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Discovering the Molecular Components of
Intercellular Junctions—A Historical View

Werner W. Franke
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D-69120 Heidelberg, Germany

Correspondence: w.franke@dkfz.de

The organization of metazoa is based on the formation of tissues and on tissue-typical func-
tions and these in turn are based on cell–cell connecting structures. In vertebrates, fourmajor
forms of cell junctions have been classified and the molecular composition of which has
been elucidated in the past three decades: Desmosomes, which connect epithelial and
some other cell types, and the almost ubiquitous adherens junctions are based on closely
cis-packed glycoproteins, cadherins, which are associated head-to-head with those of the
hemi-junction domain of an adjacent cell, whereas their cytoplasmic regions assemble
sizable plaques of special proteins anchoring cytoskeletal filaments. In contrast, the tight
junctions (TJs) and gap junctions (GJs) are formed by tetraspan proteins (claudins and
occludins, or connexins) arranged head-to-head as TJ seal bands or as paracrystalline
connexin channels, allowing intercellular exchange of small molecules. The by and large
parallel discoveries of the junction protein families are reported.

I
n the year of the bicenturial jubilee of

Charles Darwin (born 1809) and his 1859

publication of the concept of natural selection
as the decisive driving force of evolution, it

is perhaps appropriate to begin this review

with the notion that the four major kinds of
cell–cell junctions are among the oldest and

most important structures contributing to

the formation and functional diversification
of multilayered metazoan organisms. From

mere associations of individual cells, whether

protozoan or parazoan, it was the cooperation
of the molecular ensembles of these junctions

to provide the basis for eumetazoan life.

Note, however, that some protocadherin

glycoproteins and armadillo-type proteins

already occur in certain nonmetazoa (e.g.,

King et al. 2003; Nichols et al. 2006; for refs.
Halbleib and Nelson 2006). In particular,

diverse cell–cell junction molecules were—

and are—needed to assemble and organize
metazoan architecture, notably that of the

Bilateria, to allow the formation of the epithelial

layers of ectoderm and endoderm, mesoderm-
derived tissues, and the segregation of diverse

kinds of interstitial cells and the organs

derived therefrom. So, it is not so surprising
that major kinds of cell junctional structures

already exist in the lowest divisions of eumeta-

zoa (e.g., Hobmayer et al. 1996, 2000).
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In general, metazoan animals possess three

intercellular junction systems of the adhering

type formed by characteristic transmembrane
molecules and proteins that assemble into

specific submembranous plaques (Table 1). A

fundamentally different type, gap junctions,
serves primarily as a system of assemblies of

intercellular channels but also contributes to

cell–cell adhesion. In summarizing the history
of the discoveries of the molecular ensembles

forming these junctions, it is striking that

remarkably different arts of science and tribes

of cell biologists have contributed to the prog-

ress in this field. The intercellular junctional

systems are:

(1) Desmosomes (maculae adherentes) are by far
the most abundant junctions in stratified

epithelia and have been studied with

special impetus by researchers analyzing
the cytoskeleton and tissue architecture,

and by dermatologists.

(2) Adherens junctions, including the zonulae

and fasciae adherentes, have first attracted

Table 1. Constitutive molecular components of the major types of symmetrical (homotypic) junctions

Occurrence Associated filaments

Transmembrane

proteins and

glycoproteins

Specific plaque

proteins

Desmosomes

Maculae

adherentes

Epithelial cells,

various types of

cardiomyocytes,

meningothelial

cells, dendritic

reticulum cells of

the thymus and

lymph follicles

Intermediate-sized

filaments

(keratins,

vimentin, desmin)

Desmogleins 1–4a

desmocollins

1–3a

Plakoglobinb

desmoplakin I/II
plakophilins 1–3a

Adherens

junctions

Zonulae

adherentes

Fasciae

adherentes

Puncta

adhaerentia

Epithelial cells,

endothelial cells,

various types of

cardiomyocytes,

mesenchymal and

neural cells

Microfilaments

(actin)

Typical cadherinsa

(e.g., E-cadherin,

N-cadherin,

P-cadherin,

VE-cadherin,

cadherin-11)

a- and b-Catenin,

plakoglobin, protein

p120, protein

ARVCF, protein

p0071, neurojungin

(d-catenin)a,

(plakophilin-2c)

proteins ZO-1,

ZO-2, ZO-3

Tight junctions

Zonulae

occludentes

Fasciae

occludentes

Puncta

adhaerentia

Epithelial cells,

endothelial cells

–d Occludin, claudins

1–24a

tricellulin(s)e

proteins of the

JAMA-group,

CARa, ESAMa

Proteins ZO-1, ZO-2,

ZO-3, cingulin

Gap junctions

(nexus)

All kinds of

tissue-forming

cells

– Connexins 1–21a Proteins ZO-1, ZO-2,

ZO-3

Only established, i.e., repeatedly confirmed, constituent structural molecules are mentioned here; some further regulatory

or peripherally associated molecules are not listed here but are discussed in the text.
aOne or combinations of a few representatives, with cell type and cell layer specificities.
bProteins of the so-called armadillo family are in italics.
cOnly in specific proliferatively active cells (Rickelt et al. 2009).
dActin microfilaments are seen near some tight junctions but their specific association is not clear.
eThere are at least two mRNA splice products but only one protein has so far been localized.
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the special interest of developmental biol-

ogists because of their importance inmam-

malian embryogenesis.

(3) Tight junctions (zonulae occludentes), and

in particular the transmembrane molecules

involved, had long been sought as this
structure was important in controlling the

paracellular transport of molecules and

particles. Finally, the centrally important
tetraspan proteins, desired by a generation

of physiologists and membranologists,

have been found as the result of careful
cell particle fractionation work and immu-

noelectron microscopy.

(4) Gap junctions (nexus) had always fascinated

electron microscopists and crystallogra-

phers because of their esthetic para-
crystalline substructural order, as well as

physiologists studying lateral direct mol-

ecule exchange from cell to cell. Here, the
stability of the structure itself helped in its

isolation and reconstitution in vitro.

Thus, at about the same time in the late

1970s, when the ultrastructural organization

and specificities of the diverse kinds of these
junctions had been well determined (for re-

views, see Farquhar and Palade 1963; Staehelin

1974), the race by cell biologists to elucidate
the molecular compositions of these junc-

tions began. Although this analytical research

period is not quite over and a few new junction
diamonds may still just lie around the corner,

the prime interest of the community of cell bio-

logical researchers has already moved on to the
next research arena, studying the mechanisms

of junction formation and the functions of the

junctions. Over the last two decades, these
major structural elements of our bodies have

also become objects of intensemedical research,

already with some startling results.
In the following, the by and large parallel

searches for constituent molecules of the four

major categories of cell–cell junctions in ver-
tebrate cells is described. However, only con-

stituents localized and confirmed by different

groups and with various methods are men-
tioned as generally accepted components.

This, of course, does not exclude the presence

of others for which the available evidence does

not yet seem sufficient. Furthermore, certain
special types of junctions that do not fit one

of the four major categories will be reviewed

elsewhere (Franke et al. 2009).

HARD-CORE ANCHORS OF CYTOSKELETAL
ELEMENTS: THE DESMOSOMES

The desmosomes represent a category of inter-

cellular junctions that typically reveal a highly

distinctive subarchitecture. They are abundant
in epithelial and meningothelial tissues and

cell cultures, as well as in certain types and
stages of cardiomyocyte differentiation, but

are also known to connect reticulum cells of

the thymus and lymphatic follicles. Because of
their relatively good preservation after diverse

electron microscopic fixation procedures and

their abundance in certain tissues (e.g., in
some regions of the stratum spinosum of the epi-

dermis and other stratified squamous epithelia,

they occupy 50% or even more of the total
cell surface), the ultrastructural principles of

desmosome architecture were more or less

already clear in the 1970s (see, e.g., Farquhar
and Palade 1963; Campbell and Campbell

1971; Staehelin, 1974; for cardiomyocytes see

Fawcett and McNutt, 1969).
The appearance of desmosomes in electron

micrographs of ultrathin sections impresses

observers by the parallel alignment of two tri-
laminar plasma membrane domains, an orga-

nized 20–30-nm interface (the “desmogloea”),

which often reveals a dense midline structure
(the glutinamentum), and periodical cross-

striations between this midline and the plasma

membranes (Fig. 1A,B). On their cytoplasmic
side, the membranes of the desmosomal halves

are coated by an electron-dense, 15–25 nm

thick plaque, which, in turn, is coated by some-
what less dense material onto which in many,

but not in all cells, bundles of intermediate-

sized filaments (IFs) insert. Freeze-fractures
further reveal the membrane interior of desmo-

somes as relatively loosely arranged arrays of

clustered transmembrane complexes (Fig. 1C)
(Leloup et al. 1979).
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The basis for biochemical analyses and the

molecular identification of components was
laid by a good choice of appropriate tissues,

for example bovine muzzle epidermis, for the

enrichment of isolated desmosomal structures.
The results were markedly dependent on the

specific fractionation method used, with more

or less preserved plaque structures and “con-

taminations” by other elements, in particular
IF bundle residues (e.g., Skerrow and Matoltsy

1974a,b; Drochmans et al. 1978; Colaco and

Evans 1981; Franke et al. 1981; Gorbsky and
Steinberg 1981; Mueller and Franke 1983;

for review see Skerrow 1986). Although gel

TJ

ZA 

PM 

P

IF

A B C

D

E

IF

IF

P

Figure 1. Electron microscopic aspects of intercellular junctions, in particular desmosomes. (A) Characteristic
subapical trias of tight junction (TJ), zonula adhaerens (ZA), and desmosome (D) ofmurine intestinal epithelial
cells in a longitudinal section. (B) Higher magnification of two adjacent desmosomes in fetal (20 wk) human
foot-sole epidermis, showing desmosomal substructures (black arrows: midline structure; white arrows:
trilaminar “unit membrane” structure of the plasma membrane domain proper, also pointing to electron
dense cross-bridge structures; arrowheads: secondary dense layer of the plaque; P: electron-dense primary
plaques; IF; anchoring structures of intermediate-sized filaments). (C) Freeze-fracture image of spinous layer
of murine epidermis, showing the intramembranous fracture plane of the plasma membrane with two
desmosomes (arrows) and a gap junction (arrowhead). Note the typical paracrystalline packing of the
connexin substructures in the gap junction in comparison with the loosely and irregularly arranged
transmembrane elements of the desmosomes. (D) Immunoelectron microscopy of an ultrathin section
through an epithelium, showing the immunogold decoration (5-nm particles) of desmoplakin at—or near—
the desmosomal plaque structures. (E) Immunoelectron microscopy of an ultrathin cross-section through
the zonula adhaerens of plasma membranes connecting two endothelial cells of a cardiac capillary, showing
the specific 5-nm immunogold decoration of the junctional plaque with plakoglobin antibodies, thus
demonstrating that plakoglobin can also occur in the plaques of nondesmosomal adhering junctions. Bars
denote 0.1 mm (A, B) and 0.5 mm (C–E). For details, see Cowin et al. (1985a), Franke et al. (1987b),
Kapprell et al. (1987), and Schlüter et al. (2007).
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electrophoretic analyses of proteins from such

fractions allowed some educated guesses about

molecular components of desmosomes, it
took the direct demonstration of specific pro-

teins by immunofluorescence and immu-

noelectron microscopy to provide definitive
evidence of desmosomal protein localizations.

This was first presented at the Cold Spring

Harbor Symposium on the “Organization of
the Cytoplasm” in the summer of 1981 for the

major desmosome-specific plaque protein,

desmoplakin, using antibodies that identified
desmoplakins I and II and some proteolytic

breakdown products thereof (cf. Franke et al.

1982b; see also Franke et al. 1981, 1982a,b) (for
an example, see Fig. 1D). Later, K. Green and

her group determined that desmoplakins I and

II are two splice mRNA forms derived from the
same gene and that this large protein presents a

very special organization with a near–amino-

terminal plakin domain, a central coiled–coil
region, and a so-called plakin-repeat domain in

the carboxy-terminal portion (Green et al.

1988, 1990; Virata et al. 1992; Godsel et al.
2004), so to say the prototype of what later

was termed the “plakin family” of proteins

(Ruhrberg and Watt 1997).
The identification of the desmoplakins was

soon followed by the localization of epidermal-

type desmosomal proteins and glycoproteins
in various cell types and species, although not

in all cells that were known to contain true

desmosomes (cf. Cohen et al. 1983; Cowin
and Garrod 1983; Mueller and Franke 1983;

Cowin et al. 1984a,b, 1985a,b; Giudice et al.

1984; Gorbsky et al. 1985). As an explanation
for cell-type differences, the problem of cell-

type specific proteins of complex gene families

arose, an experience this research field had just
come across with the bewildering complexity

of IF proteins.

Two additonal constitutive proteins of des-
mosomal plaques were identified based on

peptide mapping and immunoblotting: They

were originally counted as desmosomal bands
five- and six-proteins (Franke et al. 1983b) and

later named plakoglobin and plakophilin-1 (see

alsoTable 1). Plakoglobinwas a particularly chal-
lenging component as it turned out also to be a

major protein of the plaques of diverse morpho-

types of adherens junctions (AJs), including the

zonulae adherentes of endothelia (e.g., Fig. 1E)
(Cowin et al. 1986; Franke et al. 1987a,b).

Plakoglobin was also a very attractive molecule

for cDNA- and gene-cloning and soon after the
human amino acid sequence had been published

(Franke et al. 1989, 1992; Fouquet et al. 1992),

Peifer andWieschaus (1990) recognized that pla-
koglobin was a close homolog to the armadillo

protein encoded by the Drosophila melanogaster

segment polarity gene (see also McCrea et al.
1991). This finding resulted in an avalanche of

publications leading to the definition of a large

and important multigene family, the armadillo

(arm) proteins of adhering junctions in general,

i.e., AJs and desmosomes. This family includes

a number of components (e.g., plakoglobin,
b-catenin, proteins p120, p0071, ARVCF,

neurojungin, and the plakophilins) that serve

more than one function and occur in junction-
bound forms as well as in special cytoplasmic

and nuclear forms (Peifer et al. 1992, 1994;

for reviews, see Hatzfeld 1999; Schmidt and
Koch 2008).

In parallel, several laboratories had begun

to clone and identify the genes encoding the
polypeptide chains of the two prominent

desmosomal glycoproteins, desmoglein (Dsg)

and desmocollin (Dsc), again starting with
RNA isolated from bovine muzzle or related

stratified epithelia. Both the Dsg and Dsc mol-

ecules revealed amino acid sequences and
carbohydrate branch sites that were markedly

homologous to those of the “classic” cadherins

such as E- and N-cadherin, which had just been
identified as the major transmembrane AJ mol-

ecules (Koch et al. 1990, 1991a,b; Goodwin et al.

1990; Holton et al. 1990; Amagai et al. 1991;
Collins et al. 1991; Mechanic et al. 1991; Nilles

et al. 1991; Parker et al. 1991; Wheeler et al.

1991a,b; King et al. 1993a,b; Theis et al. 1993).
Remarkably, in less than 3 years, the cDNAs of

all six known desmosomal cadherins were

cloned and sequenced. Again, however, these
amino acid sequences showed that Dsg and

Dsc from different cell types differed from

each other. Furthermore, the cytoplasmic
carboxy-terminal portion of Dsg contained
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several distinct sequence subdomains (Koch

et al. 1990; reviews: Franke et al. 1992; Koch

and Franke 1994; Garrod et al. 2002; Godsel
et al. 2004) and not only spans the plasmamem-

brane but also extends through the cytoplasmic

plaque, as shown by the accessibility to anti-
bodies directly injected into living cultured

cells (Schmelz et al. 1986a,b).

BothDsg andDsc appeared in cell type- and
cell layer-specific subforms (Parrish et al. 1990;

Buxton and Magee 1992; Koch et al. 1992;

Buxton et al. 1993; King et al. 1993a,b, 1995,
1996, 1997; Koch and Franke 1994). Only one

of each group, Dsg2 and Dsc2, was found in

all proliferative cells such as one-layered
(“simple”) epithelia, basal cell layers of stratified

epithelia, meningothelia, cardiomyocytes, and

reticulum cells of lymphatic tissues (Schäfer
et al. 1994, 1996; Nuber et al. 1995, 1996). By

contrast, highly differentiated upper cell layers

of several stratified epithelia contained Dsg1
and Dsc1 as predominant desmosomal cad-

herins, often together with Dsg3 and Dsc3

(Arnemann et al. 1993; King et al. 1993b,
1997; Theis et al. 1993; Legan et al. 1994;

Nuber et al. 1996). Dsg4was avery late addition,

synthesized only in the uppermost living cell
strata of the epidermis (Kljuic et al. 2003;

Bazzi et al. 2006; reviews: Godsel et al. 2004;

Schmidt and Koch 2008).
It is striking in desmosomes that both Dsg

and Dsc almost always appear together as a

pair, probably forming isostoichiometric oligo-
mers that are stabilized by plakoglobin (see,

e.g., Troyanovsky et al. 1993, 1994a,b, 1996;

Chitaev et al. 1996; Witcher et al. 1996; Chitaev
and Troyanovsky 1997; Marcozzi et al. 1998;

review: Troyanovsky 2005). Therefore, it came

as a surprise when it was recently noted that at
least in some nonepithelial cell types (e.g.,

melanocytes and melanoma cells growing in

culture, and melanoma cells in situ), a desmo-
somal glycoprotein, Dsg2, can occur as an abun-

dant surface component out of any junctional

complex (Schmitt et al. 2007;Rickelt et al. 2008).
The last elucidated subfamily of desmoso-

mal components were the plakophilins, appar-

ently located deep in the plaque (see, e.g.,
Mertens et al. 1996; for differential electron

microscopy of desmosomal components, see

North et al. 1999; Stokes 2007). Plakophilin

was originally numbered as “band 6 protein”
in bovine muzzle desmosomes and had been

identified as a protein restricted to stratified

and complex epithelia (Kapprell et al. 1988).
However, it still took several years until the

amino acid sequence of this protein, then

named plakophilin-1, had been determined as
another arm-protein (Schäfer et al. 1993;

Hatzfeld et al. 1994; Schmidt et al. 1994). This

protein was soon followed by plakophilin-2,
the most widespread member of this subgroup

of arm-proteins and the only one present in

the desmosomes of simple epithelial cells as
well as in nonepithelial desmosomes (Mertens

et al. 1996, 1999). Finally, plakophilin-3,

which coexists with plakophilin-2 in many des-
mosomes, has also been sequenced and local-

ized (Bonné et al. 1999, 2003; Schmidt et al.

1999). Similar to plakoglobin and b-catenin,
plakophilins are frequently found in distinct

particles in the nucleus and the cytoplasm, and

such particles may include essential nuclear
components such as the complexes containing

RNA polymerase III (e.g., Mertens et al. 1996,

2001; Schmidt et al. 1997; Bonné et al. 1999).
With remarkable speed, the cell biological

insights obtained and the reagents generated

for desmosomes were introduced into develop-
mental biology and the medical sciences.

Desmosomal molecules could be shown in

very different normal and malignantly trans-
formed cell types, either in layers of tightly

associated cells or in arrays resembling

spinous layer-type growth forms, in which the
cells are connected by special bridges containing

desmosomes (Fig. 2A,B) as well as AJs of the

puncta adherentia type (Vasioukhin et al.
2000). Moreover, the use of subtype-specific

antibodies against members of the plakophilin

and the cadherin glycoprotein families allowed
the determination of not only the cell type

but also a certain state of epithelial differen-

tiation in normal tissues and in tumors (Koch
et al. 1992; King et al. 1995, 1996, 1997; Nuber

et al. 1995, 1996; Schäfer et al. 1996). Conse-

quently, very soon after their first publications
in scientific journals, antibodies against
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cell-type-specific desmosomal proteins were
added to the immunodiagnostic armamentar-

ium of pathologists (e.g., Franke et al. 1983a;

Schwechheimer et al. 1984; Denk et al. 1985b;
Parrish et al. 1986, 1987; Vilela et al. 1987;

reviews: Moll et al. 1986; Garrod et al. 1996;

Kottke et al. 2006).

Specific probes for desmosomal molecules
and their genes soon allowed valuable and pio-

neering contributions to the elucidation of, for

example, autoantibody-caused diseases such as
those of the pemphigus kind (Korman et al.

1989; Amagai et al. 1991; reviews: Amagai

1999; Kottke et al. 2006; Holthöfer et al. 2007;

B

A C 

D 

Figure 2. Double-label immunofluorescence microscopy of monolayer cultures of epithelial cells derived from
human multilayered (A, keratinocytes of line HaCaT; B, squamous cell carcinoma-derived line A-431) or
one-layered (C, D: liver carcinoma cells of line PLC) tissues. Two forms of attachment of bundles of keratin
IFs (green, mouse monoclonal antibody mAb lu-5) to the plaques of desmosomes (A, B: red, desmoplakin,
guinea pig antibodies) represent a continuous transcellular cytoskeletal system (the chromatin in the nuclei
of A, C, and D is stained blue with DAPI reagent): The cells in A are connected by cell-to-cell bridges with
near-centrally located desmosomes, whereas in B the bodies of the cells are directly and tightly associated
with each other via numerous, closely spaced desmosomes. In contrast, no specific anchorage of keratin IF
bundles is seen at cell junctions of the zonula or punctum adherens type, which are seen by immunoreaction
for b-catenin (C, red, guinea pig antibodies) or protein p0071 (D, red, murine mAb). Bars: 20 mm.
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Schmidt and Koch 2008;Waschke 2008; see also

Delva et al. 2009). Notably, studies of the mo-

lecular biology of the genes encoding desmo-
somal proteins, in particular gene abrogation

experiments in mice (e.g., Bierkamp et al.

1996; Ruiz et al. 1996; Gallicano et al. 1998,
2001; Grossmann et al. 2004; Zhou et al.

2004), paved the way for the identification of

the causes of a large proportion of human he-
reditary cardiomyopathies, most strikingly the

majority of the forms of arrhythmogenic cardi-

omyopathies, which often lead to so-called
“sudden death” (Gerull et al. 2004; Franke

et al. 2009; and Delva et al. 2009).

The definition of the molecular ensembles
characteristic of various types of desmosomes

and the reagents to distinguish desmosomal

anddesmosomeprecursor assemblies fromcom-
ponents of AJs (Geiger et al. 1983) also provided

the basis for studies of molecular mechanisms

involved in the intracellular assembly of desmo-
somes, their IF anchorage, their exocytotic expo-

sure on the cell surface, and their endocytotic

resumption, notably on depletions of Ca2þ

ions in the surrounding media (e.g., Kartenbeck

et al. 1982, 1991; Watt et al. 1984; Duden and

Franke 1988; Pasdar and Nelson 1988a,b;
Stappenbeck et al. 1993; Kowalczyk et al. 1994,

1997, 1998; Demlehner et al. 1995; Bornslaeger

et al. 1996; Palka and Green 1997; Smith and
Fuchs 1998; Hofmann et al. 2000; Chen et al.

2002; Koeser et al. 2003; Goossens et al. 2007;

see also Green et al. 2009). Desmosomes had
changed from stable anchor structures to highly

dynamic cell elements and had finally become

subjects of general physiological research.
Aside from the structure-bound states of

desmosomal proteins in junction plaques and

in nuclear or cytoplasmic particles, it had
also become clear that the dynamic basis of all

the reactions, the diffusible “regulation-ready”

form, must exist somewhere in the cell. This
“free” soluble form, however, is one of the

most under-researched entities. The major

soluble state of only plakoglobin, a 7S dimer,
has been determined so far (Kapprell et al.

1987; see also Fouquet et al. 1992).

The molecular definition of true desmo-
somal components had also allowed the

observations that in certain cell types these

junctions do not anchor bundles of keratin IFs

but rather vimentin IFs (Kartenbeck et al.
1984; Schwechheimer et al. 1984; Moll et al.

1986). Desmin-rich IFs and actin-containing

myofilaments have also been shown to insert
at the desmosomes and areae compositae of car-

diomyocytes (Table 1) (Franke et al. 1982a,

2006; Kartenbeck et al. 1983). Note also that it
was shown early on that the formation and

maintenance of desmosomes can occur inde-

pendently of anchorage to IFs (Denk et al.
1985a), indicating that desmosomes have func-

tions other than as anchors and organizers of IF

bundles (Green and Gaudry 2000).

THE DECADE OF THE ARMADILLOS AND
THE MOLECULAR DIVERSITY OF
ADHERENS JUNCTIONS

The discovery of the molecular ensembles
forming the plaque-coated AJs has a history

very different from that of the research on des-

mosomes. Here, seminal findings had been
mademany decades back and almost exclusively

in the field of developmental biology. At the

turn of the previous century, embryologists
and zoologists recognized the importance of

certain cell-surface entities for specific cell–

cell adhesion and cell sorting in animal embry-
ology as well as in tissue-like cell assemblies in

culture dishes, from sponges and polyps to

amphibian and chicken embryos, and, ulti-
mately, mammalian organ development and

regeneration (reviews to be recommended

here: Wilson 1907; Holtfreter 1939; Moscona
1962; Okada 1996).

In the late 1970s, several research groups

attempted to identify the molecules and the
molecular principles governing cell sorting

and adhesion mechanisms essential in embryo-

genesis. Steinberg (1958) recognized the general
importance of Ca2þ ions in these processes.

Following the phenomenon of Ca2þ-mediated

cell–cell assemblies to higher order structures,
Takeichi’s group in Kyoto identified a glyco-

protein of around 150 kDa mol. wt. (Takeichi,

1977), which a few years later was described—
somewhat down-sized to 124 kDa—as a
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central player in cell–cell adhesion events, in

particular in “morula compaction” of early

embryogenesis. Consequently, this molecule
was named “cadherin” for its Ca2þ dependence

and cell adhesion effect (Yoshida-Noro et al.

1984; see also Yoshida-Noro andTakeichi 1982).
The Kyoto group was not alone in their

search for the cell surface molecules involved

in cell–cell interaction and homophilic sorting
in early embryogenesis. Using different exper-

imental approaches, the groups of G. Edelman

in New York and F. Jacob in Paris had also
embarkedon the elucidationof these embryonal

cell-adhesion principles and had independently

arrived at the same kind of major interaction
molecule, which they named uvomorulin, a

molecule and concept that was then followed

further by R. Kemler’s group (Kemler et al.
1977; Hyafil et al. 1980, 1981; Peyrieras et al.

1983; Vestweber and Kemler 1984, 1985; Boller

et al. 1985; Ringwald et al. 1987), or L-CAM
(Edelman et al. 1983; Gallin et al. 1983, 1987;

Cunningham et al. 1984; see also Thiery et al.

1984). Other groups, using slightly different
experimental approaches, called this glyco-

protein A-CAM (Volk and Geiger 1984; Geiger

et al. 1985a,b) or “glycoprotein Cell-CAM
120/80” (Damsky et al. 1983, 1985). In parallel

studies using cell culture approaches, W.

Birchmeier and his collaborators (Imhof et al.
1983; Behrens et al. 1985) had also identified

this cell-surface glycoprotein, which turned

out to be E-cadherin, and the “120/80 kDa”
polypeptides were soon identified as a mixture

of intact and truncated E-cadherin molecules.

So, at a small expert meeting entitled “The Cell
in Contact” on the campus of Rockefeller

University in 1985, the representatives of these

groups recognized that in the previous years
they all had worked on the same molecule,

the first AJ-specific component identified (for

reviews, see Cunningham 1985; Damsky et al.
1985; Edelman 1985; Geiger et al. 1985a;

Takeichi et al. 1985; Thiery et al. 1985).

As with the identification of desmosomal
proteins, the identification of a cadherin was

not the end of a research track but the beginning

of a global outburst of hectic and cell biology-
complicating work, as it started simultaneously

two avalanches of cell type-specific proteins, the

“cadherins” and the “armadillos.” Luckily, effec-

tive cDNA cloning methods were already at
hand so that in only a few years the major cell

type-specific cadherins were sequenced and

could be localized by effective antibodies:
E-cadherin (Gallin et al. 1983; Schuh et al.

1986; Bussemakers et al. 1993), N-cadherin

(Hatta and Takeichi 1986; Hatta et al. 1987,
1988; Nose and Takeichi 1986), P-cadherin

(Nose and Takeichi 1986; Nose et al. 1987),

and the vascular endothelium-characteristic
VE-cadherin (Lampugnani et al. 1995; Dejana

1996; Dejana et al. 2000). Finally, more than

50 members of a large “superfamily” in
mammals have been identified, including

so-called “classic” cadherins, “type II cadher-

ins,” and “protocadherins” (reviews: Takeichi
1988, 1990; Gumbiner 1996; Nollet et al. 2000;

Angst et al. 2001; Wheelock and Johnson

2003; Perez and Nelson 2004; Halbleib and
Nelson 2006), not to mention the bewildering

numbers of cadherins and their splice variants

in some other parts of the animal kingdom
(for arthropod cadherins, see, e.g., Hsu et al.

2009). Each of these newly discovered cadherins

immediately produced “daughter avalanches”
of publications dealing with the molecular

interactions of the specific cadherins with each

other and with AJ plaque proteins, the regu-
lation of assembly or disassembly of AJs, and

the functions of different cadherins during

development and in the mature tissue, begin-
ning with the study of Matsunaga et al. (1988;

see also Meng and Takeichi 2009). In addition,

each of the identified cadherins immediately
produced questions as to its molecular com-

plex state (for evidence of Ca2þ-dependent

cis-homodimers, see, e.g., the E-cadherin
study by Takeda et al. 1999).

During the early period of cadherin discov-

eries, a numberof researchers noted the biologi-
cal specificity of the cadherin ensemble of a

given cell type but also that there are examples

of drastic changes of the type of cadherin pro-
duced when cells change their character, for

example during wound healing (e.g., Hinz

et al. 2004). A very conspicuous change
often occurs when epithelial cells turn into
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mesenchymal cells during development, and

when cells transform to malignancy and de-

velop to carcinomas. Increased malignancy
often appeared to be associated with the down-

regulation of E-cadherin and an up-regulation

or even induction of N-cadherin (e.g., Behrens
et al. 1989, 1993; Frixen et al. 1991; Mareel

et al. 1991, 1994; Vleminckx et al. 1991;

Birchmeier et al. 1993, 1995). In addition, an
increasing number of cadherin mutations

and mRNA splicing errors have been reported

that result in, or at least contribute to, car-
cinogenesis (e.g., Kanai et al. 1994). These prin-

ciples were in a short period of time confirmed

many times and have opened a totally new
avenue of cancer research (for recent reviews,

see Brabletz 2004; Strumane et al. 2004;

Wheelock et al. 2008; see also Berx and van
Roy 2009).

In parallel, we all had towatch with care and

concern the other avalanche of reports on dis-
coveries of proteins located in the cytoplasmic

AJ plaque and directly or indirectly complexed

with the cadherins. Soon after the discovery
of the prototypic arm-protein, b-catenin, in

1989, this name could then only be used in

the plural form (Tables 1 and 2): Six arm-
proteins plus the actin-binder and -regulator,

a-catenin, were identified in a short time,

including some that are restricted to certain
cell types and diseases (Ozawa et al. 1989,

1990a,b; Peifer and Wieschaus 1990;

Nagafuchi et al. 1991; McCrea and Gumbiner
1991; McCrea et al. 1991; Peifer et al. 1992).

Indeed, some of them were so specific that

diverse AJ subforms could readily be distin-
guished not only from desmosomes but also

from each other (e.g., Figs. 2C,D and 3).

Perhaps the greatest surprise and an
additional attraction for researchers were obser-

vations that several of the arm-proteins were

detected and seemed to function in very dis-
tant and different places in the cell: as structure-

integrated rather insoluble components of

junctional plaques, and as components of diffu-
sible, relatively small regulatorycomplexes in the

nucleus, involved in diverse processes including

gene transcription and other nuclear functions.
Thus, it was almost to be expected that an

ever increasing number of cell biology groups

embarked on research projects trying to unra-

vel the molecular interactions of these proteins,
both in the AJ plaques and in nuclei. This led to

the founding of several new fields of regulatory

cell biology, perhaps best illustrated by the afflu-
ence of reports on arm-proteins involved in

regulatory pathways, including the Wnt-

pathway (Choi and Weis 2004; Brabletz
2004; Drees et al. 2005; Lewis-Tuffin and

Anastasiadis 2008; see also Heuberger and

Birchmeier 2009, and Cadigan and Peifer
2009). Finally, it should be noted that sizeable

portions of arm-proteins generally occur in

small diffusible forms in the cytoplasm, such
as in the maternal pools of the amphibian

ooplasm (e.g., Fouquet et al. 1992).

Some puzzling complications, however,
were brought to the field of “cadherinology”

by discoveries of a series of special, carboxy-

terminally truncated cadherins, i.e., molecules
with a significantly longer extracellular por-

tion, but only a very short, e.g., 20 amino

acids, cytoplasmic portion. These cadherins
included mammalian LI-cadherin found in

the polar simple epithelia of liver and/or intes-
tine (Berndorff et al. 1994; Kreft et al. 1997),
and Ksp-cadherin of certain kidney epithelia

(Thomson et al. 1995). An even further trun-

cated type of cadherin was found in which
a normal extracellular element comprising

five repeating elements lacked a membrane-

anchor but was attached to the plasma
membrane by a glycosylphospatidyl inositol

residue (for T-cadherin, see Ranscht and

Dours-Zimmermann 1991; Tanihara et al.
1994). However, these cadherins are not inte-

grated into an AJ structure but widely scattered

over the plasma membrane.
In the mid 1990s, just when the cell biologi-

cal community thought that it finally knew the

composition of AJs, again a disturbing call
“halt—not so fast” was heard. The group of

Y. Takai had identified yet another cell

surface membrane complex, in this case with
major transmembrane molecules of the

immunoglobulin-like category: The nectins

represent a family of four major and several
minor (splice-) isoforms that can bind to
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Table 2. The armadillo-report avalanche in the 1990s: Some results on arm-repeat and associated
actin-interacting proteins in plaques of AJsa

Arm-proteins References

Plakoglobin Cowin et al. 1986 Knudsen and Wheelock 1992

Franke et al. 1987a–c, 1989 Troyanovsky et al. 1996

McCrea et al. 1991 Wahl et al. 1996

Fouquet et al. 1992 Zhurinsky et al. 2000

b-Catenin Ozawa et al. 1989, 1990a,b Hülsken et al. 1994

Peifer and Wieschaus 1990 Näthke et al. 1994

Nagafuchi et al. 1991 Stappert and Kemler 1994

McCrea and Gumbiner 1991 Huber et al. 1997

Ozawa and Kemler 1992 Zhurinsky et al. 2000

Protein p120 Reynolds et al. 1992, 1994, 1996 Anastasiadis et al. 2000

Aghib and McCrea 1995 Golenhofen and Drenckhahn 2000

Shibamoto et al. 1995 Iyer et al. 2004

Aho et al. 1999 Setzer et al. 2004

Ohkubo and Ozawa 1999 Hatzfeld 2005

Anastasiadis and Reynolds 2000 Ferreri and Vincent 2008

Protein ARVCF Sirotkin et al. 1997 Paulson et al. 2000

Mariner et al. 1999, 2000 Waibler et al. 2001

Borrmann et al. 2000 Kausalya et al. 2004

Kaufmann et al. 2000 Walter et al. 2008

Protein p0071 Hatzfeld and Nachtsheim 1996 Deguchi et al. 2000

Hatzfeld 1999, 2005 Hofmann et al. 2008, 2009

Neurojungin (d-Catenin) Paffenholz and Franke 1997 Paffenholz et al. 1999

Zhou et al. 1997 Ho et al. 2000

Lu et al. 1999 Kosik et al. 2005

Representatives of actin-interacting proteins associated with AJ plaques

a-Catenins (E-, N-, T-) Ozawa et al. 1989 Aberle et al. 1996

Herrenknecht et al. 1991 Pai et al. 1996

Nagafuchi et al. 1991, 1994 Koslov et al. 1997

Nagafuchi and Tsukita 1994 Nieset et al. 1997

Stappert and Kemler 1994 Watabe-Uchida et al. 1998

Rimm et al. 1995 Weiss et al. 1998

Yonemura et al. 1995 Janssens et al. 2001

MAGUK Family: Itoh et al. 1991, 1993, 1999 Fanning et al. 1998, 2002

ZO-1, ZO-2, and ZO-3 Horwarth et al. 1992 Wittchen et al. 1999

Yonemura et al. 1995 Kausalya et al. 2004

ERM-Familyb Bretscher 1986 Sato et al. 1991, 1992

Gould et al. 1989 Gary and Bretscher 1993

Tsukita et al. 1989, 1994, 1997a,b Hirao et al. 1996

Funayama et al. 1991

IQGAP Complexesc Brill et al. 1996 Izumi et al. 2004

Hart et al. 1996 Noritake et al. 2004

Kuroda et al. 1996, 1998 Lehtonen et al. 2005

McCallum et al. 1996 Lui et al. 2005
aIncluding some recent review articles.
bHomologous proteins: ezrin, radixin, moesin, and merlin.
cIQ-domain GTPase-activating proteins.
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each other in trans-interactions in a Ca2þ-

independent mechanism. They are bound to a
submembranous plaque-type protein, afadin,

which also occurs in several splice variants

and in turn is associated with some specific
actin-binding proteins, one of which has been

named ponsin. This complex was observed

close to, and often colocalizing with, AJ struc-
tures (Mandai et al. 1997; Takahashi et al.

1999; Satoh-Horikawa et al. 2000; for reviews

see Takai and Nakanishi 2003; Irie et al. 2004;
Takai et al. 2008a,b). Afadin apparently can

also interact with a-catenin, thus providing

the possibility of an indirect actin microfila-

ment bridge connection between nectin and

cadherin complexes (e.g., Tachibana et al.
2000; see also Takai et al. 2008a). So, why have

these “Takai group” molecules still not been

“officially” added to the AJ ensemble? One
remaining problem is that although they colo-

calize, even at the electron microscopic level,

with some of the typical AJ structures, for
example with the zonula adhaerens of polar

epithelia, they have not been seen to occur in

other AJs such as those of the nearby puncta

adhaerentia along the lateral surfaces of the

same cells (e.g., Mandai et al. 1997; Takai et al.

2008a,b). Another problem is that components
of these two strikingly close structural com-

plexes have not been coimmunoprecipitated or

cross-linked by short-distance chemical cross-
linkers. However, recent studies indicate that

the nectin–afadin transmembrane elements

play an important pioneering and dynamic
role in AJ assembly because the nectin complex

provides the first cell–cell contact structures

between two cells whereupon the cadherin-
containing AJ elements follow (Takai et al.

2003, 2008a,b; see also Meng and Takeichi

2009).
Finally, a special “border guard” role has

been ascribed to the groups of relatively small

puncta adhaerentia-type AJs, which in certain
brain regions surround neural synapses and

seem to be important in the formation and

maintained organization of the spatial junction
relationship and the proper functioning of

these specific synapses (Uchida et al. 1996; see

Giagtzoglou et al. 2009).

THE SECRETS OF THE KISSES: THE
MEMBRANE MOLECULES FORMING
TIGHT JUNCTIONS

The electronmicroscopic appearanceof the sub-

apical TJs of simple epithelial cells (zonulae

occludentes) was relatively well-known since
the mid 1970s. Transmission electron micro-

scopy of cross sections showed one or a few

rather small direct contact sites of the two
plasma membranes, commonly called “kisses.”

A D 

B 

D 

D

D 

C 

Figure 3. High-resolution double-label immunofluo-
rescence (A–C) and immunoelectron (D)microscopy
of monolayer cell cultures of human breast-carcinoma
cells of line MCF-7, as seen after reactions with anti-
bodies to the desmosomal plaque component, desmo-
plakin (green, guinea pig antibodies), or to the
adherens plaque protein, p0071 (red, as in Fig. 2B),
as seen on the background of differential interference
contrast (DIC) (A), allowing for the most part to dis-
tinguish the small puncta adhaerentia from the simi-
larly small desmosomes, located side-by-side. (B, C)
Higher magnification micrographs of cells as shown
in A, presenting details of cell–cell junctions along c-
lose membrane contact regions, allowing to dis-
tinguish in many places the alternating pairs of
symmetrical plaques of desmosomes (green) and pu-
ncta adhaerentia (red). (D) Equivalent comparison at
the electron microscopic level, showing an ultrathin
section through junctions after immunogold reaction
of puncta adhaerentiawith antibodies to protein p00-
71 (brackets, immunogold granules enhanced by sec-
ondary silver reaction), in comparison with the
negative small desmosomes (D). For details, see Hof-
mann et al. (2008, 2009). Bars: 20 mm (A), 5 mm
(B, C), and 0.1 mm (D).
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Planar freeze-fractures through the membrane

interior revealed, after metal-shadowing, a

linear, or ornamentally woven in some tissues,
branched relief of one or several ridges

(Farquhar and Palade 1963; Goodenough and

Revel 1970; Friend and Gilula 1972; Claude
and Goodenough 1973; Staehelin 1974;

Montesano et al. 1975; Hull and Staehelin

1976; Diamond 1977; reviews: Schneeberger
and Lynch 1992; Mitic and Anderson 1998;

Förster 2008; see also Goodenough and Paul

2009). Early on, it was also obvious that this
structure must be most important in the estab-

lishment,maintenance, and functions of epithe-

lia and endothelia, and hence in metazoan
life in general. Most convincingly, the barrier

role of TJ structures for paracellular diffusion,

transport processes, and particle translocations
had been directly shown by electrophysiolo-

gical experiments and by electron microscopy

using heavy metal-labeled tracers (see also
Anderson and Van Itallie 2009). It had also

been suggested that a number of physiological

phenomena and diseases, from tissue swellings
to liquid losses, were caused by partial or transi-

ent interruptions of such a barrier (e.g., Claude

1978; Madara and Dharmsathaphorn 1985;
Simons 1990; Matter and Balda 1999; Van

Itallie and Anderson 2006). Naturally, this field

of research was closely watched by pharmacolo-
gists and drug developers awaiting the emer-

gence of principles or molecules that would

allow restoration of an interrupted barrier, or
to induce a controlled transient permeability

of the blood-brain-barrier for drugs of other

components.
Molecular candidates and insights, however,

arrived only dropwise. The first relevant discov-

ery was made by Stevenson et al. (1986) who
isolated and localized a component of the

relatively thin plaque on the cytoplasmic face

of TJs, therefore named protein ZO-1 (“zonula
occludens”-1; identical to the ca. 220-kDa

protein described by Itoh et al. 1991, 1993),

which was later followed by the identification
of ZO-2 (Gumbiner et al. 1991) and ZO-3

(Haskins et al. 1998). These proteins were

founding members of the so-called MAGUK
(membrane-associated guanylate kinase) family

of proteins (for homologous proteins in inver-

tebrates, see the finding in Drosophila by

Willott et al. 1993), which soon turned out not
to be exclusive for TJs but to be almost as regu-

larly found in AJ- and GJ-associated plaques

(Tables 1 and 2) (for reviews, see Anderson
1996; Balda and Matter 2000). These proteins

can also occur in the nucleus (Gottardi et al.

1996) and in several other locations and func-
tions, from transcriptional factors to regulators

of the behavior of tumor cells (see the anthology

edited by Cereijido and Anderson 2001, and
the reviews of González-Mariscal et al. 2003;

Gottardi and Niessen 2008).

Soon thereafter, Citi et al. (1988, 1989,
1991) discovered and localized another major

TJ plaque protein of �Mr 140 kDa, which

they named cingulin (from the Latin cingulum,
i.e., stringlike girdle), which is clearly

TJ-specific, albeit seemingly confined to epi-

thelial TJs (e.g., Cordenonsi et al. 1999; Citi
2001; Fanning 2001). Altogether, about a

dozen TJ plaque proteins have now been

described, but so far their detailed molecular
interactions and locations have only partly

been elucidated. Although for some of them

only molecular complexes with classic TJ com-
ponents have been reported, others, again, show

the phenomenon of dual localization outside of

TJs (reviews: Citi 2001; Fanning 2001).
But what was the “core of the barriers,” the

“real seal,” the “nature of the kisses,” the “hydro-

phobic transmembrane stuff?” Here, a first
answer came at Christmas 1993 as a present,

an unexpected major breakthrough in TJ mem-

branology, a fruit of both “good old” cell frac-
tionation work combined with biologically

conceived strategic experimentation. “The

Tsukitas,” Sachiko and Shoichiro, already
known for the high-quality standard of their

plasma membrane fractions from liver tissue

(Tsukita and Tsukita 1989) and profiting from
the enthusiasm and courage of a young graduate

student, M. Furuse, had decided to take the

classic route by homogenizing themost suitable
tissue and enrich the desired structure by the

most suitable techniques. The biological

source was cleverly chosen—the bile canalicular
front fraction from chicken liver, which is
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naturally enriched in all major kinds of junc-

tions. Their first “eureka” candidate was a tetra-

span transmembrane protein, which they could
immunolocalize to the TJ structure, the zonula

occludens, of liver and other simple epithelia,

and so they named it “occludin” (Furuse et al.
1993; for the appropriate welcome ceremony,

see Gumbiner 1993). Particularly satisfying

was the result that on transfection of occludin-
encoding cDNA expression constructs into

TJ-possessing cells, the newly synthesized occlu-

din integrated into pre-existing TJ structures,
and when injected into TJ-lacking cells, the

gene product was able to form de novo TJ-

typical intramembranous “ridges” as well as
cytoplasmic stacks of lamellae closely resem-

bling typical TJ membrane structures (Furuse

et al. 1994, 1996; Saitou et al. 1997). So, in a
wide range of mammals, occludin and its

various phosphorylation forms appeared to

be the basis of TJ membranes (Fig. 4A)
(Ando-Akatsuka et al. 1996; Sahakibara et al.

1997).

Then, suddenly came a deep disappoint-
ment—not an uncommon one in modern

biology, but in this case fortunately only a

short one. Deletion of both alleles of the occlu-
din gene had resulted in occludin-deficient

mice, which, however, not only lived but

formed typical TJ structures in the typical
tissues, combined with plaque proteins of the

ZO-1–3 protein family and TJ-typical func-

tions (Saitou et al. 1998; only later, a series of
occludin–/– mice with defects in several

tissues and functions were reported: Saitou

et al. 2000). Consequently, in their 1998 paper,
Saitou et al. had to conclude: “These findings

indicate that there are as yet unidentified TJ

integral membrane protein(s) that can form
strand structures, recruit ZO-1, and function

as a barrier without occludin.” And so, without

much mourning, they went back to square
one, the chicken liver bile canalicular mem-

brane fraction, and noticed two further bands

of smaller (�22 kDa) polypeptides that had
amino acid sequences also indicative of mol-

ecules traversing the TJ membrane four times

but without any occludin homology. Neverthe-
less, the new, very small, kind of protein

immunolocalized to TJs, incorporated into

TJs of living cells, and formed de novo intra-

membranous, TJ-typical ridge structures on
cDNA transfection, even in TJ-lacking cells.

Consequently, our Japanese friends had to

expand their Latin vocabulary and named
these new TJ proteins “claudins” nos. 1 and 2

(Furuse et al. 1998a,b; Tsukita and Furuse

1998).
But TJ life did not become much easier,

and the ups and downs of TJ protein research

emotions were not over. Japanese scientists
are usually not regarded as hectic, but with the

TJ proteins everything was new and different.

Shoichiro (Tsukita) had just informed me
and a few others about the first claudin amino

acid sequence, but then came the stop-fax

“hold it” and then the phone call “Sorry:
Something strange has happened, these

sequences are already in the computer.” Very

quickly, however, his good mood returned
with the solution: Two claudins were identical

to the receptors of a food poisoning enterotoxin

of the bacillus Clostridium perfringens, a known
cause of gastrointestinal disease (Sonoda et al.

1999). Thus, another medical research path

had just been opened: Claudins were recognized
as membrane-bound receptors of certain toxins

produced by prokaryotic pathogens (for a

special review, see, e.g., Hecht 2001).
As we have already experiencedwith desmo-

somal molecules, and with cadherin and arm-

protein constituents of the AJs, the claudins
likewise did not come only as a pair of genes.

To the contrary, the Tsukita group had stumbled

into another large, novel gene family, the
claudins, with very complex and functionally

important, cell-type-specific combinations of

a few selected representatives (e.g., Furuse
et al. 1999; Morita et al. 1999a-c; Tsukita and

Furuse 2000). And at the end of that year, coin-

cidentally also the end of themillenium, already
15 different claudins had been discovered and

soon thereafter a total number of 24 claudins

were found to be encoded in the human
genome (Tsukita et al. 2001; Tsukita and

Furuse 2002). Some of the claudins came with

a list of specific medical research questions,
the first example being the Mgþþ-reabsorption
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problem protein, just called “paracellin,” now

reclassified as claudin-16 (Simon et al. 1990;
for a special review see Choate et al. 2001).

Even higher claudin gene complexities are

found in some other vertebrate species, with
a—so far—record number of a total of 56

claudin genes in the—yes, no joke—Japanese

puffer fish, Fugu rubripes (Loh et al. 2004; see
there for further references). Thus, the smallest

vertebrate genome known presents the highest

claudin gene number known, an ironical
paradox of Mother Nature. And while these

B 

A 

C 

Figure 4. Double-label immunofluorescence microscopy showing the tight junction (TJ) systems of monolayer
cell cultures of human hepatocellular carcinoma-derived cells of line PLC (A) and of cultures of human
keratinocytes of line HaCaT beginning to form the first suprabasal cell layer (B, C), using antibodies to
keratin (A, green, mAb lu-5), in comparison with the TJ protein, occludin (A, red), or comparing the
localization of the protein tricellulin (B, green, rat antibodies) with the TJ plaque protein, ZO-1 (B, red, rabbit
antibodies), or the transmembrane TJ protein, occludin (C, red, rabbit antibodies). Note that these cells are
totally interconnected by the TJ system (zonula occludens), which is completed at the tricellular corners by the
occludin-related, but very specifically located protein, tricellulin, presenting complete colocalization with
protein ZO-1 and occludin at the tricellular corners. For details, see also Schlüter et al. 2007. Bars: 20 mm.
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sentences are written, a new claudin message

comes in, indicating further bewildering com-

plexity: Just one claudin, claudin-10, can
occur in six spliced isoforms with different

tissue and intracellular localizations and func-

tions (Günzel et al. 2009). Evolution has in-
deed been merciless to cell biologists!

So the search for claudin functions in the

different tissues and for claudin-connected
diseases began. But halt once more! When the

cell biological world thought that the TJ ensem-

ble was finally complete, it turned out that not
all essential facts of TJ structures had been care-

fully considered. Although complete TJs encir-

cle individual cells of a simple, one-layered
epithelium or an endothelium, thus forming a

tight-looking barrier (Fig. 4A), in some epithe-

lia, small intercellular “gaps” remain at places
where three cells meet each other, a “three

corner state” problem, representing gaps

through which sizable molecules or even
particles might translocate. Again, the Tsukita

laboratory came through, identifying, as a very

late addition to cell junction biology at the
end of the year 2005, the protein “tricellulin,”

just in time to let the late Shoichiro be sure

about the publication (Ikenouchi et al. 2005).
This protein, related by partial sequence ho-

mology to occludin, assembles exactly at those

“three corner” sites to make the epithelial
tight junction system really tight (Fig. 4B,C;

Table 1).

In the meantime, systematic function-
oriented studies had tried to elucidate the bio-

logical roles as well as the potential importance

of specific claudins by gene mutation and de-
letion experiments. However, it was important

to recognize that certain claudins occur in

very specific cell types: For example, claudin-
11, formerly known as “oligodendrocyte-

specific protein” (OSP), was identified in cells

as different as Sertoli cells of testis and myelin
sheath-forming oligodendrocytes, biological

distances and differences difficult to bridge by

simple biological hypotheses (e.g., Morita
et al. 1999b). The first systematic study of

specific claudin gene deletion deficiencies

brought both surprises and clarity. Claudin-1-
deficient mice died on the first day after birth

with wrinkled, dried-out skin, caused by

massive transepidermal water loss (Furuse

et al. 2002), a finding difficult to explain on
the basis of the then prevailing textbook

dogma that there are no TJ structures in the

upper living layer (stratum granulosum) of the
epidermis and other stratified epithelia. How-

ever, it was a lucky coincidence that in the

summer of 2002, typical TJ structures, positive
for claudins and occludin, had also been

noted and localized in these uppermost layers

of the epidermis and other squamous stratified
epithelia (Fig. 5A–C) (Brandner et al. 2002;

Furuse et al. 2002; Langbein et al. 2002;

Schlüter et al. 2004; see also Morita et al. 1998,
2002; Pummi et al. 2001). These findings have

changed the view of how the body surface is

sealed from the outside world. Recently, tri-
cellulin was also identified in suprabasal cell

layers of keratinocyte cultures (Fig. 5B,C)

(Schlüter et al. 2007).
Here, the TJ story could end. There is,

however, a remaining fundamental cell biologi-

cal problem. TJ-type structures, appearing as
“kisses” or other close membrane–membrane

contacts, can also be seen in interdesmosomal

regions of the spinous layer of the epidermis
and the equivalent layers of several other strati-

fied epithelia. They appear as small “lamellated”

or “sandwich” junctions or even as “stud junc-
tions” (puncta occludentia), exactly in places

intensely immunopositive for occludin or

certain claudins (Fig. 5B,C) (e.g., Brandner
et al. 2002; Langbein et al. 2002, 2003;

Schlüter et al. 2007). Could it be that there

still exists a so far ignored world of TJ-related
junctions? Could it be that discoveries of TJ

molecule assemblies are not only history?

GAP JUNCTIONS: THE BEAUTY AND
COMPLEXITY OF INTERCELLULAR
CHANNELS

In the “good old,” although rather controversial

days ofmolecular discoveries, cell biological dis-
cussions of possible functions of a given protein

or structure started with educated guesses

but often ended with less-educated, semitired
jokelike comments. In the case of GJs,
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intercellular communication and exchange

was one of the favorite discussion subjects

early on, but non-GJ colleagues said that they
were there “only to give pleasure to electron

microscopists.” Indeed, these near-ubiquitous

tissue structures seemed to have been pre-
cipitated out of an electron microscopist’s

dreams as they comprised variously sized and

shaped, densely packed, planar paracrystalline
assemblies of short vertical hollow cylinders

(“channels”) made up of symmetrically head-

on-head contacting hemichannels. All of these
structural details were well-demonstrable in

the electron microscope, either in transverse or

horizontal ultrathin sections, by freeze fractures
(see, e.g., Fig. 1C) or in negatively stained iso-

lated GJs. Thus, it was well known already in

the 1960s that the hemichannel interior could
be filled, at least partly, with heavy metal mol-

ecules but also that the small extracellular

spaces in between the channels, the “gaps,”
were also penetrable by such agents added

from the outside.Moreover, in cell fractionation

experiments, GJs were among the more stress-,

detergent-, and even alkalinepH-resistant struc-
tures (e.g., Dewey and Barr 1964; Goodenough

1974; Henderson et al. 1979; Hertzberg and

Gilula 1979; Hertzberg 1984; Stauffer et al.
1993). As a result of these near-optimal con-

ditions, the ultrastructural organization of GJs

was essentially known at the end of the 1970s
(e.g., Goodenough and Revel 1970, 1971;

McNutt and Weinstein 1970; Caspar et al.

1977; Unwin and Zampighi 1980; for reviews
see, e.g., Loewenstein 1981; Gilula 1985, 1987,

1990; Revel et al. 1985, 1987; Unwin 1987;

Goodenough 1990; Sosinsky 2000; see also
Goodenough and Paul 2009). There was

indeed no shortage of structural GJ models

when the molecular phase began.
The major GJ proteins identified in frac-

tions enriched in isolated junction structures

from liver, heart, and eye lens were soon
analyzed and characterized, including protein
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Figure 5. Electron (A) and immunofluorescence
(B–D) microscopy, showing the tight junction (TJ)
system in the granular layer (stratum granulosum)
of stratified epithelia. (A) The uppermost living
layer of human epidermis (the first cornified layer,
stratum corneum, is labeled SC) contains a
subapical system of TJ structures (horizontal bars
and pairs of arrows denote distinct membrane
contact and fusion points: “kisses”). Note that the
four lowermost TJs (arrows) are interspersed
between desmosomes. (B–D) Near-vertical cryostat
section through bovine gingiva, showing the TJ
system in the uppermost living layers by
immunostaining with antibodies to occludin (B,
bracket; C, corresponding phase contrast image),
whereas the cell–cell junction structures positive
for the TJ protein, claudin-1, are not limited to the
granular layer but extend basally into a number of
stratum spinosum cell layers as well, indicating that
there exist further, not yet fully characterized, partly
punctate structures containing claudin-1 but not
occludin (for methods used, see also Brandner et al.
2002; Schlüter et al. 2007). Bars: 0.2 mm (A),
50 mm (B–D).
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chemistry and reconstitution experiments,

and cDNA cloning and sequencing (e.g.,

Goodenough 1974; Henderson et al. 1979;
Hertzberg and Gilula 1979; Hertzberg et al.

1982; Hertzberg and Skibbens 1984; Kumar

and Gilula 1986; Paul 1986; for review, see
Goodenough 1990). A major protein constitu-

tent was obvious, but it was also recognized

early that the molecules representing this
major GJ protein in different tissues were

related but not identical. “Connexins” was

chosen as the family name (Goodenough
1974) and, after some discussion on the mol-

ecular relatedness alphabetical nomenclature

of the Westcoast and the “connexin plus appar-
ent molecular weight” (e.g., Cx26, etc.) propo-

sal from the Eastcoast, the “Cx plus Mr value”

version found more friends. One inherent
problem, however, was also noted from the

beginning that theMr value even of the ortholog

protein could vary between species. Another
problem was the same as encountered with the

other cell–cell junctions. Yes, you are right:

Connexins are another large junction protein
family showing cell-type specificity.

Definitive evidence that a certain protein is

indeed part of a GJ channel structure came
when antibodies specific for a given type of con-

nexin(s) had been generated. This enabled

immunoblot testing for specific reactions with
a connexin, or a few related ones, from

GJ-enriched fractions, and the identification

and exact GJ localization using immunoelec-
tron and immunofluorescence microscopy

with isolated gap junction membranes or,

most convincing, GJ structures in situ
(Willecke et al. 1982; Janssen-Timmen et al.

1983; Dermietzel et al. 1984; Paul 1985; Beyer

et al. 1989; Fromaget et al. 1990, 1992, 1993;
Gilula 1990; Yeager 1993). As with the trans-

membrane proteins of the other three major

categories of junctions, antibodies that bound
to certain epitopes located in the cell–cell

bridge domains of connexins were also able to

interfere with, or even disrupt, cell–cell coup-
ling (e.g., Warner et al. 1984; Gilula 1990;

Hertzberg et al. 1985).

In parallel, an increasing number of
connexins had been characterized by cloning

and sequencing, using cDNA clones from a

wide variety of tissues (Kumar and Gilula

1986; Nicholson et al. 1985; Heynkes et al.
1986; Paul 1986; Beyer et al. 1987, 1990; Traub

et al. 1989; Zhang and Nicholson 1989; Kanter

et al. 1991; reviews: Beyer et al. 1993; Willecke
et al. 1993; Yeager 1993). These studies led to

an extremely complex cell-type-specific catalog

of mammalian connexins. Twenty-one human
Cx gene products have been identified so far,

and so one has to recognize the great potential

of Cx-type combinations to form GJs (homo-
meric, heteromeric, homotypic, or heteroty-

pic), and further different properties that may

result from phosphorylations and othermodifi-
cations (reviews: Bruzzone et al. 1996; Goode-

nough et al. 1996; Kumar and Gilula 1996;

Sosinsky 2000; see, e.g., the anthology edited
by Peracchia 2000; for a special review integrat-

ing recent results and insights, see Goodenough

and Paul 2009).
In view of the fundamentally different ultra-

structural organization of the GJs, compared to

the other three junctional complexes, and the
obvious lack of homology between the connex-

ins and the cadherins or claudins, it was finally

some surprise, at least to this author, that con-
nexin cytoplasmic domains also specifically

associated with certain AJ-typical plaque pro-

teins such as MAGUK proteins of the ZO-1 to
ZO-3 group (Giepmans and Molenaar 1998;

Toyofuku et al. 1998, 2001; Giepmans et al.

2001; Kausalya et al. 2001; Laing et al.
2001a,b; Nielsen et al. 2001, 2002, 2003;

Barker et al. 2002; Jin et al. 2004; Singh et al.

2005; Talhouk et al. 2008). That this interaction
reflects direct binding of theMAGUKprotein to

the connexin partner has perhaps most con-

vincingly been shown using pure ZO-1
protein synthesized by translation in vitro

(e.g., Laing et al. 2001a,b). So it is justified to

hypothesize that MAGUK proteins are also
important components involved in regulatory

mechanisms of GJ formation and functions,

and that the intracellular GJ membrane sur-
face is a “hot spot” of interactions with diverse

cytoplasmic proteins (Table 1) (review: Dbouk

et al. 2009). The list of GJ-associated proteins
and of interactions of GJs with other cell
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structures is still growing, although a distinct

electron-dense plaque structure has not been

demonstrated (for examples and references,
see recent reviews: Park et al. 2007; Koval

2008; Prochnow and Dermietzel 2008).

The history of the elucidation of the mo-
lecular composition of GJs has been for some

time under some strange clouds and question

marks. For example, a radically alternative
concept of GJ structures in various invertebrates

and vertebrates was based on the existence of

GJ-like structures assembled from very small
(16–27 kDa) polypeptides, later named

“ductins” (for references, see Finbow et al.

1985; Finbow and Pitts 1993; Finbow 1997;
Ashrafi et al. 2000). Very recently, now such

“GJ-mimicking” structures and the ductins

could be definitively ascribed to proteins of
the vacuolar ATPase proton pump and to be

absent from GJs (M. Finbow, personal com-

munication). Another long-standing question
mark had already been answered at the turn of

the millenium: The so-called major intrinsic

polypeptides (MPs or MIPs) of the eye lens,
one of the best studied structures in cell

biology, were finally identified as true connexins

(e.g., MP70 is Cx50; here, the reader is referred
to “translations” of MP into Cx language as,

e.g., in Graw et al. 2001).

In view of the important cell–cell comuni-
cation and exchange functions of GJs, it was

expected that studies on the functions of

specific GJs and GJ proteins would also bring
valuable information about the functions of

individual proteins, not only from gene dele-

tion or mutation experiments but also from
the growing list of human disorders and dis-

eases that can be clearly related tomutant or dis-

regulated connexins (for examples, see recent
reviews: Meşe et al. 2007; Koval 2008). Thus,

with connexins as with the constitutive mol-

ecules of the other three categories of cell–cell
junctions, cell biologists can finally also con-

clude with satisfaction that basic cell research

here has not only revealed the molecular organ-
izations and functions of junction components,

but has also made an unexpectedly high

number of contributions to medical research
and practice.

SOME CONCLUDING REMARKS

Although on a first glance themolecular ensem-
bles and the morphology of the four homotypic

cell–cell junctions differ in many aspects, one

can also note a series of similarities in structural
organization:

(1) All four forms of symmetrical junctions

are clusters of densely packed, specific
transmembrane molecules.

(2) The transmembrane molecules are either
once-spanning glycoproteins (cadherins)

or tetraspan proteins.

(3) The cytoplasmically projecting domains
of the transmembrane molecules are inti-

mately associated with proteins that

form layers or plaques, which widely vary
in thickness and density and in certain

cases can connect the junction with the

cytoskeleton.

(4) The transmembrane molecules of a hemi-

junction are connected head-to-head with
their counterparts of a hemi-junction of

an adjacent cell.

(5) The positions are often not at random but
topogenically integrated into the specific

cell and tissue architecture.

(6) The types, the sizes, and the topological

positions of these junctions are under devel-

opmental and functional control. Conse-
quently, disorders often result in disease.
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