6−s3

Hopper

a1 = exp
(

s6
s10

sec
(

s1s2s14
s1+s4−s8

))

a1 = 1.09 exp
(

s6
s10

sec
(

s1s2s14
s1+s4−s8

))

− 0.02

a2 = −5s4 − 2s6 − 6s8 − s11 + cos (s4)
a2 = −6.22s4 − 2.49s6 − 7.47s8

−1.24s11 + 1.24 cos (s4)− 0.03

a3 = cos(s13)
s11+sin(s1)

a3 = 1.03 cos(s13)
s11+sin(s1)

BipedalWalker

a1 = s1 − s8 − s9 − 2s11 + s24
a1 = 0.03s1 − 0.03s8 − 0.03s9 − 0.1s11

+0.03s24 + 0.11

a2 = sin(2s3−s7)
s22−sin(s3)+cos (s7)

− s7 a2 = 0.9 sin (3.12s3−s7)
s22−sin (s3)+cos (s7)

− 0.9s7 − 0.4

a3 = s3 − s10 − sin (s12)− cos (2s10)
a3 = 1.14s3 − 1.14s10 − 1.14 sin (s12)

−1.14 cos (1.95s10)− 0.22

a4 = s10
s2

(

s22 −
e
s2

+ log (s2) + 5
)

a4 = 0.18 s10
s2

(

s22 −
e
s2

+ log (s2) + 3.28
)

+ 3.24

We propose a simple change to combat the early commit-

ment problem: replacing the sum in (3) with a weighted

sum whose weights decay exponentially:

Hγ(θ) =ηEτ∼p(τ |θ)





|τ |
∑

i=1

γi−1H[p(τi|τ1:(i−1); θ)



 . (4)

Using (4) encourages the RNN to perpetually explore even

the earliest terms. In Figure 2 (bottom), we demonstrate

the effectiveness of this hierarchical entropy regularizer in

ensuring that the RNN maintains diversity across tokens

during the course of training.

Soft length prior. Before training begins, using zero-

weight initializers, the RNN emissions ψ(i) start at zero.

Thus, the probability distribution over tokens is uniform:

p(τi) =
1
|L|∀ τi ∈ L. We can inform this starting distribu-

tion by including a prior, i.e. by adding a logit vector ψ◦ to

each RNN emission ψ(i). For example, we can ensure that

the prior probability of choosing a binary, unary, or terminal

token is equal (regardless of the number of each type of

token in the library) by solving for ψ◦ below:

softmax(ψ◦) =

(

1

3n2

)

n2

‖

(

1

3n1

)

n1

‖

(

1

3n0

)

n0

,

where the tokens corresponding to ψ◦ are sorted by decreas-

ing arity, (·)n denotes that element (·) is repeated n times,

‖ denotes vector concatenation, and n2, n1, and n0 are the

number of binary, unary, and terminal tokens in L, respec-

tively. The solution is:

ψ◦ = (− log n2)n2
‖(− log n1)n1

‖(− log n0)n0
+ c,

where c is an arbitrary constant (see Appendix for proof).

Under the prior ψ◦, the distribution over expression lengths

is heavily skewed toward longer expressions. In particu-

lar, the expected expression length is Eτ∼ψ◦
[|τ |] = ∞ (see

Appendix for proof). In practice, a length constraint is ap-

plied; however, empirically this results in the vast majority

of expressions having length equal to the maximum allow-

able length. We show this empirically in Figure 3 (top).

This strong bias makes it very difficult for the distribution

to learn an appropriate expression length. To provide this

capability, we introduce an additional soft length prior to

the RNN’s ith emission:

ψ◦ =

(

−(i− λ)2

2σ2
1i>λ

)

n2

‖ (0)n1
‖

(

−(i− λ)2

2σ2
1i<λ

)

n0

,

where the tokens corresponding to ψ◦ are sorted by decreas-

ing arity, and λ and σ are hyperparameters. In probability

Discovering symbolic policies with deep reinforcement learning

Table 2: Performance comparison of symbolic policies discovered by DSP, DSPo, regression, and Zoo policies for seven

different DRL algorithms. Values are episodic rewards averaged over 1,000 episodes using a held-out set of environment

seeds (identical across algorithms). Zoo represents the average over the seven Zoo policies. †As an additional Regression

baseline for MountainCar, we evaluated the best symbolic policy reported by Hein et al. (2018), which has an average

episodic reward of 90.40.

Environment DSP DSPo Regression DDPG TRPO A2C PPO ACKTR SAC TD3 Zoo

CartPole 999.59 1000 211.82 1000 1000 1000 993.94 1000 971.78 997.98 994.81

MountainCar 99.09 99.11 95.16† 91.77 93.95 93.63 92.56 93.77 90.40 93.93 92.86
Pendulum -160.5 -155.4 -1206.9 -169.0 -147.6 -162.2 -154.8 -211.2 -159.3 -147.1 -164.4
InvDoublePend 9148.2 9149.9 637.2 8855.1 8854.8 8951.9 9225.5 7554.1 9313.8 9357.8 8873.3
InvPendSwingup 891.84 891.90 -19.21 891.34 892.51 67.52 853.38 890.34 891.47 889.33 767.98
LunarLander 251.66 261.36 56.08 246.24 168.79 227.08 225.12 245.39 272.65 225.35 230.09
Hopper 2090.2 2122.4 47.35 1632.7 2583.4 1925.1 2439.7 2456.7 2455.0 2741.9 2319.2
BipedalWalker 264.39 311.78 -110.77 94.21 311.08 241.01 286.20 299.32 307.26 310.19 264.18

Average rank 2.63 8.13 5.63 3.25 5.63 5.63 4.88 4.50 3.50
Worst rank 6 9 8 8 8 7 8 9 6

Average R̄ep 0.96 0.07 0.75 0.85 0.72 0.85 0.86 0.85 0.90

space, ψ◦ is a multiplicative Gaussian function applied to

either binary tokens (i > λ) or terminal tokens (i < λ).

Thus, it discourages expressions from being either too short

or too long. Figure 3 (bottom) shows that including this

prior results in a much smoother a priori distribution over

expression lengths. In contrast to the length constraint (i.e.

hard length prior) that forces each expression to fall be-

tween a pre-specified minimum and maximum length, the

soft length prior affords the Policy Generator the ability to

learn the optimal length; as shown in the Appendix, this

greatly improves learning.

6. Results and Discussion

Experimental setting. The Policy Generator is an

RNN comprising a single-layer LSTM with 32 hidden

units. For each action in the control task, we perform 3

independent training runs of DSP with different random

seeds, selecting the best symbolic policy at the end of

training. Thus, for environments with A ∈ R
n, we

perform 3n training runs and select the single best policy.

Since constant optimization is computationally expensive,

we perform it only once per environment on the best

found symbolic policy. All tasks use the library L =
{+,−,×,÷, sin, cos, exp, log, 0.1, 1.0, 5.0, s1, . . . , sn},

where si is the ith dimension of the environment’s

observation. When computing actions, the Policy Evaluator

replaces any infinite or undefined actions with zero, e.g. the

symbolic policy a1 = log(s1) returns log(s1) for s1 > 0
and 0 otherwise. We constrain the length of each expression

to fall between 4 and 30 tokens, inclusive.

Evaluation for all algorithms (DSP and all baselines) is

based on the average episodic reward across 1,000 episodes

with different random environment seeds. Notably, we eval-

uate all policies on the same held-out set of 1,000 random

environment seeds. The environment seed is largely used

to determine the environment’s initial state, and some seeds

can be significantly more challenging than others. Thus, this

step is crucial to ensure fair comparison across algorithms.

Performance comparisons. We evaluate DSP on eight

benchmark control tasks: five single-action environments

(CartPole, MountainCar, Pendulum, InvertedDoublePendu-

lum, and InvertedPendulumSwingup) and three multi-action

environments (LunarLander, Hopper, and BipedalWalker)1.

The best symbolic policies found for each environment are

reported in Table 1. We include results both before and

after constant optimization (labelled DSP and DSPo, respec-

tively).

The “Regression” baseline is computed using the following

workflow: (1) we generate an offline dataset of observation-

action trajectories from the top-performing pre-trained Zoo

policy (described below); (2) we perform symbolic regres-

sion on the offline dataset using deep symbolic regres-

sion (Petersen et al., 2021) and select the expression with

the lowest error for each action; (3) we evaluate the best

symbolic expressions in the environments described above.

Additional details for this baseline are provided in the Ap-

pendix.

Aside from MountainCar, results from the Regression base-

line are catastrophic. This demonstrates the subtle yet cru-

1Specifically, we use CartPoleContinuous-v0 from https:

//gist.github.com/iandanforth; MountainCarContin-
uous-v0, Pendulum-v0, LunarLanderContinuous-v2, and Bipedal-
Walker-v2 from OpenAI Gym (Brockman et al., 2016); and In-
vertedDoublePendulumBulletEnv-v0, InvertedPendulumSwingup-
BulletEnv-v0, and HopperBulletEnv-v0 from PyBullet (Coumans
& Bai, 2016).

https://gist.github.com/iandanforth
https://gist.github.com/iandanforth

Discovering symbolic policies with deep reinforcement learning

cial flaw with a regression-based approach: there is an ob-

jective function mismatch between the regression objective

(minimizing prediction error) and the control objective (ob-

taining high reward in the environment). In other words,

small errors in regression do not necessarily correspond

to small decreases in performance when evaluated in the

environment. While it can be effective for simple environ-

ments like MountainCar (as verified by Hein et al. (2018)),

we believe that a regression-based approach is ultimately

fundamentally flawed.

As a much stronger baseline, we compare to seven state-

of-the-art DRL algorithms: DDPG, TRPO, A2C, PPO,

ACKTR, SAC, and TD3 (Lillicrap et al., 2015; Schulman

et al., 2015; Mnih et al., 2016; Schulman et al., 2017; Wu

et al., 2017; Haarnoja et al., 2018; Fujimoto et al., 2018).

We leverage Zoo, an open-source repository containing pre-

trained DRL policies that have been individually tuned for

each environment.2

In Table 2, we report the evaluation average episodic rewards

for DSP, DSPo (i.e., DSP with optimization of constants),

the Regression baseline, and the seven DRL baselines. To

enable comparison across environments, we report average

rank, worst-case rank, and average normalized episodic re-

ward, computed as R̄ep = (score − min)/(max−min),
where min and max are computed for each environment

across all algorithms. Additional results for the interme-

diate hybrid policies in the multi-action environments are

provided in the Appendix. Remarkably, despite the dramati-

cally lower complexity of symbolic policies, DSP performs

well across environments, yielding the highest average rank,

highest average normalized episodic reward, and best worst-

case rank (tied with TD3) compared to all baselines. Further,

DSP outperforms the average across Zoo policies (Zoo) for

all environments except Hopper.

The reduced complexity of the symbolic policies discov-

ered by DSP can be seen very clearly in Figure 4 for three

environments. Analogous heatmaps for all environments

are provided in the Appendix. Videos of the discovered

symbolic policies in Table 1 deployed in each environment

are available in the multimedia Appendix.

Stability analysis. In this section, we analyze the stabil-

ity of the discovered symbolic policy for CartPole. We

repeat this analysis for Pendulum and MountainCar, the

other two environments with state transition dynamics that

can be written as tractable dynamical systems, in the Ap-

pendix. For each environment, we apply the discovered

policy into the corresponding dynamical system and evalu-

ate the stability of the system at equilibrium points, using

standard eigenvalue analysis (Lee & Markus, 1967; Brun-

2A subset of environment-algorithm combinations did not have
pre-trained Zoo policies; in these cases, we manually trained Zoo
policies using training scripts from the Zoo repository.

Anchor RegressionDSP

M
o
u
n
ta
in
C
ar

P
en
d
u
lu
m

In
v
P
en
d
u
lu
m
S
w
in
g
u
p

Figure 4: Heatmaps of actions computed from the anchor

model (middle column), symbolic policy learned by DSP

(left column), and the symbolic policy learned by regression

on data generated from the anchor model (right column) in

select environments.

-1.0 -0.5 0.5 1.0
θ

-1.0

-0.5

0.5

1.0

θ′

-1.0 -0.5 0.5 1.0
θ

-1.0

-0.5

0.5

1.0

θ′

Figure 5: Phase portrait of the uncontrolled (left) and con-

trolled (right) cart pole system (x = 0, x′ = 0). The con-

trolled system is using the policy discovered by DSP.

ton & Kutz, 2019). For comparison, we also present the

analysis of the uncontrolled systems (i.e., taking the action

to be identically zero over time). We demonstrate that the

CartPole policy is stable in the continuous system, even

though it was only trained in the discretized version of the

transition dynamics (i.e. the discrete time Markov Decision

Process emerging from first-order Euler time discretization

of the differential equations). This suggests that the use

of symbolic policies trained in discrete-time settings (i.e.

simulated environments) can still generalize well even in

their real-world continuous time counterparts (for which the

state transition dynamics are deterministic and described by

ordinary differential equations),

The continuous dynamics of the CartPole environment are

Discovering symbolic policies with deep reinforcement learning

defined in (Barto et al., 1983):

x
′′

(t) =
8u(t) + 2m sin(θ(t))

(

4lθ′(t)2 − 3g cos(θ(t))
)

8mc − 3m cos(2θ(t)) + 5m
,

θ
′′

(t) =
g sin(θ(t)) −

cos(θ(t))
(

a1(t)+lmθ
′(t)2 sin(θ(t))

)

mc+m

l
(

4
3 −

m cos2(θ(t))
mc+m

) , (5)

where g is gravitational acceleration, mc is the mass of

cart, m is the mass of pole, l is the half-pole length, x(t)
is the position of the cart, θ(t) is the angle with respect

the vertical axis and a1(t) is the action. The task in Cart-

Pole is to stabilize system (5) around the equilibrium point

seq = (x, x′, θ, θ′) = (0, 0, 0, 0). The point seq is a non-

stable equilibrium of the system, as one can check by taking

a1(t) = 0 in (5), linearizing the system around seq, and

computing the eigenvalues of the resulting matrix. This

procedure yields eigenvalues (−3.97, 3.97, 0, 0). Since the

second eigenvalue is positive, we conclude, using the Hart-

man–Grobman theorem (Grobman, 1959; Hartman, 1960),

that seq is an unstable equilibrium. If we instead use the pol-

icy discovered by DSP in Table 1 and repeat the above pro-

cedure, we obtain eigenvalues (−29.61,−14.3, 0, 0). Since

all eigenvalues are non-positive, we conclude, again using

the Hartman–Grobman theorem, that seq is a stable equi-

librium of the controlled system. Therefore, the policy

discovered by DSP controls the system by transforming seq

from an unstable equilibrium into a stable equilibrium. We

illustrate this in Figure 5 (left), which shows the robust-

ness of the discovered policy over a wide range of initial

conditions.

7. Conclusion

We introduce deep symbolic policy, a method for learning

symbolic control policies using neural-guided search. Our

framework includes a novel model distillation method to

scale the approach to environments with multi-dimensional

action spaces, and two novel exploration techniques appli-

cable to DRL for discrete optimization. We demonstrate

the approach on eight continuous control tasks, outperform-

ing highly-tuned, pre-trained NN-based policies in terms of

average rank and normalized episodic reward. Our gener-

ated policies offer the benefits of being readily interpretable,

cheaply deployable, highly transparent, and easily repro-

ducible. Moreover, when transition dynamics are available,

our symbolic control policies are shown to be provably sta-

ble. Our results suggest that symbolic policies can be a

strong alternative to NN-based policies, especially when

human interpretability is a desired feature or when deploy-

ment constraints (e.g. memory and latency requirements)

are important design criteria.

8. Acknowledgments

This work was performed under the auspices of the U.S. De-

partment of Energy by Lawrence Livermore National Lab-

oratory under contract DE-AC52-07NA27344. Lawrence

Livermore National Security, LLC. LLNL-CONF-822825.

References

Abolafia, D. A., Norouzi, M., Shen, J., Zhao, R., and Le,

Q. V. Neural program synthesis with priority queue train-

ing. arXiv preprint arXiv:1801.03526, 2018.

Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike

adaptive elements that can solve difficult learning con-

trol problems. IEEE transactions on systems, man, and

cybernetics, 13(5):834–846, 1983.

Bastani, O., Pu, Y., and Solar-Lezama, A. Verifiable rein-

forcement learning via policy extraction. In Advances in

neural information processing systems, 2018.

Bello, I., Zoph, B., Vasudevan, V., and Le, Q. V. Neural opti-

mizer search with reinforcement learning. In Proc. of the

International Conference on Machine Learning, 2017.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J., and Zaremba, W. Openai gym.

arXiv preprint arXiv:1606.01540, 2016.

Brunton, S. L. and Kutz, J. N. Data-driven science and

engineering: Machine learning, dynamical systems, and

control. Cambridge University Press, 2019.

Collins, S., Ruina, A., Tedrake, R., and Wisse, M. Effi-

cient bipedal robots based on passive-dynamic walkers.

Science, 307(5712):1082–1085, 2005.

Coppens, Y., Efthymiadis, K., Lenaerts, T., Nowé, A.,

Miller, T., Weber, R., and Magazzeni, D. Distilling deep

reinforcement learning policies in soft decision trees. In

Proc. of the IJCAI Workshop on Explainable Artificial

Intelligence, 2019.

Coumans, E. and Bai, Y. Pybullet, a python module for

physics simulation for games, robotics and machine learn-

ing. 2016.

Dayhoff, J. E. and DeLeo, J. M. Artificial neural net-

works: opening the black box. Cancer: Interdisciplinary

International Journal of the American Cancer Society, 91

(S8):1615–1635, 2001.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based

batch mode reinforcement learning. Journal of Machine

Learning Research, 6(4):503–556, 2005.

Discovering symbolic policies with deep reinforcement learning

Fujimoto, S., Van Hoof, H., and Meger, D. Address-

ing function approximation error in actor-critic methods.

arXiv:1802.09477, 2018.

Glatt, R., Da Silva, F. L., da Costa Bianchi, R. A., and Costa,

A. H. R. Decaf: Deep case-based policy inference for

knowledge transfer in reinforcement learning. Expert

Systems with Applications, 156:113420, 2020.

Grobman, D. M. Homeomorphism of systems of differential

equations. Doklady Akademii Nauk SSSR, 128(5):880–

881, 1959.

Gupta, U. D., Talvitie, E., and Bowling, M. Policy tree:

Adaptive representation for policy gradient. In AAAI

Conference on Artificial Intelligence, 2015.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-

critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor. arXiv:1801.01290, 2018.

Hartman, P. A lemma in the theory of structural sta-

bility of differential equations. Proc. of the American

Mathematical Society, 11(4):610–620, 1960.

Hein, D., Udluft, S., and Runkler, T. A. Interpretable poli-

cies for reinforcement learning by genetic programming.

Engineering Applications of Artificial Intelligence, 76:

158–169, 2018.

Hinton, G., Srivastava, N., and Swersky, K. Neural networks

for machine learning lecture 6a overview of mini-batch

gradient descent. Cited on, 14(8), 2012.

Kubalı́k, J., Alibekov, E., and Babuška, R. Optimal control

via reinforcement learning with symbolic policy approxi-

mation. IFAC-PapersOnLine, 50(1):4162–4167, 2017.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning.

Nature, 521(7553):436–444, 2015.

Lee, E. B. and Markus, L. Foundations of optimal control

theory. Technical report, Minnesota Univ Minneapolis

Center For Control Sciences, 1967.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,

Tassa, Y., Silver, D., and Wierstra, D. Continuous con-

trol with deep reinforcement learning. arXiv:1509.02971,

2015.

Liu, G., Schulte, O., Zhu, W., and Li, Q. To-

ward interpretable deep reinforcement learning with

linear model u-trees. In Joint European Conference

on Machine Learning and Knowledge Discovery in

Databases. Springer, 2018.

London, A. J. Artificial intelligence and black-box medi-

cal decisions: accuracy versus explainability. Hastings

Center Report, 49(1):15–21, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,

J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-

land, A. K., Ostrovski, G., et al. Human-level control

through deep reinforcement learning. Nature, 518(7540):

529–533, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lilli-

crap, T., Harley, T., Silver, D., and Kavukcuoglu, K.

Asynchronous methods for deep reinforcement learn-

ing. In Proc. of the International conference on machine

learning, 2016.

Petersen, B. K., Landajuela, M., Mundhenk, T. N., Santiago,

C. P., Kim, S. K., and Kim, J. T. Deep symbolic regres-

sion: Recovering mathematical expressions from data via

risk-seeking policy gradients. Proc. of the International

Conference on Learning Representations, 2021.

Pettit, J. F., Glatt, R., Donadee, J. R., and Petersen,

B. K. Increasing performance of electric vehicles in

ride-hailing services using deep reinforcement learning.

arXiv preprint arXiv:1912.03408, 2019.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J.

Efficient neural architecture search via parameter sharing.

arXiv:1802.03268, 2018.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for

activation functions. arXiv:1710.05941, 2017.

Roth, A. M., Topin, N., Jamshidi, P., and Veloso, M. Con-

servative q-improvement: Reinforcement learning for

an interpretable decision-tree policy. arXiv:1907.01180,

2019.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-

ing internal representations by error propagation. Techni-

cal report, California Univ. San Diego La Jolla Inst. for

Cognitive Science, 1985.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,

P. Trust region policy optimization. In Proc. of the

International conference on machine learning, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal policy optimization algorithms.

arXiv:1707.06347, 2017.

Tu, J. V. Advantages and disadvantages of using artificial

neural networks versus logistic regression for predicting

medical outcomes. Journal of clinical epidemiology, 49

(11):1225–1231, 1996.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri,

S. Programmatically interpretable reinforcement learning.

arXiv:1804.02477, 2018.

Discovering symbolic policies with deep reinforcement learning

Wigner, E. P. The unreasonable effectiveness of mathemat-

ics in the natural sciences. In Philosophical Reflections

and Syntheses, pp. 534–549. Springer, 1995.

Williams, R. J. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine

learning, 8(3-4):229–256, 1992.

Wilson, D. G., Cussat-Blanc, S., Luga, H., and Miller,

J. F. Evolving simple programs for playing atari

games. In Proceedings of the Genetic and Evolutionary

Computation Conference, pp. 229–236, 2018.

Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., and Ba,

J. Scalable trust-region method for deep reinforcement

learning using kronecker-factored approximation. In

Advances in neural information processing systems, pp.

5279–5288, 2017.

Zoph, B. and Le, Q. V. Neural architecture search with

reinforcement learning. arXiv:1611.01578, 2016.

