
14

Discovering Tasks from Search Engine Query Logs

CLAUDIO LUCCHESE, ISTI-CNR
SALVATORE ORLANDO, Università Ca’ Foscari Venezia
RAFFAELE PEREGO and FABRIZIO SILVESTRI, ISTI-CNR
GABRIELE TOLOMEI, Università Ca’ Foscari Venezia

Although Web search engines still answer user queries with lists of ten blue links to webpages, people are
increasingly issuing queries to accomplish their daily tasks (e.g., finding a recipe, booking a flight, reading
online news, etc.). In this work, we propose a two-step methodology for discovering tasks that users try to
perform through search engines. First, we identify user tasks from individual user sessions stored in search
engine query logs. In our vision, a user task is a set of possibly noncontiguous queries (within a user search
session), which refer to the same need. Second, we discover collective tasks by aggregating similar user tasks,
possibly performed by distinct users. To discover user tasks, we propose query similarity functions based on
unsupervised and supervised learning approaches. We present a set of query clustering methods that exploit
these functions in order to detect user tasks. All the proposed solutions were evaluated on a manually-built
ground truth, and two of them performed better than state-of-the-art approaches. To detect collective tasks,
we propose four methods that cluster previously discovered user tasks, which in turn are represented by
the bag-of-words extracted from their composing queries. These solutions were also evaluated on another
manually-built ground truth.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Data min-
ing; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Clustering, Query
formulation, Search process; H.3.4 [Information Storage and Retrieval]: Systems and Software

General Terms: Algorithms, Design, Experimentation

Additional Key Words and Phrases: Query log analysis, query clustering, user search intent, user search
session boundaries, user tasks, user task discovery, collective tasks, collective task discovery

ACM Reference Format:
Lucchese, C., Orlando, S., Perego, R., Silvestri, F., and Tolomei, G. 2013. Discovering tasks from search engine
query logs. ACM Trans. Inf. Syst. 31, 3, Article 14 (July 2013), 43 pages.
DOI: http://dx.doi.org/10.1145/2493175.2493179

1. INTRODUCTION

People rely heavily on Web search engines to organize their daily activities. A key reason
for the popularity of today’s search engines is their user-friendly interface [Baeza-Yates
and Ribeiro-Neto 1999], which allows users to easily query for their needs by issuing
their own lists of keywords. Users exploit this simple query-based interface to retrieve
Web information and resources, which in turn are used to perform one or more Web-
mediated tasks [Spink et al. 2006], for example, finding a recipe, booking a flight,
reading online news, etc.

This work has been partially supported by projects MIDAS (FP7 EU Grant Agreement no. 318786),
InGeoCloudS (CIP-PSP EU Grant Agreement no. 297300), and MIUR PRIN ARS TechnoMedia.
Authors’ addresses: C. Lucchese, R. Perego, and F. Silvestri, ISTI-CNR, Pisa, Italy; S. Orlando and G. Tolomei,
DAIS, Università Ca’ Foscari Venezia, Italy; corresponding author’s email: gabriele.tolomei@unive.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1046-8188/2013/07-ART14 $15.00

DOI: http://dx.doi.org/10.1145/2493175.2493179

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:2 C. Lucchese et al.

Fig. 1. Our two-step task discovery process: user task and collective task discovery.

Although search engines nowadays offer several mechanisms to help their users
(e.g., query suggestion, search-as-you-type, result diversification, etc.), in essence they
are document retrieval systems that answer a user query with a simple list of ten blue
links. If the results returned are not satisfactory, the user may decide to refine his query,
thereby getting a new list of results that is hopefully more relevant to his needs. How-
ever, this query-look-refine paradigm is not effective for all the tasks to be accomplished.

We believe next-generation search engines should progress from being mere Web
document retrieval tools to becoming multifaceted systems which fully support users
while they are interacting with the Web. This creates novel and exciting research
challenges ranging from the ability to recognize latent tasks from the issued queries, to
the design of new recommendation strategies and user interfaces for showing relevant
results.

This manuscript focuses on this first research challenge and proposes an effective
methodology for discovering the tasks that users try to perform through queries they
issue to search engines.

Interesting search behaviors and patterns can be revealed by analyzing and mining
search engine query logs, which record the activities of many users [Broder 2002; Rose
and Levinson 2004; Lee et al. 2005; Jansen and Spink 2006; Silvestri 2010]. It has been
discovered that query logs are suitable sources from which tasks can be extracted. In
concrete terms, a very important aspect we can analyze from a query log is represented
by query sessions, that is, specific sets/sequences of queries issued by a user while
interacting with a search engine.

There are two distinct levels of granularity to consider when detecting the set of
tasks from a query log. The first is the intra-user level, where tasks are searched for
within individual user query sessions. The challenge here is to find relationships that
go beyond lexical query similarity, for instance, the case of a query session for the user
Alice which contains the queries new york hotel and waldorf astoria, which are not
necessarily issued consecutively. Those two queries clearly refer to the task reserving
a hotel room in New York, yet they do not share any common terms. The second level
of granularity is the inter-user level, where even more subtle problems may occur and
need to be handled, for instance, let another user Bob type the following two queries:
hotels in new york and holiday inn ny. Both users are clearly trying to achieve the
same task (i.e., reserving a hotel room in New York), but by means of different queries.
This second problem occurs because distinct users tend to phrase even the same task
in several different ways.

Therefore, a task discovery methodology has to take into consideration these two pre-
ceding aspects in order to be effective. To this end, we divide the problem of discovering
tasks into two subproblems, and we address them separately. First, we extract from
each individual user session those sets of queries that were issued to achieve specific
tasks. We call each of those sets a user task, since they strictly depend on each individ-
ual user. Second, we consider all the user sessions of the query log, and we identify all
the queries related to a common task—possibly performed by distinct users—by group-
ing together similar user tasks. We refer to each agglomeration of similar user tasks
as a collective task. Figure 1 shows this two-step task discovery process just described.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:3

The rationale behind this two-step strategy is as follows. In a previous work
[Lucchese et al. 2011], we already proved that user tasks can effectively be found
by exploiting the lexical and semantic content similarity of queries issued by individu-
als within specific search contexts (i.e., time-bounded subsessions of the original query
session). Conversely, the same approach would not be able to discover collective tasks
if applied directly to users’ queries, because queries that are issued by two users, which
are lexically or semantically similar, might refer to different latent needs. In addition,
this two-step method guarantees scalability, since the agglomeration needs to process
a reduced number of objects, that is, groups of queries rather than single ones.

Finally, two kinds of contributions are presented in this manuscript: one concerns
user task discovery while the other is related to collective task discovery, and both are
analyzed in the following.

Contributions on User Task Discovery. In Lucchese et al. [2011], we already showed
that users perform multitasking search activities in the query streams issued to a
search engine [Spink et al. 2006]. Multitasking refers to the way users interact with a
search engine, by intertwining different tasks within the same time period. This makes
it difficult to identify user tasks by just splitting each user session into time-based
sequences of queries. Thus, a more precise measure of the task relatedness between
query pairs was needed. To this end, we proposed an unsupervised learning approach
for measuring task-based query similarity, which relied on a selection of both internal
and external query log features. Internal features are available from the original query
log data, whereas external ones can be derived from other data sources. This approach
resulted in two query similarity functions. The first, σ1, was a convex combination of the
selected query log features. The second, σ2, combined typical lexical content similarity
measures with the collaborative knowledge provided by Wiktionary1 and Wikipedia.2
These external knowledge bases were used to enrich the semantics of each query, that is,
to wikify each query in order to make more accurate decisions during the actual user
task discovery step. Furthermore, the preceding notion of task relatedness between
query pairs was used to discover the final set of user tasks. To this end, we introduced
a set of query clustering methods with the aim of grouping together task-related queries,
namely queries that are assumed to be part of the same user task on the basis of a
specified task-relatedness measure. In particular, we compared two techniques derived
from well-known clustering algorithms, that is, K-MEANS [MacQueen 1967] and DB-
SCAN [Ester et al. 1996] with two other graph-based methods. All four proposed solutions
were evaluated on a ground truth, that is, a set of manually annotated user tasks.
Results showed that the latter two techniques performed better than the former, and
they also improved other state-of-the-art approaches noticeably.

As an innovation contribution to this work, we also propose and evaluate a super-
vised learning approach for determining the task-based similarity between query pairs.
Unlike the unsupervised learning approach introduced in Lucchese et al. [2011], here
the task relatedness is learned by training several classifiers in our ground truth. In
particular, we exploit the binary classifiers introduced by Jones and Klinkner [2008]
and use the prediction provided by these classifiers in order to determine whether two
queries belong to the same task. The probability value associated to that prediction is
in turn used as a measure of how strong the task relatedness is between each pair of
queries.

We train the classifiers over all the features that Jones and Klinkner [2008] claim
to be the most suitable for predicting if two queries belong to the same search goal.

1http://www.wiktionary.org
2http://www.wikipedia.org

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:4 C. Lucchese et al.

Moreover, we expand these training features with both Wikipedia, that is, the wik-
ification of the query, as well as the URL overlapping degree between the results
returned by a search engine for each query, that is, the Jaccard index between the
top-20 URLs returned for each query. This supervised learning approach leads to a set
of new task-based query similarity functions, which are in turn exploited by the two
best-performing clustering methods for user task discovery introduced in our previous
work, namely QC-WCC and QC-HTC.

Experimental results have shown that combining supervised task-relatedness learn-
ing with our query clustering methods does not substantially improve the overall effec-
tiveness in discovering user tasks. However, the performance of the classifiers proposed
by Jones and Klinkner [2008] improves significantly with the combined use of wikifi-
cation and URL overlapping along with the other features.

Furthermore, we test our two best-performing user task discovery methods on a
larger dataset (besides evaluating them on the smaller ground truth, as in Lucchese
et al. [2011]). Interestingly, we discover that the analysis conducted on both the smaller
and the larger datasets are coherent, in other words, they result in similar conclusions.
This means that we can be relatively confident that replicating experiments on both
datasets would also lead to similar quantitative results.

Contributions on Collective Task Discovery. The true innovation in this work, which
completes the overall roadmap we sketched for finding tasks from search engine query
logs, is based on the notion of collective task (see Figure 1). In a similar way to discov-
ering user tasks, we provide a second ground truth by manually grouping a set of user
tasks into a set of collective tasks. In addition, we present and discuss four methods used
to actually discover collective tasks. All of them are user task clustering techniques,
where each user task is represented by the bag of words of its composing queries. Each
solution adopts a different clustering strategy (i.e., partitional vs. agglomerative) and
a different user task similarity measure (i.e., cosine similarity vs. Pearson’s coefficient).
We quantitatively evaluate the four methods on the ground truth of collective tasks.
The best results were obtained by a partitional clustering technique, which uses the
cosine similarity measure. Finally, this best-performing technique is also run on a
larger dataset of user tasks, and its performance is assessed by means of examples of
evidence.

Structure of the Article. The rest of the article is organized as follows. Section 2
describes related work on query log analysis and mostly focuses on query session
boundaries detection. Section 3 provides the description and analysis of our benchmark
dataset, that is, the 2006 AOL query log. In Section 4, we propose our theoretical model
and the statement of the user task discovery problem (UTDP). Section 5 presents the
construction of our ground truth by manually grouping queries that are considered to be
task related in a portion of our sample dataset. In addition, we propose some statistics
relating to this corpus of manually identified user tasks. Section 6 introduces several
approaches for measuring the task relatedness between query pairs, that is, task-based
query similarity functions, which in turn are exploited by the user task discovery
methods proposed and compared in Section 7. Thus, Section 8 shows the experiments
we conducted on user task discovery as well as the results we obtained. Section 9
bridges the gap between user task and collective task discovery by introducing the idea
of collective tasks, and it introduces a set of four algorithms for finding collective tasks
from the set of previously discovered user tasks. We test the quality of all the proposed
solutions by comparing them with a common manually-built ground truth. To test the
strength of the best-performing solution for collective task discovery, we apply it to a
larger dataset and illustrate some resulting evidence. Finally, Section 10 presents our
conclusions and indicates some possible future research.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:5

2. RELATED WORK

The analysis of query logs collected by Web search engines has increasingly gained
interest within the Web mining research community. Query logs record information
about the search activities of users and are thus precious data sources for under-
standing how people search the Web [Silvestri 2010]. Moreover, a number of different
applications, that is, caching, index partitioning, document prioritization, query sug-
gestion, can benefit from analysis performed on search engine query logs [Silvestri
et al. 2008].

Typical statistics that can be drawn from query logs simply consider the query set
in order to measure query popularity, term popularity, average query length, distance
between repetitions of queries or terms, etc. A more in-depth analysis consists in
studying search sessions, that is, temporal sequences of queries issued by users.

The first study on a query log from a commercial search engine was conducted by
Jansen et al. [1998]. In their research, the authors analyzed a one-day log collected
by the Excite search engine, which contains 51,473 queries issued by 18,113 users. In
addition, Silverstein et al. [1999] present an exhaustive analysis of a very large query
log collected by the AltaVista search engine, which consists of about a billion queries
submitted in a period of 42 days by approximately 285 million users. The authors show
interesting results, including the analysis of user query sessions and of correlations
between query terms.

However, most works relating to mining query logs aim to understand the real intent
behind queries issued by users. Broder [2002] claims that the “need behind the query”
in a Web context is not clearly informational, like in a standard information retrieval
domain. Hence, he introduces a taxonomy of Web searches by classifying the queries
into three classes according to their intent: (i) navigational, whose intent is to reach
a specific Web site; (ii) informational, which aims to acquire some information from
one or more Web documents; and (iii) transactional, whose intent is to perform some
Web-mediated activity. Rose and Levinson [2004] propose their own user search goals
classification by adding more hierarchical levels to this taxonomy. Lee et al. [2005]
describe whether and how search goal identification processes behind a user query
might be automatically performed on the basis of two features, namely past user-click
behavior and anchor-link distribution.

Many works deal with the identification of user search sessions boundaries. Previous
papers on this topic, which is very relevant for our work, can be classified into the
following groups on the basis of the technique used: (i) time-based, (ii) content-based,
and (iii) ad-hoc techniques, which usually combine (i) and (ii).

Time-Based. Time-based techniques have been extensively proposed in past research
works for detecting meaningful search sessions because of their simplicity and ease
of implementation. Indeed, these approaches are based on the assumption that the
time interval between queries issued by the same user is the predominant factor in
determining a topic shift in search activities. Roughly speaking, two consecutive user
queries are likely to be related if the time gap between them is lower than a fixed
threshold.

With this view in mind, Silverstein et al. [1999] first defined the concept of session as
follows: two consecutive queries are part of the same session if they are issued within
a five-minute time window. On the basis of this definition, they split the benchmark
dataset into sessions containing 2.02 queries on average. He and Göker [2000] use
different thresholds ranging from 1 to 50 minutes to devise user sessions from a Excite
query log.

Radlinski and Joachims [2005] observe that users often perform a sequence of queries
based on a similar information need, and they refer to those sequences of reformulated

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:6 C. Lucchese et al.

queries as query chains. Their work presents a method for automatically detecting
query chains in query and click-through logs using a 30-minute threshold to determine
if two consecutive queries belong to the same search session.

Jansen and Spink [2006] make a comparison of nine search engine transaction logs
from the perspectives of session length, query length, query complexity, and content
viewed. In their paper, they provide another definition of session, that is, search episode,
and describe it as the period of time between the first and the last recorded time stamp
on the search engine server from a particular user on a single day, so the session length
may vary from less than a minute to a few hours.

By using the same concept of search episode, Spink et al. [2006] investigate
multitasking behaviors for user interaction with the search engine. Multitasking dur-
ing Web searches involves a seek-and-switch process between several topics within a
single user session. Again, the authors define a user session as the entire series of
queries submitted by a user during one interaction with the search engine, so that the
session length may vary from less than one minute to a few hours. The results of this
analysis performed on an AltaVista query log showed that multitasking is a common
characteristic of Web searching. In our work, we reveal the presence of multitasking
also within shorter user activities.

Shi and Yang [2006] describe the so-called dynamic sliding window segmentation
method, which is based on three temporal constraints: α as the maximum time interval
between two consecutive queries in the same session, β as the maximum inactivity time
within the same session, and γ as the maximum length of a single session. The authors
empirically set α, β, and γ to be 5 minutes, 24 hours, and 60 minutes, respectively.

Finally, Richardson [2008] shows the value of long-term search engine query logs
with respect to short-term, that is, within-session query information. He claims that
long-term query logs can be used to better understand the world where we live and
shows that query effects are long lasting. Basically, in his work, Richardson does not
look at term co-occurrences only within a search session (which he agrees to be a
30-minute time window) but rather across entire query histories.

Content-Based. Some previous works propose exploiting the lexical content of queries
in order to determine session boundaries corresponding to possible topic shifts in the
stream of queries issued by users [Lau and Horvitz 1999; He et al. 2002; Ozmutlu and
Çavdur 2005]. To this end, several search patterns are proposed by means of lexical com-
parison based on different string similarity metrics (e.g., Levenshtein, Jaccard, etc.).

Nevertheless, approaches relying only on content features suffer the so-called
vocabulary-mismatch problem, namely the existence of topically-related queries with-
out any shared terms (e.g., the queries nba and kobe bryant are completely differ-
ent from a lexical content perspective, but they are undoubtedly related). In order to
overcome this issue, Shen et al. [2005] compare expanded representations of queries
instead of the actual queries themselves. Each individual expanded query is obtained
by concatenating the titles and the Web snippets for the top 50 results provided by a
search engine for the specific query. Therefore, the relatedness between query pairs is
computed by using the cosine similarity between the corresponding expanded queries.

Ad-Hoc. Jansen et al. [2007] assume that a new search pattern always identifies
the start of a new session. Moreover, He et al. [2002] show that statistical information
collected from query logs can be used to estimate the probability that a search pattern
actually implies a session boundary. In particular, they extend a previous work [He
and Göker 2000] to consider both temporal and lexical information.

Similarly, Ozmutlu and Çavdur [2005] describe a mechanism for identifying topic
changes in user search behavior by combining time and query content features. They
test the validity of their approach using a genetic algorithm in order to learn the

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:7

parameters of the topic identification task. The algorithm takes into account the topic
shift and continuation probabilities of the dataset leveraging on query patterns (i.e.,
lexical content) and time intervals.

Seco and Cardoso [2006] propose that a candidate query belongs to a new session if
it does not have any terms in common with the queries of the current session or the
time interval between the candidate query and the last query in the current session is
greater than 60 minutes.

Gayo-Avello [2009] presents an exhaustive survey on session boundary detection
methods. Furthermore, the author introduces a new technique which works on the
basis of a geometric interpretation of both time gap and content similarity between
consecutive query pairs.

Other approaches tackle the session boundary detection problem by leveraging more
complex models and by combining more advanced features.

Boldi et al. [2008] introduce the query-flow graph (QFG) as a model for representing
data collected in search engine query logs. Intuitively, in the QFG, a directed edge from
query qi to query qj means that the two queries are likely to be part of the same search
goal. Any path over the QFG may be seen as a searching behavior, the likelihood of
which is given by the strength of the edges along the path. The authors exploit this
model to segment the query stream into sets of related information-seeking queries,
thus reducing the problem to an instance of the asymmetric traveling salesman problem
(ATSP).

Jones and Klinkner [2008] address a problem that appears to be similar to ours.
In particular, they argue that within a user’s query stream, it is possible to recognize
specific hierarchical units, that is, search missions, which are in turn divided into
disjoint search goals. A search goal is defined as an atomic information need resulting
in one or more queries, while a search mission is a set of topically-related information
needs, resulting in one or more goals. Given a manually-generated ground-truth, the
authors investigate how to learn a suitable binary classifier, which is aimed at detecting
whether two queries belong to the same task. One of the various results is that they
realize that timeouts, whatever their lengths, are of limited use in predicting whether
two queries belong to the same goal and unsuitable for identifying session boundaries.
However, the authors do not explore how such binary classifier could be exploited for
actually segmenting users’ query streams into goals and missions.

Mei et al. [2009] present a general framework for studying sequences of search activ-
ities performed by users. According to the hierarchical user search model introduced
by Jones and Klinkner [2008], this framework captures the user behavior at multiple
levels of granularity: whole search sessions, search missions and their composite sub-
tasks (i.e., search goals), blocks of related queries, individual queries, click-through
data, and eye-tracking fixations.

Donato et al. [2010] adopt the same hierarchical structure of user search behavior
and show how search missions can be automatically identified on-the-fly as the user
interacts with the Web search engine. In particular, the authors plug this automatic
search mission discovery mechanism into SearchPad, a novel Yahoo! application aimed
at helping users keep track of results they have consulted. The novelty of this approach
however is that it is automatically triggered only when the system decides, with a fair
level of confidence, that the user is actually undertaking a search mission.

However, when no labeled training set is available, suitable mechanisms for identify-
ing session boundaries, and thus for extracting search goals, may rely on unsupervised
learning approaches. Typically, these mechanisms are based on query clustering algo-
rithms which group queries that are related to the same need. The rationale for using
query clustering is based on the assumption that if two queries end up in the same
cluster, then they are topically related.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:8 C. Lucchese et al.

Beeferman and Berger [2000] introduce a technique for mining a collection of user
transactions with a search engine, which discovers clusters of similar queries and
similar URLs. The proposed algorithm does not consider query content but analyzes
URL co-occurences within the click-through data stored in the query log, which is
modeled as a bipartite graph.

Wen et al. [2002] describe a query clustering method that makes use of user logs
to identify the Web documents users have selected for a certain query. The similarity
between two queries may be deduced from counting the documents the users clicked
on and that are shared between the queries. Fu et al. [2003] propose a hybrid method
to cluster queries by utilizing both query terms and query results, showing that this
combination performs better than using either method alone.

Cao et al. [2008] propose a novel clustering algorithm for summarizing queries into
concepts throughout a click-through bipartite graph built from a search log.

Leung et al. [2008] develop online techniques to extract concepts from the snippets of
query results and use these concepts to identify related queries. Moreover, the authors
propose a new two-phase personalized agglomerative clustering algorithm that is able
to generate personalized query clusters.

A couple of more recent related works have appeared. Kotov et al. [2011] discuss
methods for modeling and analyzing user search behavior that extends over multiple
search sessions. The authors focus on two problems: (i) given a user query, identify
all related queries from previous sessions that the user has issued, and (ii) given a
multi-query task for a user, predict whether the user will return to this task in the
future. Both problems are modeled within a classification framework that uses features
of individual queries and long-term user search behavior at different granularity. The
outcomes of this work have improved search for complex information needs and have
helped in designing search engine features to support cross-session search tasks.

Finally, Guo et al. [2011] introduce the concept of intent-aware query similarity,
namely a novel approach for computing query pair similarity, which takes into account
the potential search intents behind user queries and then measures query similarity for
different intents using intent-aware representations. The authors show the usefulness
of their approach by applying it to query recommendation, thereby suggesting diverse
queries in a structured way to search users.

3. QUERY LOG ANALYSIS

The research challenges we want to address in this work rely on extracting useful
patterns from search engine query logs. However, query log analysis is often hard to
perform due to the lack of publicly-available datasets. As a result, we used the 2006
AOL query log as our referential dataset. This query log is a very large and long-term
collection consisting of about 20 million Web queries issued by more than 657,000 users
over three months (from 03/01/2006 to 05/31/2006).3

3.1. Session Size Distribution

We analyzed the entire AOL query log and extracted several statistics, such as the
total number of queries, the number of queries in each session, the average duration
of sessions, etc.

The distribution of long-term sessions size over the entire collection is depicted in
Figure 2. This is characterized by a Zipf’s law, that is, one of a family of related discrete
power law probability distributions [Reed 2001]. Indeed, 67.5% of user sessions contains
less than 30 queries, meaning that more than 2/3 of the users issued about ten queries
per month on average. Besides this, longer user sessions, that is, sessions with more

3http://sifaka.cs.uiuc.edu/xshen/aol_querylog.html

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:9

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06

Fr
eq

ue
nc

y

Session size (#queries)

Fig. 2. The distribution of long-term sessions size (log-log scale).

than 1,000 queries over three months, represent only about 0.14% of the whole records.
Interestingly, this is compliant with the analysis of long-tailed distributions of query
frequencies and query-term frequencies showed by Baeza-Yates et al. [2008]. Here,
the authors observed that a small portion of the terms appearing in a large query log
were used very often, while the remaining terms were individually used less often. In
the same way, a small portion of the user sessions contains a large number of queries,
while the remaining sessions are composed of few queries. Finally, it is worth pointing
out that in our analysis we do not consider empty sessions, which account for less than
1% of the total.

3.2. Query Time-Gap Distribution

Since users tend to issue bursts of queries for relatively short periods of time, usually
followed by longer periods of inactivity, the time gap between queries plays a significant
role in detecting session boundaries.

According to Silverstein et al. [1999], session boundaries are detected by considering
the user’s inactivity periods, that is, the time gaps between consecutive queries in each
long-term user session. To establish whether a time gap between two queries actually
refers to a session boundary, a suitable threshold � is needed. This may be obtained
by analyzing the distribution of time gaps between all the consecutive query pairs in
our dataset.

We divide all the time gaps into several buckets of 60-seconds each. We then analyze
the query interarrival times distribution which, again, is revealed to be a power-law
(see Figure 3). This model closely fits user behavior during Web search activities when
consecutive queries issued within a short period of time are often not independent
because they are also topically-related.
More formally, given the following general form of a power-law distribution p(x),

p(x) = α − 1
xmin

(
x

xmin

)−α

,

where α > 1 and xmin is the minimum value of x from which the law holds, we are
interested in finding the value x̄, such that two consecutive queries whose time gap
is smaller than x̄ are considered to belong to the same time-gap session. When the
underlying distribution is unknown, it makes sense to assume a Gaussian distribution

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:10 C. Lucchese et al.

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

#Q
ue

ry
 p

ai
rs

Time gap (min.)

Fig. 3. The distribution of time gaps between each consecutive query pair (log-log scale).

and use a threshold x̄ = μ + σ being equal to mean μ plus standard deviation σ , which
results in “accepting” λ = 84.1% of the samples. This is equivalent to considering the
cumulative distribution P(x̄) = Pr(X ≤ x̄) and to determining x̄, such that P(x̄) = λ.

Since we know the underlying distribution, and since P(x̄) = Pr(X ≤ x̄) = 1− Pr(X >
x̄), we map the threshold λ into our context as follows:

Pr(X > x̄) = C
∫ ∞

x̄
p(X) dX = α − 1

x−α+1
min

∫ ∞

x̄
X−α dX =

(
x̄

xmin

)−α+1

.

Hence, for our purpose, we have to solve for x̄ in the following equation:

P(x̄) = 1 − Pr(X > x̄) = 1 −
(

x̄
xmin

)−α+1

= λ = 0.841. (1)

The value xmin represents the minimum query pair time gap and corresponds to the
first interval, that is, 60 seconds. Therefore, we estimate α = 1.564, and finally we
can solve Eq. (1), finding x̄ � 26 minutes. This means assuming 84.1% of consecutive
query pairs are issued within 26 minutes. As described in detail in Section 8.2.1, in
our experiments, we use this value as the threshold � for splitting each long-term user
session of the the query log.

4. USER TASK DISCOVERY PROBLEM

In this section, we address our research challenge, namely to find concrete user tasks
recorded in a search engine query log whose final aim is to satisfy a specific latent need.
We use the generic term task to refer to this type of atomic latent need, whereas we
give the name user task to any concrete instance of a task performed by a particular
user. Indeed, users may repeatedly enact the same task over the time and often by
means of several distinct queries.

In the following, we describe the theoretical model as well as the notation we adopt
in order to formally define our research problem.

4.1. Theoretical Model

Let QL be a query log, which records the queries—along with other information, such
as user IDs, time stamps, clicked URLs, etc.—issued by a set U of N distinct users.

We denote by Su = 〈q1, q2, . . . , q|Su|〉 the chronologically ordered sequence of all the
queries in QL issued by a user u ∈ U . The sequence Su of the queries submitted by u

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:11

Fig. 4. A generic time-gap session decomposed in a set of interleaved user tasks θ i−1, θ i , and θ i+1.

is the result of multiple long-term interactions with the search engine. Therefore, we
consider each sequence Su to be composed of a sequence of time-gap sessions s, which
result from applying a time-splitting technique, that is, Su = ⋃

si∈Su
si. Basically, each

time-gap session contains the set of contiguous queries submitted by a user such that
each pair of consecutive queries is submitted within a time-gap threshold �.

Note that this time-splitting technique does not impose any restrictions on the total
time elapsed between the first and the last query of a time-gap session. However, it
provides an inactivity time boundary to reasonably determine a shift in user task. Usu-
ally, such an inactivity threshold is fixed arbitrarily. Conversely, we set � = 26 minutes
on the basis of the analysis described in Section 3.2.

Since a time-gap session may include queries related to different needs due to mul-
titasking [Spink et al. 2006; Lucchese et al. 2011], we further identify a partitioning of
each time-gap session into subsets of related queries constituting distinct user tasks.

Definition 4.1 (User Task). Given a time-gap session s ⊆ Su of user u ∈ U , a user task
θ , θ ⊆ s, is the maximal subsequence of possibly nonconsecutive queries in s referring
to the same latent need. The set of all user tasks in s is a partitioning of s.

The set of user tasks performed by u ∈ U is denoted by 	u = ⋃
si⊆Su

⋃
θ j⊆si

θ j , while
the set of all the user tasks from all the N users is denoted by 	 = ⋃

u∈U 	u.
In general, the queries belonging to the various user tasks θ in each time-gap session

s may interleave due to multitasking. Thus we order the user tasks by looking at
the time stamps of the first query issued within each θ . Using this ordering, let θ i

denote the ith user task performed by the user within a time-gap session. This allows
us to represent each 	u as an ordered set, namely a sequence, of user tasks, that
is, 	u = 〈θ1, θ2, . . . , θ |	u|〉. Figure 4 illustrates the partitioning of a generic time-gap
session s ⊆ Su to identify the various user tasks θ i and also summarizes the notation
we have just introduced.

Therefore, the problem of finding 	 = ⋃
u∈U 	u in a given query log QL can be

formulated as the user task discovery problem (UTDP), whose goal is to find the best
query partitioning strategy π that approximates the actual set of user tasks 	u, when
used to segment the time-gap sessions recorded in the query log.

USER TASK DISCOVERY PROBLEM (UTDP): Given a query log QL and a user
u ∈ U , let Tu be the set of user tasks discovered by the query partitioning
strategy π applied to the time-gap sessions of Su, that is, Tu = ⋃

si⊆Su
π (si).

Also, let 	 = ⋃
u∈U 	u and T = ⋃

u∈U Tu.
The UTDP requires the best partitioning π̄ , such that

π̄ = argmax
π

ξ (, T , π), (2)

where function ξ (·) is an accuracy measure which evaluates how well the
query partitioning strategy π approximates the actual user tasks 	.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:12 C. Lucchese et al.

Fig. 5. Snapshot of the Web application used for generating the ground truth.

Several quality measures can be used to evaluate the accuracy of a user task extrac-
tion method, and consequently, several ξ functions can be devised. In Section 8, we
instantiate ξ in terms of F1, the Rand index, and the Jaccard index.

5. GROUND TRUTH: DEFINITION AND ANALYSIS

According to the user task discovery problem statement, we need to find the query
partitioning strategy π̄ that gives the set of user tasks T which best approximates the
actual user tasks 	. Such optimal user task partitioning can be manually built from a
real-world search engine query log.

To this end, we developed a Web application that helped human assessors manually
identify the optimal set of user tasks from the AOL query log. As a result, we produced
a ground truth that can be used for evaluating any automatic user task discovery
method, and which is also freely available to download.4 In Figure 5 we show a sample
snapshot of this Web application.

For each time-gap session, human annotators were presented with the sequence of
queries as they were originally issued. They therefore grouped together those queries
that they considered to be task related. In addition, they had opportunity to discard
meaningless queries from those sessions as well as to submit ambiguous queries to
the most important search engines (i.e., Google, Yahoo!, and Bing). For each manually
identified user task (i.e., set of task-related queries), the evaluators added a tag and,
if appropriate, a longer description. The resulting dataset can be seen as a semantic
knowledge base of users’ search goals (i.e., a taxonomy of user tasks).

Furthermore, dealing with such massive query log datasets typically needs a pre-
processing phase in order to clean the collection and to make it more suitable for
performing further analysis. This meant that we removed query log records contain-
ing both empty queries and query strings composed of only punctuation symbols. In

4http://miles.isti.cnr.it/~tolomei/downloads/aol-task-ground-truth.tar.gz

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:13

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60

Fr
eq

ue
nc

y
(%

)

Time-gap session duration (min.)

Fig. 6. The distribution of time-gap session duration.

addition, we removed all the stop words from each query string. Then, we ran the Porter
stemming algorithm [Porter 1980] in order to remove the most common morphologi-
cal and inflectional English endings from the terms of each query string. Finally, we
discarded from the initial dataset those long-term user sessions containing too many
queries, which were probably generated by robots. In particular, we are referring to
those sessions which had a total number of queries that would have been physically
difficult for a human user to issue even, over a period of three months. Indeed, the
longest user session contains 240,180 queries, which amounts to approximately 2,669
queries per day. On average, this would be like issuing approximately two queries each
minute 24 hours a day for 90 days, which is a highly unlikely query submission rate
for a human user.

Our sample dataset was based on the 500 user sessions with the highest number
of queries, herein called the top-500 dataset. This dataset contains a total amount of
518,790 queries, meaning that each user issued on average approximately 1,038 queries
in three months, that is, roughly 12 queries per day. The maximum number of queries
in a user session is 7,892 and the minimum is 729. This means users submitted from
approximately 8 to 88 queries per day. However, only a small fraction of the whole
dataset (i.e., the first week of user activities) was showed to annotators in order to
simplify the overall manual labeling step. From now on, we will refer to that sub-
set as top-500-1week. As regards the human evaluators, they were selected from our
laboratory but were not directly involved in this work.

The manual annotation procedure referred to a total of 2,004 queries, from which
446 time-gap sessions were extracted automatically. one hundred thirty-nine time-gap
sessions were discarded as meaningless by the annotators and were therefore removed
from the ground truth. In the end, 1,424 queries were actually clustered from 307 time-
gap sessions.

Figure 6 shows the distribution of time-gap session length, using a discretization
factor of 60 seconds. While there are a large number of sessions which are shorter
than one minute and which usually contain only one or two queries, the duration of a
time-gap session is nevertheless 15 minutes on average. Indeed, as can be observed,
sessions lasting 40 minutes (or more) occurred on a fairly frequent basis. Even in these
cases, the session lengths suggest that the interaction of users with search engines is
nontrivial and that it is likely to include multitasking behaviors. The longest time-gap

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:14 C. Lucchese et al.

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40

Fr
eq

ue
nc

y
(%

)

Time-gap session size (#queries)

Fig. 7. The distribution of time-gap session size.

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17

Fr
eq

ue
nc

y
(%

)

User Task size (#queries)

Fig. 8. The distribution of user task size.

session lasted 9,207 seconds, that is, about two and a half hours, and this happened
only once in our dataset.5

In Figure 7, we report the time-gap session size distribution. On average, each time-
gap session contained 4.49 queries, and sessions with at most five queries covered
slightly more than half of the query log. The other half of the query log contained longer
sessions, where there was a high likelihood that multiple tasks were carried out.

The total number of human-annotated user tasks were 554, with an average of
2.57 queries per user task. The user task size distribution is illustrated in Figure 8.
Furthermore, the average number of user tasks accomplished in a time-gap session
was 1.80 (see Figure 9).

Among all 307 time-gap sessions considered, 145 contained multiple user tasks.
We found that this 50% split between single-tasking and multitasking sessions was

5It is highly likely that this user was a robot or a script.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:15

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5 6 9

Fr
eq

ue
nc

y
(%

)

#User Tasks per time-gap session

Fig. 9. The distribution of user tasks per time-gap session.

consistent across the various users. Interestingly enough, this shows that a good task
detection algorithm has to be able to handle efficiently both single- and multitasking
sessions. If we considered all the queries included in each user task, then 1,046 out of
1,424 queries were included in multitasking sessions, meaning that about 74% of the
user activity was multitasking.

Finally, we also evaluated the degree of multitasking by taking into account the
number of overlapping user tasks. We say that a jump occurs whenever two queries in
a manually labeled user task are not consecutive. For instance, let su = 〈q1, q2, . . . , q9〉
be a time-gap session in Su, and let θ1

u , θ2
u , θ3

u be the result of the manual annotation
procedure for su, where θ1

u = {q1, q2, q3, q4}, θ2
u = {q5, q7}, and θ3

u = {q6, q8, q9}. In this
case, the number of jumps observed in su is two, because there are two query pairs
(q5, q7) ∈ θ2

u and (q6, q8) ∈ θ3
u which are not consecutive. The number of jumps gives a

measure of the simultaneous multitasking activities. We denote by j(su) the simulta-
neous multitasking degree of su as the ratio of user tasks in su which have at least one
jump. In the previous example, j(su) � 0.67, since two out of three user tasks contain
at least one jump. In Figure 10, we show the distribution of the multitasking degree
over all the time-gap sessions. Note that the result for j(su) = 0 is omitted, because we
already know that 50% of the sessions were single-tasking.

6. TASK-BASED QUERY SIMILARITY

Task relatedness is the probability that two queries belong to the same user task, where
the user task is not known in advance. A good task-relatedness measure is the building
block for discovering user tasks from a given query log QL.

In this section, we describe three different ways of computing task relatedness, the
result of which is a set of task-based query similarity functions. The first approach,
named time-based, considers only the time gap between two adjacent queries. We
subsequently evaluate both unsupervised and supervised learning approaches by ex-
ploiting a number of query log features as well as external knowledge bases, such as
Wikipedia and Yahoo! Search Boss API.

6.1. Time-Based Approach

The simplest approach for measuring task-based query similarity was presented by
Silverstein et al. [1999]. The proposed measure is based on the assumption that if two

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:16 C. Lucchese et al.

 0

 2

 4

 6

 8

 10

 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y
(%

)

Multi-tasking degree

Fig. 10. The distribution of multitasking degree.

consecutive queries are issued within a small enough time window t̄, then they are also
very likely to be task related. In this approach, only the query submission time of a
query, denoted by τ (q), is taken into account.

Given an adjacent query pair (qi, qi+1) belonging to the same su, the following binary
similarity function σtime is defined.

σtime(qi, qi+1) =
{

1, if |τ (qi+1) − τ (qi)| ≤ t̄;
0, if |τ (qi+1) − τ (qi)| > t̄.

(3)

The effectiveness of this approach depends on the length of the time window t̄. Several
past works empirically evaluated different values of t̄, ranging from 5 to 60 minutes
[Silverstein et al. 1999; Shi and Yang 2006; Richardson 2008]. Instead, in this work,
we devised a threshold value t̄ = 26 minutes from a statistical analysis of the query
log, as already discussed in Section 3.2.

6.2. Unsupervised Learning Approach

We first discuss two classes of features, that is, internal and external. Then, we define
two task-based query similarity functions which exploit both classes of features.

6.2.1. Feature Selection. Most of the previous approaches used to measure query sim-
ilarity are based on the lexical content of queries [Salton and Mcgill 1986]. The effec-
tiveness of those approaches is, however, quite low due to the short length of queries
(about 2.5 words per query, on average) [Jansen et al. 1998; Silverstein et al. 1999],
as well as the lack of contextual information in which queries are issued [Wen et al.
2002].

Some approaches try to expand these short queries by exploiting URLs returned by
Web search engines [Glance 2001], as well as retrieved Web documents [Raghavan and
Sever 1995], or even Web document snippets [Leung et al. 2008], that is, two queries
are similar if they return similar results.

In line with these approaches, we propose two similarity measures by considering
queries’ lexical content and semantics.

Content-Based (σcontent). Two queries that share some common terms are likely to be
related. Sometimes, the terms may be very similar, but not identical, due to misspelling
or different prefixes/suffixes. To capture content similarity even in those cases, we adopt

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:17

a Jaccard index on character tri-grams [Järvelin et al. 2007]. Let T (q) be the character
tri-grams from the terms of query q, we define the similarity σ jaccard as follows.

σ jaccard(qi, qj) = |T (qi) ∩ T (qj)|
|T (qi) ∪ T (qj)| .

In addition, we exploit a normalized Levenshtein similarity σlevenshtein, which Jones
and Klinkner [2008] claimed to be the best edit-based feature for identifying goal
boundaries. Finally, the overall content-based similarity is computed as follows.

σcontent(qi, qj) = σ jaccard(qi, qj) + σlevenshtein(qi, qj)
2

.

Semantic-Based (σsemantic). In order to enrich queries with a semantic-based context,
it is possible to use external knowledge bases. Several semantic relatedness metrics
dealing with semantic resources have previously been proposed. They can be classified
as follows.

—Path-based, in which knowledge is modeled as a graph of concepts, and the metrics
rely on paths over that graph [Rada et al. 1989; Leacock and Chodorow 1998].

—Information content-based takes into account the information content of a con-
cept [Resnik 1995].

—Gloss-based considers term overlaps between definitions of concepts [Lesk 1986].
—Vector-based models each concept as a vector of terms [Gabrilovich and Markovitch

2007] or anchor links [Milne and Witten 2008].

On the basis of the last approach, we assume that either a Wiktionary entry or a
Wikipedia article describes a certain concept and that the presence of a term in a given
article is evidence of the correlation between that term and that concept. We describe
the wikification

−→
C (t) of a term t as its representation in a high-dimensional concept

space
−→
C (t) = (c1, c2, . . . , cW), where W is the number of articles in the knowledge base,

and ci scores the relevance of the term t for the ith article. We measure the relevance
ci by using the well-known t f -idf score [Salton and Mcgill 1986].

In order to wikify a query q, we sum up the contribution from its terms.
−→
C (q) =

∑
t∈q

−→
C (t).

The task relatedness σwiki f ication(qi, qj) between two queries qi and qj is estimated by
the cosine similarity of their wikification.

σwiki f ication(qi, qj) =
−→
C (qi) · −→

C (qj)

‖−→C (qi)‖‖−→C (qj)‖
.

We use this wikification process by exploiting the Wiktionary or Wikipedia knowledge
bases to compute the query similarity measures σwiktionary and σwikipedia. Finally, the
overall semantic-based similarity is computed as follows.

σsemantic(qi, qj) = max(σwiktionary(qi, qj), σwikipedia(qi, qj)).

6.2.2. Similarity Functions. We blend the lexical content σcontent and semantic σsemantic
similarity scores is through a convex combination.

σ1 = α · σcontent + (1 − α) · σsemantic. (4)

We also propose a novel similarity function σ2 on the basis of the following conjecture.
If two queries have similar lexical content, they are very likely to be task related, and

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:18 C. Lucchese et al.

semantic expansion could be useless. On the other hand, queries could be similar even
if they do not share any lexical features, for example, the two queries nba and kobe
bryant. If there is great similarity in content, then we can be confident that queries
are task related. Otherwise, we compute the similarity score as the maximum value
between content- and semantic-based similarities.

σ2 =
{

σcontent, if σcontent ≥ t;
max(σcontent, b · σsemantic), otherwise.

(5)

Both σ1 and σ2 rely on the estimation of certain parameters, that is, α for σ1, t and b
for σ2, which were learned directly from the ground truth.

6.3. Supervised Learning Approach

Jones and Klinkner [2008] argued that user search activities can be divided into hier-
archical units, that is, search missions, which are in turn composed of disjoint search
goals. According to the authors, a search goal is defined as an atomic information need
resulting in one or more queries, while a search mission is a set of topically-related
information needs resulting in one or more goals. Therefore a search goal is equivalent
to our definition of user task (see Def. 4.1).

Jones and Klinkner [2008] investigated a supervised learning approach. Basically,
given a pair of queries, they used several query features, namely temporal, word- and
character-edit, query log sequence, and Web search features, to predict whether the
two queries belonged to the same goal/mission. It is worth noting that the authors did
not explore how such binary classifiers could be exploited for segmenting user query
streams into goals and missions, and thus for actually discovering search goals, that
is, user tasks and search missions.

In addition, we extend our study to include supervised learning approaches in order
to detect queries belonging to the same user task. The set of features we use includes
those used by Jones and Klinkner [2008], F jk, and the features we have already defined
in previous sections.

We train several binary classifiers using various combinations of those features on
our ground truth of user tasks. Finally, the output of these classifiers determines the
12 new task-based query similarity scores, which in turn will be exploited by our two
best-performing user task discovery methods, as specified later in Section 7.2.1.

6.3.1. Feature Selection. According to Jones and Klinkner [2008], given any two queries
qi and qj , the following set of features F jk provides best accuracy results in predicting
whether they are part of the same user task.

—edlevGT2. This is a binary feature that evaluates as 1 if the normalized Levenshtein
edit distance between qi and qj is greater than 2, or 0 otherwise.

—wordr. This feature corresponds to the Jaccard distance between the sets of words
which qi and qj are composed of.

—char suf. This feature counts the number of common characters between qi and qj ,
starting from the right.

—nsubst qj X. Given P(qi −→ qj), the probability of qi being reformulated as qj , this
feature is computed as count(X : ∃ P(qj −→ X)).

—time diff. This feature represents the inter-query time gap between qi and qj , ex-
pressed in seconds.

—sequential. This binary feature is positive if the queries qi and qj are sequentially
issued.

—prisma. This feature refers to the cosine distance between vectors obtained from the
top-50 Web pages returned as search results for the terms of qi and qj , respectively.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:19

—entropy qi X. This feature relates to the entropy of rewrite probabilities from query
qi and it is computed as

∑
k P(qk|qi) log2(P(qk|qi)).

In addition to this set F jk, we propose two further features. The first is the semantic
feature we already used for computing the task relatedness measures of our unsuper-
vised learning approach, that is, σwikipedia (see Section 6.2.1). The second is σ jaccard url,
which measures the Jaccard similarity between the top 20 URLs returned as search
results in response to qi and qj . The rationale for this feature is to capture the similar-
ity between two apparently different queries, which share many relevant links to Web
documents, that is, URLs retrieved by the most popular Web search engines. Given
that url20(q) = {u1, u2, . . . , u20} is the set of top-20 URLs returned by a search engine in
response to the query q, this feature was computed as follows.

σ jaccard url(qi, qj) = |url20(qi) ∩ url20(qj)|
|url20(qi) ∪ url20(qj)| .

In our test, we retrieved each url20(q) by querying the Yahoo! search engine via its
Search Boss API.6

6.3.2. Binary Classifiers. We exploited the features described in Section 6.3.1 to train
several binary classifiers. In particular, we devised four different combinations of fea-
tures extracted from our manually-generated ground truth described in Section 5.

—F1 ≡ F jk.
—F2 = F jk ∪ σwikipedia.
—F3 = F jk ∪ σ jaccard url.
—F4 = F jk ∪ σwikipedia ∪ σ jaccard url.

In particular, we used three different kinds of classification algorithms.

—Cdt. A clone of the C4.5 decision tree learner [Quinlan 1993].
—Cnb. A naı̈ve bayesian learner.
—Clr. A logistic regression learner.

Therefore, the classification step requires training in the preceding set of three
classifiers, that is, C = {Cdt, Cnb, Clr}, using the four possible feature sets, that is,
F = {F1,F2,F3,F4}. By combining each of the three classifier models with each fea-
ture set, we obtained 12 distinct classifiers, that is, Cy

x , where x ∈ {dt, nb, lr} and
y ∈ {1, 2, 3, 4}.

The training set of each classifier was generated by considering each query pair
(qi, qj) in our ground truth, and to each of them, we assigned a binary class at-
tribute same task = yes if and only if qi and qj were part of the same task, otherwise
same task = no. Note that these supervised methods are the only ones which exploit
the task labeling of the ground truth.

6.3.3. Similarity Functions. The same task = yes class probability prediction provided by
each binary classifier can be interpreted as a similarity score. This in turn is exploited
by the clustering techniques presented in Section 7.2.1.

Table I summarizes the similarity functions defined as a combination of the classifi-
cation algorithm and the set of exploited features.

In the following, we describe the performance of each similarity function. All the
evaluations were measured on the basis of ten-fold cross-validation.

First, we start by showing some stratified cross-validation statistics, namely Kappa
coefficient, Mean absolute error, Relative absolute error, and Root relative squared error.

6http://developer.yahoo.com/search/boss/

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:20 C. Lucchese et al.

Table I. Supervised Task-Based Query Similarity Functions

Feature Set

F1 F2 F3 F4

Classification Algorithm

Cdt σ 1
dt σ 2

dt σ 3
dt σ 4

dt

Cnb σ 1
nb σ 2

nb σ 3
nb σ 4

nb

Clr σ 1
lr σ 2

lr σ 3
lr σ 4

lr

Table II. Statistical Indicators on the Set of Classifiers Derived from Cdt

Statistical Indicators

Kappa Mean abs. err. Rel. abs. err. (%) Root rel. sq. err. (%)

Classifiers

C1
dt 0.61 0.02 48.39 72.30

C2
dt 0.62 0.02 48.22 72.54

C3
dt 0.63 0.02 47.34 72.40

C4
dt 0.63 0.02 46.90 72.30

Then, we express the performance of each binary classifier in terms of TP Rate, FP Rate,
Precision, Recall, and F1.

All these measures are shown separately for the two classes of prediction, that
is, same task = yes and same task = no, and then appropriately weight-averaged to
provide the reader with a global performance indicator. In particular, TP Rate refers
to the ratio of true positive examples, that is, queries that are correctly classified (for
each of the two classes of prediction), and it is equivalent to Recall. Similarly, FP Rate
describes the ratio of false positive examples, that is, queries that are misclassified
(for each of the two classes of prediction). Furthermore, Precision is the proportion of
examples of a certain class among all those that are classified with that class. Finally,
F1 is the harmonic mean of Precision and Recall.

F1 = 2 × Precision × Recall
(Precision + Recall)

.

Note that the distribution of query pairs across these two classes are far from be-
ing uniform: the class same task = yes is much less probable than same task = no.
Therefore, the classifier performance measured on the first class might be noticeably
lower than the one computed on the second class.

Decision Tree Classifier (Cdt). This classification algorithm is based on a clone of the
C4.5 decision tree learner [Quinlan 1993]. First, Table II shows some stratified cross-
validation statistical indicators on the four binary classifiers, that is, C1

dt, C2
dt, C3

dt, and
C4

dt. Here, it is worth noting that our newly introduced features, namely σwikipedia and
σ jaccard url, improve the performance of the classifier, especially when both are used, as
in the case of C4

dt.
Moreover, Table III describes the performance of the binary classifiers in terms of

TP Rate, FP Rate, Precision, Recall, and F1. For each classifier, we indicate the values
of all the preceding measures both individually for each class of prediction and globally,
by weight-averaging them over the two classes.

Interestingly, we can derive that our newly proposed features affect two complimen-
tary aspects of the performance. Indeed, on the one hand, the introduction of σwikipedia
increases the recall of positive examples, that is, those that are actually labeled with
same task = yes. On the other hand, the usage of σ jaccard url helps to increase the
precision of positive examples. Finally, when combined together in C4

dt, we obtained the

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:21

Table III. Performance Evaluation of the Set of Classifiers Derived from Cdt

Accuracy Measures
TP Rate FP Rate Precision Recall F1 same task

Classifiers

C1
dt

0.997 0.473 0.990 0.997 0.993 no
0.527 0.003 0.768 0.527 0.625 yes
0.987 0.463 0.985 0.987 0.985 (weighted avg.)

C2
dt

0.996 0.467 0.990 0.996 0.993 no
0.533 0.004 0.760 0.533 0.627 yes
0.987 0.457 0.985 0.987 0.985 (weighted avg.)

C3
dt

0.997 0.467 0.990 0.997 0.993 no
0.531 0.003 0.786 0.531 0.635 yes
0.987 0.457 0.986 0.987 0.986 (weighted avg.)

C4
dt

0.997 0.460 0.990 0.997 0.993 no
0.540 0.003 0.780 0.540 0.640 yes
0.987 0.450 0.986 0.987 0.986 (weighted avg.)

Table IV. Statistical Indicators on the Set of Classifiers Derived from Cnb

Statistical Indicators

Kappa Mean abs. err. Rel. abs. err. (%) Root rel. sq. err. (%)

Classifiers

C1
nb 0.52 0.03 76.01 91.26

C2
nb 0.50 0.02 59.14 89.16

C3
nb 0.53 0.03 76.69 91.65

C4
nb 0.51 0.02 59.51 89.21

Table V. Performance Evaluation of the Set of Classifiers Derived from Cnb

Accuracy Measures
TP Rate FP Rate Precision Recall F1 same task

Classifiers

C1
nb

0.992 0.499 0.989 0.992 0.991 no
0.501 0.008 0.576 0.501 0.536 yes
0.982 0.488 0.981 0.982 0.981 (weighted avg.)

C2
nb

0.992 0.527 0.989 0.992 0.990 no
0.473 0.008 0.563 0.473 0.514 yes
0.981 0.516 0.980 0.981 0.980 (weighted avg.)

C3
nb

0.992 0.499 0.989 0.992 0.991 no
0.501 0.008 0.574 0.501 0.535 yes
0.982 0.489 0.981 0.982 0.981 (weighted avg.)

C4
nb

0.992 0.526 0.989 0.992 0.990 no
0.474 0.008 0.562 0.474 0.514 yes
0.981 0.515 0.980 0.981 0.980 (weighted avg.)

very best results. This means that the similarity function of choice for this classification
algorithm is σ 4

dt.

Naı̈ve Bayesian Classifier (Cnb). This classification algorithm is based on a naı̈ve
bayesian learner. Table IV shows the statistical indicators for each classifier, that is,
C1

nb, C2
nb, C3

nb, and C4
nb. Moreover, Table V describes the performance of these four binary

classifiers.
In this case, the very best accuracy is obtained both with C1

nb and C3
nb, by using the

set of features F1 and F3, respectively. This means that the newly introduced features,
namely σwikipedia and σ jaccard url, do not significantly improve the performance of the
classifier. Therefore, the chosen similarity functions can be either σ 1

nb or σ 3
nb.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:22 C. Lucchese et al.

Table VI. Statistical Indicators on the Set of Classifiers Derived from Clr

Statistical Indicators

Kappa Mean abs. err. Rel. abs. err. (%) Root rel. sq. err. (%)

Classifiers

C1
lr 0.48 0.02 60.89 78.03

C2
lr 0.48 0.02 60.84 77.99

C3
lr 0.48 0.02 60.88 78.02

C4
lr 0.48 0.02 60.82 77.98

Table VII. Performance Evaluation of the Set of Classifiers Derived From Clr

Accuracy Measures
TP Rate FP Rate Precision Recall F1 same task

Classifiers

C1
lr

0.997 0.630 0.987 0.997 0.992 no
0.370 0.003 0.702 0.370 0.484 yes
0.983 0.617 0.981 0.983 0.981 (weighted avg.)

C2
lr

0.997 0.629 0.987 0.997 0.992 no
0.371 0.003 0.703 0.371 0.485 yes
0.983 0.616 0.981 0.983 0.981 (weighted avg.)

C3
lr

0.997 0.625 0.987 0.997 0.992 no
0.375 0.003 0.702 0.375 0.489 yes
0.983 0.612 0.981 0.983 0.981 (weighted avg.)

C4
lr

0.997 0.622 0.987 0.997 0.992 no
0.380 0.003 0.705 0.380 0.492 yes
0.984 0.609 0.981 0.984 0.981 (weighted avg.)

Logistic Regression Classifier (Clr). This classification algorithm is based on logistic
regression. Table VI describes the statistical indicators of four binary classifiers, that
is, C1

lr, C2
lr, C3

lr, and C4
lr, which are obtained using this approach in combination with the

sets of features F1,F2,F3, and F4. As this table highlights, no significant differences
arise from this comparison. Instead, a more detailed evaluation of the performance of
each classifier is provided in Table VII. Although all four classifiers behave similarly
in general, comments can be made nevertheless. In particular, it is worth noting that
adding our new set of features results in better true positive and false positive rates. It
is nonetheless true that these enhancements are not crucial to the overall performance.
Therefore, any classifier could be chosen almost arbitrarily as well, as their relating
similarity functions, that is, σ ∗

lr, where ∗ ∈ {1, 2, 3, 4}.
We can conclude that the very best performing classifier is C4

dt. Indeed, considering
the weighted-average performances, it gains nearly 0.5% in terms of F1, and it reduces
the FP Rate by about 8.4% to the best naı̈ve bayesian classifiers, that is, C1

nb and
C3

nb. Similarly, it gains roughly 0.5% in terms of F1 and it reduces the FP Rate by
approximately 35.3% to the best logistic regression classifiers, that is, C4

lr. This means
that σ 4

dt could be considered the very best query similarity function in order to determine
task relatedness.

As a last note, we would like to comment on why the supervised learning approach
proposed by Jones and Klinkner [2008] alone is not suitable for effectively discovering
user tasks, and why we used it only to learn the task relatedness, which in turn is fed
into more complex user task discovery methods, described in Section 7.

Let us consider only the very best classifier, namely C4
dt. Among a total of 113,474

classified query pairs, 112,009 (i.e., 98.7%) were correctly classified. However, the dis-
tribution of query pairs across the two classes is very skewed, since 111,080 (i.e.,
97.9%) belong to one class, namely same task = no. It turns out that evaluating the

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:23

performance of the classifier only in terms of its accuracy might overestimate its actual
effectiveness. A fairer approach is to validate the classifier on the rarest class, which
is same task = yes. If we focus only on the ability of the classifier to correctly predict
queries that were actually in the same tasks, then precision reaches at most 78% in
the best case, which is considerably lower than the 98.7% obtained on average.

Section 8.2.3 shows the outcomes from the two best-performing user task discovery
methods using the three best supervised similarity scores, that is, σ 4

dt, σ 1
nb (or, equiva-

lently, σ 3
nb), and σ ∗

lr, where ∗ ∈ {1, 2, 3, 4}.
7. DISCOVERING USER TASKS

In this section, we tackle the user task discovery problem (UTDP) in Section 4.1, as well
as present and discuss several clustering techniques which adopt the query relatedness
measures presented in Section 6. We use as baseline the time-based task relatedness
measure σtime (see Section 6.1), that is, a simple splitting by using a time threshold t̄.

7.1. Time Splitting

For any consecutive query pair (qi, qi+1), if σtime(qi, qi+1) = 1, then time splitting consid-
ers both queries as part of the same session. Otherwise, qi is the last (resp. qi+1 is the
first) query in a distinct session. The time complexity of time-splitting is linear in the
number of input queries, and in this work, we use time splitting as the preprocessing
step in order to approach UTDP. In fact, there exist task-oriented sessions that are
made up of sequences of consecutive queries (i.e., no multitasking). In such cases, time-
splitting methods are a suitable choice. Therefore, we choose to adopt time-splitting
techniques as the baseline method to discover user tasks, by using the time thresholds
TS-5 and TS-15, that is, 5- and 15-minute thresholds, as well as TS-26 [Silverstein
et al. 1999; He and Göker 2000] (Section 8.2). The threshold of t̄ = � = 26 minutes
(TS-26) was determined on the basis of the statistical analysis we conducted on the
testing dataset (see Section 3.2).

Time-splitting techniques are not able to deal with task-related sessions, since they
can only identify sequences of timely-consecutive queries, whereas multitasking ses-
sions represent a significant sample of all the task-related sessions (see Section 5 for
more details on the analysis).

7.2. Query Clustering

In order to discover user tasks, in the following, we present several clustering algo-
rithms that we apply to TS-26 split time-gap sessions

We start by describing two algorithms derived from well-known clustering methods:
QC-MEANS [MacQueen 1967] and QC-SCAN [Ester et al. 1996]. In addition, we introduce
two graph-based techniques: QC-WCC and its computationally-lighter variation QC-HTC.
The effectiveness of all these methods mostly depends on the robustness of the simi-
larity functions, that is, the measures of task-based query similarity (as described in
Section 6) which are exploited by the algorithms.

7.2.1. Algorithms. While QC-MEANS and QC-SCAN are inspired to well-known clustering
algorithms, QC-WCC and QC-HTC follow a graph-based approach. QC-WCC identifies user
tasks from the connected components of a query similarity graph, while QC-HTC, which
is a variation of QC-WCC, is aimed at reducing the computational cost of clustering
without affecting the overall effectiveness.

Each query clustering method is associated with a specific partitioning strategy π and
operates on each time-gap session. Let s = 〈qi . . . qi+n−1〉 be a generic time-gap session
belonging to a long-term session S of user u, where |s| = n, and i ≥ 1, 1 ≤ n ≤ |S|− i +1.
It is worth noting that we do not use the subscript symbol u when there is no ambiguity

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:24 C. Lucchese et al.

for users in order to simplify the readability of notation. Each algorithm provides as
output π (s) = {t1, t2, . . . t|π (s)|}, that is, the set of user tasks of s, obtained by applying a
partitioning strategy π ∈ {QC-MEANS, QC-SCAN, QC-WCC, QC-HTC}.

QC-Means. This is a centroid-based algorithm and a variation of the well-known
K-MEANS [MacQueen 1967]. We replaced the usual K parameter, that is, the number
of clusters to be extracted, with a ρ threshold which establishes the maximum radius
of each cluster. This allowed us to better deal with the varying lengths of the various
user sessions as well as to avoid specifying the number K of final clusters a priori.

At each step, a query qi ∈ s ⊆ S is either added to an existing cluster of queries tj if
its similarity with respect to the centroid query of tj is at least 1 −ρ; otherwise qi itself
becomes the centroid of a new cluster tk. The worst case is when each cluster contains
a single query. In this case, we need to compute the similarity between all query pairs
and the complexity of QC-MEANS becomes quadratic in the size of the input, that is,
O(n2).

QC-SCAN. It is the density-based DB-SCAN algorithm [Ester et al. 1996], specifically
tailored to extract user tasks from Web search engine query logs. The rationale for
also evaluating a variation of DB-SCAN is that a centroid-based approach may suffer
from the presence of noise in query logs. Again, QC-SCAN may require computing the
similarity of all query pairs, thereby making its worst-case time complexity quadratic
in the size of the input.

QC-WCC. This algorithm extracts query clusters corresponding to weighted connected
components of a graph [Lucchese et al. 2011]. Given a time-gap session s ⊆ S, we first
build a complete graph Gs = (V, E, w) whose vertices V are the queries in s, that is,
V = {qi | qi ∈ s}, and whose E edges are weighted by the similarity of the corresponding
vertices. The weighting function w, w : E �−→ [0, 1], is computed in terms of the task-
based query similarity functions proposed in Section 6. Thus, the graph Gs models the
task-based similarity between any pair of queries in the given time-gap session.

The algorithm works in two steps. In the first, given the graph Gs, we remove weak
edges whose weights are smaller than a given threshold, that is, w(e) < η, thus obtain-
ing a pruned graph G′

s. In the second step, we extract the connected components of the
graph and consider them as clusters of task-related queries π (s) = {t1, t2, . . . t|π (s)|}.

Assuming a robust similarity function, the QC-WCC algorithm is able to handle
the multitasking nature of users sessions. Groups of related queries are isolated
by the pruning of weak edges. Links with high similarity identify the generaliza-
tion/specialization steps of the users, as well as restart from a previous query when the
current query chain is found to be unsuccessful.

The computational complexity of QC-WCC is dominated by the construction of the
graph Gs. The similarity between any pair of edges must be computed, resulting in a
number of computations which is quadratic in the number of vertices, that is, O(|s|2).
On the other hand, the connected components of a graph can be easily computed in
linear time (in terms of the numbers of vertices and edges of the graph) using either
breadth-first search or depth-first search [Hopcroft and Tarjan 1973]. In either case,
a search that begins at a particular vertex v eventually finds the entire connected
component containing v before returning.

QC-HTC. This is a variation of the preceding QC-WCC algorithm, which does not need
to compute the full similarity graph yet maintains the quality of the obtained query
clustering QC-WCC [Lucchese et al. 2011]. The graph we consider is not complete. We
use an edge-weighting function w, w : E �−→ [0, 1], which is computed in terms of the
task-based query similarity functions proposed in Section 6. Similarly to QC-WCC, for

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:25

QC-HTC, we also exploit a threshold η: two queries q and q′ cannot be considered task
related if w(e(q, q′)) < η, where e(q, q′) ∈ E.

The algorithm works in two phases. In the first, we identify query chains within
each time-gap session s ⊆ S. Each chain, called a sequential cluster, is denoted by t̃j
and only contains consecutive queries in a given time-gap session, where each query is
similar (task related) to the chronologically following one. This means that to detect the
various t̃j , we only need to compute the weights of the edges e(qi, qi+1), where queries qi
and qi+1 occur consecutively in the session. Note that a chain of k task-related queries
(qj, . . . , qj+k) must be maximal. If qj−1 (resp. qj+k+1) exists in s, then w(e(qj−1, qj)) < η
(resp. w(e(qj+k, qj+k+1)) < η).

The rationale for first detecting query chains is that without losing generality, a user
task can be decomposed into a set of these chains even in the presence of multitasking.
Unsurprisingly, due to multitasking, chains of different user tasks can interleave in
a given time-gap session. Thus, the algorithm has to finally identify user tasks by
recomposing these chains.

The latter phase of the algorithm therefore merges the sequential clusters but does
not compute the similarity measures between all the queries included in each cluster.

Instead, we guess that a sequential cluster can be well described by its
(chronologically-) first and last queries, respectively, denoted by head(t̃j) and
tail(t̃j) [Lucchese et al. 2011]. This is because a user involved in a given task often
carries out a process of specialization/generalization of queries, and thus the middle
queries might be less representative of the user’s real intent. For example, two users
could start a chain from the same query (head) and end in two different query special-
izations (tail), whereas they could start a chain from different queries (head) and end
in the same specialization (tail). Therefore, the similarity sim between two sequential
clusters t̃j , t̃k is computed as follows.

sim(t̃j, t̃k) = min
q∈{head(t̃j),tail(t̃j)} q′∈{head(t̃k),tail(t̃k)}

w(e(q, q′)),

where w weights the edge e(q, q′) linking the queries q and q′ with respect to their
task-based similarity, analogously to QC-WCC.

We can finally discuss in more detail how this second clustering phase works. The
first cluster t1 is initialized with the oldest sequential cluster t̃1 in a given session, and
t̃1 is removed from the set of sequential clusters. Then, t1 is compared with any other
chronologically-ordered sequential cluster t̃j by computing the similarity as previously.
We still use the threshold η: only if sim(t1, t̃j) ≥ η, then t̃j is merged into t1, the head and
tail queries of t1 are updated consequently, and t̃j is removed from the set of sequential
clusters. The algorithm continues comparing the new cluster t1 with the remaining
sequential clusters. When all the sequential clusters have been considered, the oldest
sequential cluster available is used to build a new cluster t2, and so on. The algorithm
iterates this procedure until no more sequential clusters are left.

The worst-case complexity of QC-HTC is still quadratic in the number of queries in s; in
practice there are frequent cases in which the real execution time results to be greatly
reduced with respect to QC-WCC. First, note that the first step of QC-HTC only computes
the similarity between time-adjacent queries, and thus its computational cost is linear
in the number of queries in s. We already showed that 52.8% of the time-gap sessions
contain one user task only. Hence, it is highly likely that such user tasks are just
found after the first step of the algorithm, if these tasks exactly correspond to chains of
task-related queries. To detect multitasking sessions, the second step of the algorithm
merges chains, and thus the complexity of is quadratic in the number m of sequential
clusters extracted, that is, O(m2). If m = β · |s| , with 0 < β ≤ 1, while the asymptotic
complexity is still quadratic in |s| since β is a constant, in practice the execution time

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:26 C. Lucchese et al.

of the second step is reduced by a factor β2. In addition, the algorithm can run even
faster, since QC-HTC algorithm does not compute all the pairwise similarities among
the sequential clusters in advance.

8. EXPERIMENTS ON USER TASK DISCOVERY

In this section, we discuss the results obtained with all the user task discovery methods
for approaching the UTDP, which were described in Section 7. In addition, we compare
our results with those provided by two other task discovery methods: (i) the simple
time-splitting technique TS-26, which is considered as the baseline solution, and (ii) the
session extraction method based on the query-flow graph (QFG) proposed by Boldi et al.
[2008], which can be considered as the state-of-the-art approach.

For all our clustering methods we can either use the unsupervised learned task-
based query similarities (i.e., σ1 and σ2) or the 12 supervised learned similarities. We
have chosen to start from the unsupervised learned similarity functions [Lucchese et al.
2011], and we show that QC-WCC and QC-HTC outperform both QC-MEANS and QC-SCAN,
but also state-of-the-art approaches, that is, QFG introduced by Boldi et al. [2008].
Then, we concentrate on QC-WCC and QC-HTC only and instantiate their function w for
weighting the query graph with the supervised learned similarities, that is, w = σ 4

dt,
w = σ 1

nb (or, analogously, w = σ 3
nb), and w = σ ∗

lr, where ∗ ∈ {1, 2, 3, 4}.
8.1. Measures of Clustering Validity

In order to evaluate all the methods we mentioned, we needed to measure the degree
of correspondence between manually-extracted user tasks of the ground truth (see
Section 5) and user tasks produced by our algorithms. To this end, we used both
classification- and similarity-oriented measures [Tan et al. 2005]. In the following,
predicted class is the user task where a query is assigned to by a specific algorithm,
whereas true class indicates the user task where the same query was in the ground
truth.

Classification-oriented approaches measure the degree to which predicted classes
correspond to true classes, and F1 is one of the most popular scores in this category,
as it combines both precision and recall. In our case, precision measures the fraction
of queries that were assigned to a user taskand that were actually part of that user
task. Instead, recall measures how many queries were assigned to a user task among
all the queries that were really contained in that user task. Globally, F1 evaluates the
extent to which a user task contains only and all the queries that were actually part of
it. Given p(i, j), r(i, j) is the precision and recall of user task i with respect to class j,
the F1 corresponds to the following weighted harmonic mean of p(i, j) and r(i, j).

F1(i, j) = 2 × p(i, j) × r(i, j)
p(i, j) + r(i, j)

.

To compute a global F1, we first considered the set of predicted tasks T associated
with each long-term session S, which is obtained as T = ⋃

s∈S π (s) = {t1, t2, . . . , t|T |},
namely as the union set of all the user tasks extracted from each time-gap session by
using the partitioning strategy π . Analogously, we took into account the set of true
tasks 	 = {θ1, θ2, . . . , θ|	|}, that is, the set of tasks performed by user u according to the
ground truth.

In addition, in order for the two sets T and 	 to have the same size, that is, |T | = |	|,
we padded them with all the unclassified queries, which are all the queries that appear
in session S but that were discarded during the automatic and/or the manual clustering.
This can, in some way, be equivalent to considering discarded queries as singleton
clusters, that is, single tasks composed of only one query.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:27

Thus, for each predicted task tj , we computed the maximum F1, that is, F1max(tj),
with respect to the true tasks as follows.

F1max(tj) = argmax
k

F1(tj, θk).

Globally, F1 is averaged on the set of all predicted tasks for all the users u ∈ U in
the training set T = ⋃

u∈U Tu with respect to the set of all true tasks 	 = ⋃
u∈U 	u as

follows.

F1(T ,) = w j · F1max(tj)∑|T |
j=1 w j

,

where w j = |tj |.
Similarity-oriented measures consider pairs of objects instead of single objects.

Again, let s ⊆ S be the generic time-gap session of a long-term session S such that
|s| > 1. Furthermore, let T and 	 be the sets of predicted and true tasks of S, re-
spectively (both padded with discarded queries as described previously). Thus, for each
S we computed the following quantities.

—tn = number of query pairs that are in different true tasks and in different predicted
tasks (true negatives).

— f p = number of query pairs that are in different true tasks but in the same predicted
task (false positives).

— f n = number of query pairs that are in the same true task but in different predicted
tasks (false negatives).

—tp = number of query pairs that are in the same true task and in the same predicted
tasks (true positives).

Then, we used two different measures.

—Rand index. R(T) = tn+tp
tn+ f p+ f n+tp .

—Jaccard index. J(T) = tp
fp+ f n+tp .

A global value of both the Rand and Jaccard index, that is, R and J respectively,
might be computed as follows:

R = w j · R(T)∑|T |
j=1 w j

, J = w j · J(T)∑|T |
j=1 w j

,

where w j = |S|.
As specified before, when computing both the Rand and Jaccard index, we did not

consider time-gap sessions containing only one singleton task, that is, time-gap sessions
containing only one single-query cluster. However, we did take into account time-gap
sessions that were composed of a single task with more than one query.

8.2. Evaluation on the Ground Truth

In the following, we show the results we obtained using our two sets of user task
discovery methods, namely time-splitting and query clustering methods, respectively.
Also, we compare them with a state-of-the-art approach based on the query-flow graph
(QFG) [Boldi et al. 2008].

8.2.1. Time-Splitting. This set of task discovery methods is exclusively based on the task-
based query similarity function described in Section 6.1, that is, σtime. In particular, here
we compare three different time-splitting techniques—TS-5, TS-15, and TS-26—which
use 5-, 15-, and 26-minute thresholds of t̄, respectively.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:28 C. Lucchese et al.

Table VIII. TS-5, TS-15, and TS-26

F1 Rand Jaccard

TS-5 0.28 0.75 0.03
TS-15 0.28 0.71 0.08
TS-26 0.65 0.34 0.34

Table IX. QFG Varying the Threshold η

η F1 Rand Jaccard

QFG

0.1 0.68 0.47 0.36
0.2 0.68 0.49 0.36
0.3 0.69 0.51 0.37
0.4 0.70 0.55 0.38
0.5 0.71 0.59 0.38
0.6 0.74 0.65 0.39
0.7 0.77 0.71 0.40
0.8 0.77 0.71 0.40
0.9 0.77 0.71 0.40

Table VIII shows the results we obtained using these techniques on the ground
truth. The best result in terms of F1 is found by considering all the time-gap sessions
identified with TS-26, without splitting them into shorter time-gap sessions. Hence,
we consider TS-26 as the baseline approach for addressing UTDP. Roughly speaking,
this is equivalent to identifying user tasks with time-gap sessions.

8.2.2. Query-Flow Graph. QFG is constructed over a training segment of the AOL
top-500 user sessions. This method uses chaining probabilities measured by means
of a machine-learning method. First, we extracted some features from the training
search engine log and stored them in a compressed graph representation. In particu-
lar, we considered 25 different features (i.e., time-related, session, and textual features)
for each pair of queries (q, q′) that were issued consecutively in at least one session of
the query log.

The validity of QFG was tested on the ground truth, and the results we obtained are
shown in Table IX. We found the best values using a threshold η = 0.7. In fact, it was
shown that results do not improve when using a greater threshold value.

QFG significantly improves the baseline TS-26. In particular, F1 gains about 16%,
while Rand and Jaccard roughly gain 52% and 15%, respectively.

8.2.3. Query Clustering. We now evaluate all the clustering-oriented user task discovery
methods described in Section 7.2.1.

First, we present the results we obtained using the task-based query similarity
functions derived from the unsupervised learning approach described in Section 6.2
that is, σ1 and σ2. Therefore, as a major innovative contribution to this work, we also
show the outcomes of two of these task discovery methods, that is, QC-WCC and QC-HTC,
when exploiting the supervised learned similarities proposed in Section 6.3, that is,
σ 4

dt, σ 1
nb (or, equivalently, σ 3

nb), and σ ∗
lr, where ∗ ∈ {1, 2, 3, 4}.

Unsupervised Learned Task-Based Similarity. We start on the premise that the
QC-MEANS clustering algorithm uses both the unsupervised learned query similari-
ties σ1 and σ2. We empirically set the radius ρ of this centroid-based algorithm to 0.4
for both similarity functions, that is, two queries could be part of the same cluster if
and only if their similarity is equal to or greater than 0.6. The overall results of this
method are shown in Table X.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:29

Table X. QC-MEANS Using Unsupervised Learned Task-Based Query Similarities σ1 and σ2

QC-MEANS σ1

F1 Rand Jaccard
α (1 − α)
1 0 0.71 0.73 0.26

0.5 0.5 0.68 0.70 0.14
0 1 0.68 0.70 0.13

QC-MEANS σ2

F1 Rand Jaccard
t b

0.5 4 0.72 0.74 0.27

Table XI. QC-SCAN Using Unsupervised Learned Task-Based Query Similarities σ1 and σ2

QC-SCAN σ1

F1 Rand Jaccard
α (1 − α)
1 0 0.77 0.71 0.17

0.5 0.5 0.74 0.68 0.06
0 1 0.75 0.68 0.07

QC-SCAN σ2

F1 Rand Jaccard
t b

0.5 4 0.77 0.71 0.19

Concerning σ1, the best results were obtained by using only the content-based simi-
larity, that is, with α = 1. However, the very best results for QC-MEANS were found when
using σ2. Here, we significantly improve the baseline TS-26 in terms of F1 (≈10%) and
Rand (≈54%), while we lose nearly 21% in terms of Jaccard. Moreover, if we compare
the best QC-MEANS with the best QFG, we notice that QC-MEANS loses about 6% in
terms of F1, 33% in terms of Jaccard, but it gains approximately 4% in terms of Rand.

We now discuss the QC-SCAN algorithm, again using both the similarity functions
σ1 and σ2. We used several combinations of the two density-based parameters, that is,
minPts and eps, and we found the best results with minPts = 2 and eps = 0.4.

Table XI illustrates the fact that QC-SCAN provides globally better results than
QC-MEANS for both σ1 and σ2. Similarly, for σ1 the best results were obtained by using
only content-based similarity, that is, with α = 1. However, our proposed conditional
function μ2 reveals a significant improvement with respect to all measures.

Finally, it is worth noting that QC-SCAN behaves exactly the same as QFG, except for
the Jaccard where QC-SCAN roughly loses 53%.

The third algorithm we consider is QC-WCC. Here, we used a breadth-first search in
order to find the connected components of the graph which represent each time-gap
session [Hopcroft and Tarjan 1973]. Table XII shows the results we found using this
algorithm either with σ1 and σ2, and by varying the pruning threshold η. In particular,
concerning σ1 we only consider the best convex combination when α = 0.5.

The best results with σ1 were obtained when η = 0.2, while even better results were
found with σ2 when η = 0.3. In this last case, the overall evaluation is significantly
higher than the baseline TS-26 but also higher than the state-of-the-art approach QFG.
With regard to TS-26, the best QC-WCC gains about 20%, 56%, and 23% in terms of F1,
Rand, and Jaccard, respectively. Moreover, QC-WCC also improves the results of QFG,
gaining nearly 5% in terms of F1, about 9% in terms of Rand, and approximately 10%
in terms of Jaccard.

QC-HTC is the last algorithm we introduced and represents one of the innovative
contributions to our previous work [Lucchese et al. 2011]. The results obtained from
using this approach with both similarity functions σ1 and σ2 varying the pruning
threshold η are shown in Table XIII. Similarly to QC-WCC, with regard to σ1, we only
consider the best convex combination when α = 0.5. Again, the best results with σ1 were
obtained when η = 0.2, while the global best results were found with σ2 when η = 0.3.
As the table shows, the overall results are very close to those obtained with QC-WCC.
In particular, QC-HTC improves TS-26 by roughly gaining 19%, 56%, and 21% in terms

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:30 C. Lucchese et al.

Table XII. QC-WCC Using Unsupervised Learned Task-Based Query Similarities σ1 and σ2

QC-WCC σ1 (α = 0.5)
η F1 Rand Jaccard

0.1 0.78 0.71 0.42
0.2 0.81 0.78 0.43
0.3 0.79 0.77 0.37
0.4 0.75 0.73 0.27
0.5 0.72 0.71 0.20
0.6 0.75 0.70 0.14
0.7 0.74 0.69 0.11
0.8 0.74 0.68 0.07
0.9 0.72 0.67 0.04

QC-WCC σ2 (t = 0.5, b = 4)
η F1 Rand Jaccard

0.1 0.67 0.45 0.33
0.2 0.78 0.71 0.42
0.3 0.81 0.78 0.44
0.4 0.81 0.78 0.41
0.5 0.80 0.77 0.37
0.6 0.78 0.75 0.32
0.7 0.75 0.73 0.23
0.8 0.71 0.70 0.15
0.9 0.69 0.68 0.08

Table XIII. QC-HTC Using Unsupervised Learned Task-Based Query Similarities σ1 and σ2

QC-HTC σ1 (α = 0.5)
η F1 Rand Jaccard

0.1 0.78 0.72 0.41
0.2 0.80 0.78 0.41
0.3 0.78 0.76 0.35
0.4 0.75 0.73 0.25
0.5 0.73 0.70 0.18
0.6 0.75 0.70 0.13
0.7 0.74 0.69 0.10
0.8 0.74 0.68 0.06
0.9 0.72 0.67 0.03

QC-HTC σ2 (t = 0.5, b = 4)
η F1 Rand Jaccard

0.1 0.68 0.56 0.32
0.2 0.78 0.73 0.41
0.3 0.80 0.78 0.43
0.4 0.80 0.77 0.38
0.5 0.78 0.76 0.34
0.6 0.77 0.74 0.30
0.7 0.74 0.72 0.21
0.8 0.71 0.70 0.14
0.9 0.68 0.67 0.07

of F1, Rand, and Jaccard, respectively. It is therefore clear that QC-HTC provides better
results than QFG and gains about 4% in terms of F1, nearly 9% in terms of Rand, and
approximately 8% in terms of Jaccard.

Supervised Learned Task-Based Similarity. Another major contribution to this work
concerns the supervised learning approach for computing the task-based query simi-
larity functions, as described in Section 6.3.

In short, a set of query similarity functions was learned by training a family of
classifiers on a set of both internal and external query log features. This contrasts with
the unsupervised learning approach, where query similarity functions were directly
derived from the query log data without any supervised learning step.

Therefore, here we also evaluate how this new approach for measuring the task
relatedness between query pairs impacts the effectiveness of the two best-performing
clustering-oriented task discovery methods, that is, QC-WCC and QC-HTC.

It is worth remembering that supervised learned similarities affect the way in which
we build the similarity graph either in QC-WCC or in QC-HTC. Indeed, an edge between
a query pair (qi, qj) is created whenever the considered classifier assigns the class
attribute same task = yes to (qi, qj). Moreover, the weight assigned to each created
edge corresponds to the prediction accuracy value provided by the classifier.

Based on the performance evaluation of the classifiers we proposed in Section 6.3.3,
we ran both the QC-WCC and QC-HTC algorithms using the three best task-based query
similarity functions: σ 4

dt, σ 1
nb (or, analogously, σ 3

nb), and σ ∗
lr, where ∗ ∈ {1, 2, 3, 4}. These

similarity scores were used to compute the weighting edge similarity function w of our
graph-based algorithms.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:31

Table XIV. QC-WCC vs. QC-HTC Using Supervised Learned Task-Based Query Similarity σ 4
dt

QC-WCC using σ 4
dt

η F1 Rand Jaccard
0.0 0.76 0.69 0.43
0.1 0.76 0.69 0.43
0.2 0.76 0.69 0.43
0.3 0.76 0.69 0.43
0.4 0.76 0.69 0.43
0.5 0.76 0.69 0.43
0.6 0.78 0.77 0.46
0.7 0.79 0.78 0.45
0.8 0.80 0.79 0.45
0.9 0.80 0.79 0.42
1.0 0.71 0.70 0.13

QC-HTC using σ 4
dt

η F1 Rand Jaccard
0.0 0.76 0.73 0.42
0.1 0.76 0.73 0.42
0.2 0.76 0.73 0.42
0.3 0.76 0.73 0.42
0.4 0.76 0.73 0.42
0.5 0.76 0.73 0.42
0.6 0.78 0.79 0.44
0.7 0.79 0.79 0.43
0.8 0.79 0.79 0.42
0.9 0.78 0.78 0.38
1.0 0.68 0.69 0.10

Table XV. QC-WCC vs. QC-HTC Using Supervised Learned Task-Based Query Similarities σ 1
nb or σ 3

nb

QC-WCC using σ 1
nb or σ 3

nb
η F1 Rand Jaccard

0.0 0.65 0.36 0.33
0.1 0.65 0.36 0.33
0.2 0.65 0.36 0.33
0.3 0.65 0.36 0.33
0.4 0.65 0.36 0.33
0.5 0.65 0.36 0.33
0.6 0.65 0.36 0.33
0.7 0.65 0.37 0.33
0.8 0.64 0.40 0.32
0.9 0.65 0.48 0.30
1.0 0.75 0.73 0.24

QC-HTC using σ 1
nb or σ 3

nb
η F1 Rand Jaccard

0.0 0.65 0.38 0.33
0.1 0.65 0.38 0.33
0.2 0.65 0.38 0.33
0.3 0.65 0.38 0.33
0.4 0.65 0.38 0.33
0.5 0.65 0.38 0.33
0.6 0.65 0.38 0.33
0.7 0.65 0.39 0.33
0.8 0.64 0.42 0.31
0.9 0.65 0.50 0.30
1.0 0.75 0.72 0.22

Table XIV illustrates the results obtained both with QC-WCC and QC-HTC using the
supervised learned similarity σ 4

dt. Concerning QC-WCC, the best results were provided
when η = 0.8, while QC-HTC performed best when η = 0.7.

Similarly, Table XV shows the results obtained both with QC-WCC and QC-HTC using
the supervised learned similarity σ 1

nb (or, analogously, σ 3
nb). In both cases, best F1 and

Rand values were obtained when η = 1.0, whereas best Jaccard results were obtained
when 0.0 ≤ η ≤ 0.7. However, all the validity measures are significantly worst than
those obtained when using σ 4

dt. Another difference is that when using σ 4
dt, the best

results are around a unique value of the threshold η, that is, η = 0.8 and η = 0.7,
whereas here it appears there is a less strong relationship between the overall best
results and η.

Table XVI shows the results obtained both with QC-WCC and QC-HTC using the su-
pervised learned similarity σ ∗

lr. Both QC-WCC and QC-HTC achieve their best outcomes
when the threshold η = 0.7. However, even in this case, all the validity measures lose
significant value with respect to QC-WCC and QC-HTC when using σ 4

dt. With regard to
σ 4

dt there is a clear relationship between the best validity measures and the value of η.
Table XVII compares the best results found with each approach and highlights sim-

ilar behaviors when using unsupervised or supervised learned similarities.
Finally, Table XVIII clearly points out the benefit of exploiting collaborative knowl-

edge like Wikipedia. QC-HTC used the similarity function σ2 to capture and group
together two queries that are completely different from a content-based perspective,

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:32 C. Lucchese et al.

Table XVI. QC-WCC vs. QC-HTC Using Supervised Learned Task-Based Query Similarities σ ∗
lr (∗ ∈ {1, 2, 3, 4})

QC-WCC using σ ∗
lr

η F1 Rand Jaccard
0.0 0.65 0.50 0.30
0.1 0.65 0.50 0.30
0.2 0.65 0.50 0.30
0.3 0.65 0.50 0.30
0.4 0.65 0.50 0.30
0.5 0.65 0.50 0.30
0.6 0.70 0.64 0.30
0.7 0.77 0.75 0.31
0.8 0.76 0.73 0.24
0.9 0.74 0.70 0.15
1.0 0.73 0.66 0.00

QC-HTC using σ ∗
lr

η F1 Rand Jaccard
0.0 0.65 0.51 0.30
0.1 0.65 0.51 0.30
0.2 0.65 0.51 0.30
0.3 0.65 0.51 0.30
0.4 0.65 0.51 0.30
0.5 0.65 0.51 0.30
0.6 0.68 0.65 0.28
0.7 0.76 0.75 0.30
0.8 0.75 0.73 0.24
0.9 0.74 0.70 0.14
1.0 0.73 0.66 0.00

Table XVII. Best Results Obtained with Each Method Using Both Unsupervised and Supervised Learned
Similarities

F1 Rand Jaccard

TS-26 (baseline) 0.65 0.34 0.34
QFG best (state of the art) 0.77 0.71 0.40

unsupervised learned similarity σ2

QC-MEANS best 0.72 0.74 0.27
QC-SCAN best 0.77 0.71 0.19
QC-WCC best 0.81 0.78 0.44
QC-HTC best 0.80 0.78 0.43

supervised learned similarity σ 4
dt

QC-WCC best 0.80 0.79 0.45
QC-HTC best 0.79 0.79 0.43

Table XVIII. The Impact of Wikipedia: σ1 vs. σ2

QC-HTC σ1 (α = 1) QC-HTC σ2 (0.5, 4)
Query ID Query String Query ID Query String

63 los cabos

64 cancun

65 hurricane wilma 65 hurricane wilma

68 hurricane wilma 68 hurricane wilma

but that are closely correlated from a the point of view of semantics. Indeed, Cancun
is one of the regions affected by Hurricane Wilma which hit in 2005 (see the cross ref-
erence in the corresponding Wikipedia article7). Moreover, Los Cabos and Cancun are
both in Mexico despite being a great distance apart. It might be the case that the user
was looking for the relative position of Los Cabos from Cancun in order to understand
if Los Cabos was hit by the hurricane as well.

8.3. Evaluation on a Larger Dataset

So far, we have evaluated our user task discovery methods on a manually-labeled
dataset, which we referred to as our ground truth. However, an evaluation on a
larger dataset may give useful hints on whether our proposed techniques are able
to generalize.

In this section, we consider the two best approaches we proposed, that is, QC-WCC

and QC-HTC. Both these methods were run on the public dataset top-500-1week, which

7http://en.wikipedia.org/wiki/Cancun

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:33

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80

Fr
eq

ue
nc

y
(%

)

#User Tasks per 1-week session

Fig. 11. The distribution of user task frequency using the QC-WCC algorithm.

refers to the 500 user sessions with the highest number of queries, yet limited to the
first week of logging. It is worth noting that a subset of top-500-1week was used to
build our ground truth (see Section 5). This dataset contains a total amount of 48,257
queries, meaning about 97 queries per week per user on average, which corresponds to
nearly 14 queries per day per user, and it is available for download.8 Here, the longest
user session, that is, the session with the highest number of queries, is 1,774 queries.

8.3.1. QC-WCC. When the QC-WCC algorithm was executed on this larger dataset, a total
number of 8,191 user tasks was found. In Figure 11, we plot the frequency distribution
of user tasks over the user sessions contained in the dataset. The maximum number of
discovered tasks for a single user session is 72. On average, each user performed 16.4
tasks per week.

Moreover, the user task size distribution (i.e., the number of queries for each dis-
covered user task) is depicted in Figure 12. This plot shows that the user task size
distribution in the larger dataset reflects the ground truth, which was reported in
Figure 8. However, the actual average number of queries per user task is about 3.93,
which is slightly greater than the ground truth (i.e., about 2.57).

On the basis of the analysis conducted on the ground truth and described in Section 5,
we also evaluated how user tasks were distributed over time-gap sessions, namely how
many user tasks were discovered within the same time-gap session, using the QC-WCC

algorithm. The plot in Figure 13 shows some similarities to the one depicted in Figure 9,
which instead refers to the ground truth. However, the QC-WCC algorithm discovered
about 1.34 user tasks per time-gap session, as opposed to 1.80 found in the ground
truth.

8.3.2. QC-HTC. The QC-HTC algorithm identified a total figure of 8,301 user tasks on
the larger dataset. Figure 14 depicts the frequency distribution of the number of user
tasks for each one-week session. Here, the maximum number of discovered user tasks
for a single user session is 163, whereas the minimum is 1. This means each user
performed about 16.6 tasks, on average.

As regards the QC-WCC, we also evaluated the user task size distribution using this
algorithm, and the result is shown in Figure 15. Here, not only is the curve progress

8http://miles.isti.cnr.it/~tolomei/downloads/aol-top500-1w.tgz

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:34 C. Lucchese et al.

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

Fr
eq

ue
nc

y
(%

)

User Task size (#queries)

Fig. 12. The distribution of user task size using the QC-WCC algorithm.

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14

Fr
eq

ue
nc

y
(%

)

#User Tasks per time-gap session

Fig. 13. The distribution of user tasks across time-gap sessions using the QC-WCC algorithm.

compliant with the user task size distribution of the ground truth, but also, the average
number of queries per task (i.e., about 3.38) is closer to the one we discovered in our
golden set. Interestingly, the QC-HTC was able to detect about 1.49 user tasks per
time-gap session, and the whole distribution is shown in Figure 16.

9. DISCOVERING COLLECTIVE TASKS

The last major contribution to this work is a method for detecting collective tasks.
Given the set T of user tasks extracted from the query log with one of one of the
techniques previously discussed, let ti ∈ T be a generic user task, and ti its bag-of-words
representation. More specifically, if q is the bag-of-words representation of a query
q ∈ QL, it follows that ti = ⊎

q∈ti q, where
⊎

is the bag union operator. Therefore, each
ti can be considered as a text document, and the problem of discovering the collective
tasks can be reduced to the clustering of similar text documents [Zhao and Karypis
2002, 2004].

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:35

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160 180

Fr
eq

ue
nc

y
(%

)

#User Tasks per 1-week session

Fig. 14. The distribution of user task frequency using the QC-HTC algorithm.

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

Fr
eq

ue
nc

y
(%

)

User Task size (#queries)

Fig. 15. The distribution of user task size using the QC-HTC algorithm.

In the rest of this section, we first present a manually-generated ground truth of
collective tasks, which is used to evaluate the quality of the collective tasks extracted
by means of a user task clustering algorithm. Then, we discuss a set of possible user
task clustering algorithms and their evaluation.

9.1. Ground Truth of Collective Tasks

The user tasks that were manually annotated to create the ground truth of collective
tasks were identified by running QC-HTC on the same portion of the top-500-1week
query log, which had previously been used to generate the ground truth of user tasks
(see Section 5).

QC-HTC discovered a total amount of 318 user tasks, which in turn were manually
grouped into a set of collective tasks using the same annotators employed in construct-
ing the ground truth of user tasks. The annotators discarded 16 user tasks, since no
agreement was reached on the cluster assignments for these user tasks. They grouped

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:36 C. Lucchese et al.

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14

Fr
eq

ue
nc

y
(%

)

#User Tasks per time-gap session

Fig. 16. The distribution of user tasks across time-gap sessions using the QC-HTC algorithm.

Table XIX. Statistical Indicators on Manually-Identified Collective Tasks

Cluster Size
Avg. Std. Dev. Max Min Median

5.70 13.27 61 1 5

the remaining 302 (i.e., ≈95% of the total) into 53 collective tasks, each one containing
on average 5.70 user tasks. Table XIX shows some statistics relating to the size of the
clusters which had been manually generated.

9.2. Clustering Algorithms

In order to automatically discover collective tasks, we propose clustering the set of
already detected user tasks. In particular, in order to cluster the set T of user tasks, we
selected a set of algorithms included in the CLUTO9 toolkit. Each algorithm produces
a set of K clusters, namely a set of K collective tasks.

Regardless of the clustering algorithm chosen, three input parameters have to be
provided: (i) a similarity measure, (ii) an objective function, and (iii) a number K of
clusters. For the first option, we adopted two measures, namely the well-known cosine
similarity and the Pearson’s correlation coefficient. Concerning the second, we chose to
maximize the intra-cluster similarity according to the following function:

max
K∑

i=1

√ ∑
u,v∈Si

sim(u, v),

where K is the total number of produced clusters, Si is the set of objects assigned to the
ith cluster, and sim(u, v) is the similarity between the two objects u, v ∈ Si (i.e., either
cosine or Pearson’s correlation coefficient).

Method 1: Repeated Bisections (rbr). This is the first clustering approach we used,
where the desired K-way clustering solution is computed by performing a sequence of
K − 1 repeated bisections. Here, the similarity matrix is first clustered into two groups,
then one of these groups is selected and bisected further. This process continues until

9http://glaros.dtc.umn.edu/gkhome/views/cluto

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:37

the desired number of clusters is found. During each step, the cluster is bisected so
that the resulting two-way clustering solution optimizes the chosen criterion function.
The cluster that is selected for further partitioning is customizable, and by default, it
coincides with the biggest cluster at each stage. Note that this approach ensures that
the criterion function is locally optimized within each bisection, but in general, it is not
globally optimized. Therefore, we selected a variant of this method which, in the end,
globally optimizes the objective function.

Method 2: Agglomerative (agg). In this approach, the desired K-way clustering so-
lution is computed using the agglomerative paradigm whose goal is again to locally
optimize the selected clustering objective function. The solution is obtained by stop-
ping the agglomeration process when K clusters are left.

Eventually, we came up with four solutions by mixing the two preceding clustering
methods with the two similarity scores, namely rbr-cosine, rbr-pearson, agg-cosine, and
agg-pearson.

9.3. Evaluation on the Ground Truth

All the automatic solutions just described were run on the same set of user tasks we
used to manually build the ground truth of collective tasks (see Section 9.1). In order
to evaluate our clustering algorithms, we set the final number of clusters as K = 53,
which is the exact number of collective tasks discovered by the human assessors.

Similarly to Section 8.1, we refer to classification-oriented measures of validity in
order to assess the performance of the various clustering methods in relation to the
collective tasks in the ground truth, namely precision, recall, and F1. Table XX reports
these measurements of clustering validity for the various algorithms, along with some
statistical indicators.

(a) rbr-cosine. This solution produces the set of K = 53 output clusters by performing
a sequence of K − 1 repeated bisections. Furthermore, it uses the cosine similarity
to compare the textual representations of any two user tasks. From the original set of
318 user tasks, 297 were clustered (i.e., ≈93%), whereas 21 were discarded. On average,
each collective task contains about 5.60 user tasks, which is close to the value obtained
from the ground truth.

(b) rbr-pearson. As with the previous method, rbr-pearson produces the final set of
output clusters by performing a sequence of repeated bisections. However, it uses the
Pearson’s correlation to measure the similarity between pairs of user tasks. From
the original set of 318 user tasks, 293 were clustered (i.e., ≈92%), whereas 25 were
discarded.

(c) agg-cosine. This solution agglomerates user tasks by locally optimizing the se-
lected criterion function, which is based on the cosine similarity between textual rep-
resentations of any two user tasks. All 318 original user tasks were clustered, thereby
each collective task has six user tasks on average. On the basis of the quality of produced
clusters, this method results in a significant drop in precision, recall, and F1 scores
compared to the preceding partitional methods.

(d) agg-pearson. Similarly to the preceding method , agg-pearson agglomerates user
tasks. This solution uses Pearson’s correlation to measure the similarity between user
tasks. As with agg-cosine, all 318 original user tasks were clustered, thereby each
collective task has six user tasks on average. Again, the overall quality of clustering is
worse than that obtained with partitional methods.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:38 C. Lucchese et al.

Table XX. Statistical Indicators and Quality Evaluation of Each User Task Clustering Algorithm

Cluster Size
Avg. Std. Dev. Max Min Median

rbr-cosine 5.60 14.19 89 2 3
rbr-pearson 5.53 14.41 80 3 5
agg-cosine 6.00 16.97 97 1 3

agg-pearson 6.00 43.86 250 1 1

Cluster Quality
Precision Recall F1

rbr-cosine 0.71 0.48 0.57
rbr-pearson 0.68 0.46 0.55
agg-cosine 0.59 0.42 0.49

agg-pearson 0.54 0.39 0.45

Table XXI. Statistical Indicators on User Task Clustering Using rbr-cosine

Cluster Size
Avg. Std. Dev. Max Min Median

6.81 15.43 479 1 5

Intra-Cluster Similarity
Avg. Std. Dev. Median

0.59 0.17 0.56

Finally, from the results reported in Table XX, the best clustering algorithm is parti-
tional (i.e., top-down), that is, rbr-cosine, which achieves the highest values of precision,
recall, and F1, respectively.

9.4. Evaluation on a Larger Dataset

In this section, we assess the behavior of the best-performing clustering algorithm (i.e.,
rbr-cosine) when applied to a larger collection of tasks. These user tasks were extracted
from the whole top-500-1week dataset (see Section 8.3.2) by the QC-HTC algorithm.

Unlike the previous tests, which were conducted to find the best algorithm, in this
case we do not have an a priori knowledge of the number of collective tasks in the whole
dataset. In order to select the number K of clusters, we thus observed the behavior
of the objective function by varying K. It was noted as K increases, the objective
function monotonically increases as well. Indeed, the maximum intra-cluster similarity
is obtained when K is equal to the number of documents to be clustered (i.e., when each
cluster contains exactly one document). It is clear that we need to find a trade-off, and
this is indicated by a well-established empirical criterion, also known as the elbow
method. Generally speaking, we chose K = K̄ such that for any K, K > K̄ the slope
of our objective function appeared to increase less than for any K, K < K̄. The reason
for selecting this method is to choose a number of clusters such that adding another
cluster does not give a much better model for fitting the data. By following this method
on the original collection of 8,301 user tasks, we eventually obtained a set of K = 1,024
collective tasks.

Since we do not have a ground truth for such a large dataset, we first show some
statistics relating to the obtained clusters, for example, the number of user tasks
within each collective task, the intra-cluster similarity, etc. Furthermore, we present
some analysis on the popularity of collective tasks, namely we show how collective
tasks are actually distributed across the original user sessions stored on the query log.
Finally, we illustrate some examples as anecdotical evidence.

From the initial input set of 8,301 user tasks, 6,970 (≈84%) were actually clustered.
Table XXI shows some statistical indicators on the output clusters of user tasks. In the
left-hand table, we indicate the variety in cluster size, that is, the number of user tasks
contained within a collective task. We found that the collective task with the highest
number contained 479 user tasks. By manually inspecting this large collective task,
we found it mainly contains navigational user tasks [Broder 2002], mostly related to
contents of a sexual nature. On average, each collective task included approximately
seven user tasks. In Figure 17, we also plot the cluster size distribution yet limited
to collective tasks of less than 50 user tasks. Indeed, it is worth noting that the vast

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:39

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45 50

Fr
eq

ue
nc

y
(%

)

Collective Task size (#user tasks)

Fig. 17. The distribution of collective task size by means of the number of composing user tasks.

 0

 5

 10

 15

 20

 5 10 15 20 25 30 35 40 45 50

Fr
eq

ue
nc

y
(%

)

Collective Task popularity

Fig. 18. The distribution of collective task popularity across the original set of user sessions.

majority of collective tasks (i.e., 99.9%) contained less than 50 user tasks. The right-
hand table shows some indicators of intra-cluster similarity.

In addition, we were interested in checking if some collective tasks occurred more
frequently in the query log, both within the same user session and across distinct user
sessions. To this end, we rewrote each original user session as a set of user tasks (i.e.,
actually collective tasks), instead of a sequence. Therefore, for each collective task, we
computed the percentage of user sessions where this appeared, disregarding its order
and any possible repetition within a single user session. According to this study, the
top-most popular collective task occurred in 183 out of 500 user sessions (i.e., about
36.6%). In contrast, the vast majority of collective tasks (i.e., about 93.5%) appeared in
less than 11 user sessions, and a collective task occurred in about five user sessions,
on average. In Figure 18, we show the popularity distribution of collective tasks across
user sessions.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:40 C. Lucchese et al.

Table XXII. A Collective Task Containing User Tasks Referring to hobby/gardening

Collective Task # 314
User Task IDs Queries
2439668-18-1 cottage garden qvc, cottage garden roses

1188448-3-7 private hot tub garden calistoga area lodging

1012899-3-2 vegetable garden, vegetable garden ideas

2061454-23-1 japanese garden, decor japanese garden, . . .
.

679436-11-2 tv garden shows, rebecca cole garden show tv, . . .
297468-3-2 dry garden, dry garden berkeley, . . .
297468-10-1 california garden blog, garden blog, best garden blogs

297468-21-1 open garden, open garden day sacramento

297468-26-1 horton farm iris garden

Table XXIII. A Collective Task Containing User Tasks Referring to History of Rome

Collective Task # 578
User Task IDs Queries
12472900-4-1 louis xvi descended clovis, descendants roman nobility, . . .
8566671-21-3 roman history, . . .
4110454-5-4 roman claim conquest, roman historian ivy . . .

Table XXIV. A Collective Task Containing User Tasks Referring to medical diseases

Collective Task # 693
User Task IDs Queries

57424-1-1 california sweats company, low sugar sweetener, . . .
1524276-2-1 hypoglycemia periods, low blood sugar periods menstrual cycle, . . .
257689-1-1 blood sugar 500, blood sugar chart

543587-32-3 prolonged periods perimenopausal, . . .
4401012-9-1 high blood sugar use diuretics, blood sugar levels fasting, . . .

Table XXV. A Collective Task Containing User Tasks Referring to math/physics

Collective Task # 946
User Task IDs Queries

292860-6-1 calculate moment rotational inertia, kinematic equations

349670-16-2 entropy equations, entropy
1411796-16-1 schroedinger’s equation, schrodinger’s equation

Finally, Tables XXII, XXIII, XXIV, and XXV show some examples of anecdotical
evidence within the collective tasks found. In particular, we show the user tasks10

of four collective tasks—discovered by our rbr-cosine clustering—which refer to four
real-life situations.

10. CONCLUSIONS

This work addresses some important research challenges in developing next-generation
Web search engines which better satisfy user needs. We claim that people increasingly
phrase queries to search engines in order to find information which can simplify their
daily tasks. Examples of these tasks include finding a recipe, booking a flight, reading
online news, etc. To verify this theory and to discover those tasks, we carried out
a detailed analysis of the historical data recorded in long-term search engine query

10User task IDs are uniquely determined by the following pattern: userID-sessionID-taskID.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:41

logs. Our approach involves a two-step methodology. First, we identify user tasks from
individual user sessions stored in the query log. In our vision, a user task is a set of
possibly noncontiguous queries occurring within a search session which relates to the
same need. Then, as a second step, we discover collective tasks by aggregating similar
user tasks, possibly performed by distinct users.

For the initial step, we define the user task discovery problem (UTDP) as the problem
of finding the best partitioning of a set of queries into subsets of queries related to
the same user task. The UTDP involves two main issues: (i) it requires a robust measure
to evaluate the task relatedness between any two queries, and (ii) it needs an effective
method in order to discover user tasks on the basis of this measure. With reference
to (i), we propose both unsupervised and supervised learning approaches for devising
several task-based query similarities, whereas we tackle (ii) by introducing a set of
query clustering methods specifically designed to discover user tasks.

We evaluate all the proposed solutions by means of a manually-built ground truth,
namely a task-oriented partitioning of the queries in our benchmarking dataset per-
formed by human annotators. In particular, two of the proposed clustering methods,
that is, QC-WCC and QC-HTC, have been shown to outperform state-of-the-art solutions.

For the second stage, we introduce and investigate the problem of discovering col-
lective tasks. To this end, we propose four methods for clustering previously mined
user tasks, which are represented by the bag-of-words extracted from the associated
queries.

We evaluate all these solutions both on a manually-built ground truth and on a larger
dataset. The experiments conducted reveal that our two-step approach can effectively
detect similar latent needs from a query log by first mining the search behavior of
each single user, and then by aggregating the similar user tasks performed by different
users.

As future work, we plan to exploit the collective tasks mined from the query log to
build a model for representing the task-by-task search behavior of users. This model
could subsequently be used to devise novel applications like a task recommender system
that goes beyond query suggestion mechanisms currently offered by modern Web search
engines.

ACKNOWLEDGMENTS

We acknowledge the authors of Boldi et al. [2008] and the Yahoo! Research Labs in Barcelona, Spain, for
providing us their query-flow graph implementation, and Franco Maria Nardini for adapting this implemen-
tation to our needs.

REFERENCES

BAEZA-YATES, R., GIONIS, A., JUNQUEIRA, F. P., MURDOCK, V., PLACHOURAS, V., AND SILVESTRI, F. 2008. Design
trade-offs for search engine caching. ACM Trans. Web 2, 4, 1–28.

BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA.

BEEFERMAN, D. AND BERGER, A. 2000. Agglomerative clustering of a search engine query log. In Proceedings
of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’00).
ACM, New York, NY. 407–416.

BOLDI, P., BONCHI, F., CASTILLO, C., DONATO, D., GIONIS, A., AND VIGNA, S. 2008. The query-flow graph: Model and
applications. In Proceedings of the 17th ACM International Conference on Information and Knowledge
Management (CIKM’08). ACM, New York, NY, 609–618.

BRODER, A. 2002. A taxonomy of Web search. SIGIR Forum 36, 2, 2, 3–10.
CAO, H., JIANG, D., PEI, J., HE, Q., LIAO, Z., CHEN, E., AND LI, H. 2008. Context-aware query suggestion by mining

click-through and session data. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’08). ACM, New York, NY, 875–883.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

14:42 C. Lucchese et al.

DONATO, D., BONCHI, F., CHI, T., AND MAAREK, Y. 2010. Do you want to take notes?: Identifying research missions
in Yahoo! Search Pad. In Proceedings of the 19th International Conference on World Wide Web (WWW’10).
ACM, New York, NY, 321–330.

ESTER, M., KRIEGEL, H. P., SANDER, J., AND XU, X. 1996. A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of the 2nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD’96). ACM, New York, NY, 226–231.

FU, L., GOH, D. H.-L., FOO, S. S.-B., AND NA, J.-C. 2003. Collaborative querying through a hybrid query
clustering approach. In Proceedings of the 6th International Conference on Asian Digital Libraries
(ICADL’03). Lecture Notes in Computer Science, vol. 2911, Springer-Verlag, Berlin Heidelberg, 111–
122.

GABRILOVICH, E. AND MARKOVITCH, S. 2007. Computing semantic relatedness using Wikipedia-based explicit
semantic analysis. In Proceedings of the 20th International Joint Conference on Artificial Intelligence.
6–12.

GAYO-AVELLO, D. 2009. A survey on session detection methods in query logs and a proposal for future evalu-
ation. Info. Sci. 179, 12, 1822–1843.

GLANCE, N. S. 2001. Community search assistant. In Proceedings of the 6th ACM International Conference
on Intelligent User Interfaces (IUI’01). ACM, New York, NY, 91–96.

GUO, J., CHENG, X., XU, G., AND ZHU, X. 2011. Intent-aware query similarity. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management (CIKM’11). ACM, New York, NY,
259–268.

HE, D. AND GÖKER, A. 2000. Detecting session boundaries from Web user logs. In Proceedings of the 22nd
Annual Colloquium on Information Retrieval Research (BCS-IRSG). 57–66.

HE, D., GÖKER, A., AND HARPER, D. J. 2002. Combining evidence for automatic web session identification. Info.
Process. Manage. 38, 5, 727–742.

HOPCROFT, J. AND TARJAN, R. 1973. Algorithm 447: Efficient algorithms for graph manipulation. Commun.
ACM 16, 6, 372–378.

JANSEN, B. J. AND SPINK, A. 2006. How are we searching the world wide Web?: A comparison of nine search
engine transaction logs. Info. Process. Manage. 42, 1, 248–263.

JANSEN, B. J., SPINK, A., BATEMAN, J., AND SARACEVIC, T. 1998. Real life information retrieval: A study of user
queries on the web. SIGIR Forum 32, 1, 5–17.

JANSEN, B. J., SPINK, A., BLAKELY, C., AND KOSHMAN, S. 2007. Defining a session on Web search engines: Research
articles. J. Amer. Soci. Info. Scie. Technol. 58, 6, 862–871.

JÄRVELIN, A., JÄRVELIN, A., AND JÄRVELIN, K. 2007. s-grams: Defining generalized n-grams for information
retrieval. Info. Process. Manage. 43, 4, 1005–1019.

JONES, R. AND KLINKNER, K. L. 2008. Beyond the session timeout: Automatic hierarchical segmentation of
search topics in query logs. In Proceedings of the 17th ACM International Conference on Information
and Knowledge Management (CIKM’08). ACM, New York, NY, 699–708.

KOTOV, A., BENNETT, P. N., WHITE, R. W., DUMAIS, S. T., AND Teevan, J. 2011. Modeling and analysis of cross-
session search tasks. In Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’11). ACM, New York, NY, 5–14.

LAU, T. AND HORVITZ, E. 1999. Patterns of search: Analyzing and modeling Web query refinement. In Proceed-
ings of the 7th International Conference on User Modeling. Springer-Verlag, Berlin, 119–128.

LEACOCK, C. AND CHODOROW, M. 1998. Combining Local Context and WordNet Similarity for Word Sense
Identification. The MIT Press, Cambridge, MA, 11, 265–283.

LEE, U., LIU, Z., AND CHO, J. 2005. Automatic identification of user goals in Web search. In Proceedings of the
14th International World Wide Web Conference (WWW’05). ACM, New York, NY, 391–400.

LESK, M. 1986. Automatic sense disambiguation using machine readable dictionaries: How to tell a pine
cone from an ice cream cone. In Proceedings of the 5th ACM International Conference on Systems
Documentation (SIGDOC’86). ACM, New York, NY, 24–26.

LEUNG, K. W. T., NG, W., AND LEE, D. L. 2008. Personalized concept-based clustering of search engine queries.
IEEE Trans. Knowl. Data Engi. 20, 11, 1505–1518.

LUCCHESE, C., ORLANDO, S., PEREGO, R., SILVESTRI, F., AND TOLOMEI, G. 2011. Identifying task-based sessions in
search engine query logs. In Proceedings of the 4th ACM International Conference on Web Search and
Data Mining (WSDM’11). ACM, New York, NY, 277–286.

MACQUEEN, J. B. 1967. Some methods for classification and analysis of multivariate observations. In Pro-
ceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, L. M. Le Cam and
J. Neyman Eds., Vol. 1. University of California Press, Berkeley, CA, 281–297.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

Discovering Tasks from Search Engine Query Logs 14:43

MEI, Q., KLINKNER, K., KUMAR, R., AND TOMKINS, A. 2009. An analysis framework for search sequences. In
Proceeding of the 18th Conference on Information and Knowledge Management (CIKM’09). ACM, New
York, NY, 1991–1994.

MILNE, D. AND WITTEN, I. H. 2008. An effective, low-cost measure of semantic relatedness obtained from
wikipedia links. In Proceedings of the 22nd Conference on Artificial Intelligence (AAAI’08). AAAI Press,
Menlo Park, CA, 25–30.

OZMUTLU, H. C. AND ÇAVDUR, F. 2005. Application of automatic topic identification on excite web search engine
data logs. Info. Process. Manage. 41, 5, 1243–1262.

PORTER, M. F. 1980. An Algorithm for Suffix Stripping Vol. 14. Morgan Kaufmann Publishers, San Francisco,
CA, 130–137.

QUINLAN, J. R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Francisco,
CA.

RADA, R., MILI, H., BICKNELL, E., AND BLETTNER, M. 1989. Development and application of a metric on semantic
nets. IEEE Trans. Syst. Man Cybernet. 19, 1, 17–30.

RADLINSKI, F. AND JOACHIMS, T. 2005. Query chains: Learning to rank from implicit feedback. In Proceedings
of the KDD Cup Workshop at the 11th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’05). ACM, New York, NY, 239–248.

RAGHAVAN, V. V. AND SEVER, H. 1995. On the reuse of past optimal queries. In Proceedings of the 18th ACM
SIGIR International Conference on Research and Development in Information Retrieval (SIGIR’95).
ACM, New York, NY, 344–350.

REED, W. 2001. The Pareto, zipf and other power laws. Econ. Lett. 74, 1, 15–19.
RESNIK, P. 1995. Using information content to evaluate semantic similarity in a taxonomy. In Proceedings of

the 14th International Joint Conference on Artificial Intelligence (IJCAI). 448–453.
RICHARDSON, M. 2008. Learning about the world through long-term query logs. ACM Trans. Web 2, 4, 1–27.
ROSE, D. E. AND LEVINSON, D. 2004. Understanding user goals in web search. In Proceedings of the 13th

International World Wide Web Conference (WWW’04). ACM, New York, NY, 13–19.
SALTON, G. AND MCGILL, M. J. 1986. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New

York, NY.
SECO, N. AND CARDOSO, N. 2006. Detecting user sessions in the tumba! web log. Tech. rep. Faculdade de

Ciências da Universidade de Lisboa.
SHEN, X., TAN, B., AND ZHAI, C. 2005. Implicit user modeling for personalized search. In Proceeding of the 14th

Conference on Information and Knowledge Management (CIKM’05). ACM, New York, NY, 824–831.
SHI, X. AND YANG, C. C. 2006. Mining related queries from search engine query logs. In Proceedings of the

15th International World Wide Web Conference (WWW’06). ACM, New York, NY, 943–944.
SILVERSTEIN, C., MARAIS, H., HENZINGER, M., AND MORICZ, M. 1999. Analysis of a very large Web search engine

query log. SIGIR Forum 33, 1, 6–12.
SILVESTRI, F. 2010. Mining Query Logs: Turning search usage data into knowledge. Found. Trends Info. Ret.

1, 1–2, 1–174.
SILVESTRI, F., BARAGLIA, R., LUCCHESE, C., ORLANDO, S., AND PEREGO, R. 2008. (Query) history teaches every-

thing, including the future. In Proceedings of the 6th Latin American Web Congress (LA-WEB’08). IEEE
Computer Society, Washington, DC, 12–22.

SPINK, A., PARK, M., JANSEN, B. J., AND PEDERSEN, J. 2006. Multitasking during Web search sessions. Info.
Process. Manage. 42, 1, 264–275.

TAN, P. N., STEINBACH, M., AND KUMAR, V. 2005. Introduction to Data Mining. Addison-Wesley, Boston, MA.
WEN, J. R., NIE, J. Y., AND ZHANG, H. 2002. Query clustering using user logs. ACM Trans. Info. Syst. 20, 1,

59–81.
ZHAO, Y. AND KARYPIS, G. 2002. Evaluation of hierarchical clustering algorithms for document datasets. In

Proceeding of the 11th Conference on Information and Knowledge Management (CIKM’02). ACM, New
York, NY, 515–524.

ZHAO, Y. AND KARYPIS, G. 2004. Empirical and theoretical comparisons of selected criterion functions for
document clustering. Machine Learn. 55, 3, 311–331.

Received May 2011; revised June, November 2012, March 2013; accepted March 2013

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 14, Publication date: July 2013.

